2>
-

= Newcastle
University

MODELLING AND DEVELOPMENT

o
- L
©) s, >
N~ UNIVERSIT 3
|
b >
T Int t of Thi
FKTHY p ncernec o INgs
Yl |5 for Industry and Human
g Applications
\gL%&é & Volume 2
é@ @%& q Modelling and Development
250 w1y Sgo 1) c
mm
cE
= o
cT
k2
Y=g
oz
5 £
iE]
C6
L

RN Funded by the
LB Erasmus+ Programme
i of the European Union|

Ministry of Education and Science of Ukraine
National Aerospace University “Kharkiv Aviation Institute”

Internet of Things
for
Industry and Human Applications

Volume 2

Modelling and Development

Edited by V. S. Kharchenko

Project ERASMUS+ ALIOT
“Internet of Things:
Emerging Curriculum for Industry and Human Applications”
(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP)

2019

UDC62:004=111

173

Reviewers: Dr. Mario Fusani, ISTI-CNR, Pisa, Italy
Dr. Olga Kordas, KTH University, Stockholm, Sweden
Viktor Kordas, KTH University, Stockholm, Sweden

173 Internet of Things for Industry and Human Application. In
Volumes 1-3. Volume 2. Modelling and Development /V. S. Kharchenko (ed.) -
Ministry of Education and Science of Ukraine, National Aerospace University
KhAI, 2019. - 547p.

ISBN 978-617-7361-80-9
ISBN 978-617-7361-82-3

Three-volume book contains theoretical materials for lectures and training modules
developed in frameworks of project “Internet of Things: Emerging Curriculum for
Industry and Human Applications /ALIOT” (Project Number: 573818-EPP-1-2016-1-
UK-EPPKA2-CBHE-JP, 2016-2019) funded by EU Program ERASMUS+. Volume 2
describes models, simulation and development techniques for Internet of Things (IoT).
The book consists of 4 parts for corresponding PhD courses: modelling of IoT based
systems (sections 16-19), software defined networks and IoT (sections 20-23),
dependability and security of IoT (sections 24-27), development and implementation of
IoT based systems (sections 28-31). The book prepared by Ukrainian university teams
with support of EU academic colleagues of the ALIOT consortium.

The book is intended for MSc and PhD students studying IoT technologies,
software and computer engineering and science, cyber security. It could be useful for
lecturers of universities and training centers, researchers and developers of IoT
systems.

Fig.: 158. Ref.: 430. Tables: 45.

Approved by Academic Council of National Aerospace University ‘“Kharkiv
Aviation Institute” (record Ne 4, December 19, 2018).

UDC 62:004=111
ISBN 978-617-7361-82-3

© 0.V.Drozd, O.O.llliashenko, V.S.Kharchenko, M.O.Kolisnyk, G.V.Kondratenko,
Yu.P.Kondratenko, O.Yu.Maevskaya, D.A.Maevsky, O.M.Martynyuk, D.S.Mazur, M.V.Nesterov,
A.P.Plakhteyev, V.V.Shkarupylo, Ie.V.Sidenko, 1.S.Skarga-Bandurova, V.V.Sklyar,
G.V.Tabunshchyk, M.O.Taranov, A.Y.Velykzhanin, D.D.Uzun, Y.O.Uzun, N.G.Yatskiv,
V.V.Yatskiv, H.A.Zemlianko

This work is subject to copyright. All rights are reserved by the authors, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms, or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed

MiHicTepcTBO OCBITH 1 HayKH YKpaiHu
HauioHansHMi aepOKOCMIYHUI YHIBEpCUTET
iM. M. €. XKykoBcbkoro «XapkiBcbkuii ABiatiinuii [ncturyt”

InTepHer peueit
A
iHayCTpiaJIbHUX | TYMaHITAPHUX 3aCTOCYHKIB

Towm 2

MogaenoBaHHs i po3po0.ieHHsI

Penakrop Xapuenko B.C.

IIpoekr ERASMUS+ ALIOT
“IHTepHeT pedeil: HOBa OCBITHS Mporpama Juist oTped
MIPOMUCIIOBOCTI Ta CycCHiibcTBA”
(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP)

2019

YIAK 62:004=111
173

Penenzentu: Jp. Mapio ®@ys3ani, ISTI-CNR, ITiza, ITamis
Hp. Onsra Kopnac, KTH University, Crokronsm, LlBermist
Bixrop Kopmac, KTH University, Stockholm, Sweden

173 InTepHeT peueii MJs iHAyCTPiaAbHUX i T'yMaHITAPHUX 3aCTOCYHKIB. Y TPhOX
Tomax. Tom 2. MonenwoBanns i po3podaenns / 3a pea. B. C. Xapuenka. — Minictep-
cTBO OCBITM 1 Hayku Ykpainu, HamioHanbHuii aepoxocmidnuii yHiBepcuter XAl,
2019. 547 c.

ISBN 978-617-7361-80-9
ISBN 978-617-7361-82-3

Kunra, 1mo ckiiagaeTsest 3 TphOX TOMIB, MICTUTB TEOPETHYHI MaTepiay U JIEKIiH Ta
TpEHIHTIB, po3po0ieHnX B pamkax mpoekty Internet of Things: Emerging Curriculum for
Industry and Human Applications / ALIOT, 573818-EPP-1-2016-1-UK-EPPKA2-
CBHE-JP, 2016-2019, mo ¢inancyerscs nporpamoro €EC ERASMUS +. Towm 2 ommcye
MOZIEJTi, METOJM MOJIEITIOBaHHs Ta po3poOku it [areprety peueit (IoT). Kaura cknagaersest
3 4 YaCTUH IS BiAMOBITHNAX JOKTOPAHTCHKHMX KYPCiB: MOJICIOBAHHS CUCTEM Ha ocHOBI [oT
(po3nim 16-19), nporpamuo-Bm3HadyBani Mepexi 1 [oT (po3mim 20-23), HamifHicT 1
oesnexa [oT (po3mimm 24-27), po3poOiieHHs 1 BpoBaKeHHs cucteM Ha ocHOBI 0T (po3mimu
28-31).

Kuura migrorosneHa ykpaiHCEKMMHU YHIBEPCHTETCBKUMH KOMaHIaMU 33 HiATPUMKHI
KOJIET 3 aKaJIeMiYHHX 3aKIafiB kpaid €C, M0 BXoAATh 10 KoHcopuiyMmy mpoekty ALIOT.

Kuura npusHaueHa Jyis MariCTpaHTiB i acHipaHTiB, siki BuB4atoTh TexHoiorii [oT,
MIPOTpaMHy 1 KOMITIOTEpHY IHXKEHEpilo, KOMITIOTepHi HayKu. Moxke OyTH KOPHCHOIO JUIS
BUKJIaIa4iB YHIBEPCHUTETIB 1 HABYAJBHHX LICHTPIB, JOCHITHUKIB 1 po3poOHHKIB crcteM [oT.

Puc.: 158. Tlocunans: 430. Tabmuup: 45.

PexoMeH10BaHO /10 BUIAHHS BICHOIO pazioro HarioHaabHOro aepoKoCMivHOTO yHiBep-
curery iMeHi M.€. JKyxoBcbkoro «XapKiBChKHif aBiariitauil iHCTHTYT» (IpoToKoiI Ne 4 Bix
19 rpynns 2018).

YK 62:004=111
ISBN 978-617-7361-82-3
© 0O.B.po3n, 0.0 Inmsiesko, B.C.Xapuenko, M.O KomicHuK, I".B.KonapareHko,
10.I1.Konaparenko, O.}O.Maegcbka, JI.A.Maegcbkiii, O.M.Maprusiok, J[.C.Ma3yp, M.B.Hecrepos,
A.IlITnaxrees, B.B.IlIkapanuio, €.B.Cinenxo, 1.C.Ckapra-banayposa. B.B.Cxuusip, I'.B.TaOyHiuuk,
M.O.Tapaunos, A.}O.Bemmrokanin, 1.1 Y3yH, }0.0.Y3yn, H.I'. ukis, B.B.fukis, I'.A.3emisHko

115 poboTa 3axuiieHa aBTOPCHKAM IIpaBoM. Bcei nipaBa 3ape3epBOBaHi aBTOpaMy, HE3aJIEXKHO
BiJI TOTO, YU CTOCYETHCS L€ BChOTO MaTepiaiy abo HOro YacTHHH, 30KpeMa IpaBa Ha MepeKIaan Ha
iHIII MOBH, ITEPEBHIAHHS, MOBTOPHE BHKOPHUCTAHHS IIIOCTpAlliid, AEKIaMallilo, TPaHCIALIO,
BIATBOPEHHS Ha MiKpodinbMax a0o Oyab-sKuUM iHIINM (i3HYHUM cIIOCOOO0M, a TaKOX Hepenady,
30epiraHHs Ta eJICKTPOHHY aJIaNTalliio 3a J0MOMOTrOI0 KOMIT'IOTEPHOTO MPOTrPaMHOI0 3a0e3MeueH-
H$ B Oy/Ib-SIKOMY BHIJISIZ, 00 K aHAJIOTYHUM a00 1HIIKMM BiZIOMUM CIIOCOOOM, a00 K TaKUM, KU
Oyze po3pobiieHuil B MallOy THEOMY.

Contents

CONTENTS
PREFACE. ... e 7
PART V. SIMULATION OF loT AND IoE-BASED SYSTEMS....... 14
16. PROGRAM TOOLS FOR THE SMART SYSTEMS
SIMULATION ..ottt e 14
16.1 Basic principles of 10T SIMUIAtioNnScccovvinieriiniieicreeen 16
16.2 Simulation IoT devices based on Arduino platform..................... 25
16.3 Software development. Arduino C/C++ sketch...........c.cccvevenenee. 31
16.4 Work related analysisccocvoiriiiieneiccee e 36

17. THREE-LEVEL SIMULATION OF IOT/IOE BASED SYSTEMS
WITH THE USE OF UML DIAGRAMS, PETRI NETS AND

TEMPORAL LOGIC ...ttt 41
17.1. Simulation and verification in architecture of 10T and loE-based
systems with the use of visual UML diagrams...........cccccceeeviinenenenn, 43
17.2 Simulation and verification in behavior of 10T and IoE systems on
the basis of the Queuing Systems and Petri Netscccoecvvcveieiennns 53
17.3 Simulation and verification of synchronization processes in IoT
and loE-based systems on the basis of temporal logicc.ccccue..e... 64
17.4 Work related analysiscccoevevieiiiieieiece e 67
18. MARKOV’S MODELLING OF IOT SYSTEMScc.ccccvvveiinennn 76
18.1 Features of Markov’s modeling of [oT systems............ccccceenene 78

18.2 Markov’s modeling of IoT systems reliability and availability....85
18.3 Markov’s modeling of IoT systems cyber security and availability

.. 93
18.4 Semi Markov’s modeling of [oT systems........ccccovveverniricernnnnn 99
18.5 Work related analysisccocovreieieneiccsee e 105
19. INTERACTION SIMULATION FOR IOT SYSTEMS.............. 110
19.1 Interaction in 10T SYSIEMScecvviiiieieieciece et 112
19.2 Interaction Flow Modelling Languageccccoeovrerierrseennnnns 118
19.3. CaSE STUAY ... 119
19.4 Work related analysiscccvveevieviiiinniee e 131
PART VI. SOFTWARE DEFINED NETWORKS AND IOT........... 135
20. SOFTWARE DEFINED NETWORKS BASICSccccoceviviinne 135

Contents

20.1 SDN architecture. Fundamental notions, principles and concepts

.. 137
20.2 An in-depth look at the aspects of implementation. Differentiation
between Control and Data PIanes...........ccccoovevviiiieiieniee e 142
20.3 OpenFlow protocol. The basics, peculiarities and limitations....150
20.4 Work related analysSiScccveveieeiieiieiiiericiese e 161
21. SDN PROGRAMMING AND SIMULATION OF SDN
COMPOSING, CONFIGURING AND SCALINGccccovvrivrirne 165
21.1 On the peculiarities of SDN switches and controllers functioning
and IMPIEMENTALION ..o 167
21.2 Network programming and teStingccoevvevvienivnenenicnennenn 172
21.3 SDN programming and Python scriptingccccoceveviviienennnn 178
21.4 Work related analysiscccooveiiininineienecees s 186
22. ALGORITHMS AND APPLICATIONS FOR UTILIZATION OF
SDN TECHNOLOGY TO IOT ..ot 194
22.1 Managing the 10T With SDNccccooiiiiiiiie e 196
22.2 Smart routing and schedulingccocoeieieiiiiin e 198
22.3 Optimization of SDN Traffic Flow for 10Tccoecevviieienns 206
22.4 SDN Performance prediCtion...........cccceveveieiieie e 219
22.5 Work related analysiscccooveiiiiinineneneeeese e 234
23. SDN IN CONTEXT OF DEVOPS TECHNOLOGYc...... 241
23.1 DevOps technology OVEIVIEWcccccveviiiiiieieceeie e 243
23.2 DEVSECOPS. ...ttt sttt e 255
23.3 SDN and DeVOPS.......cccoeiieieiriee e 260
23.4 DevOpS and 10T ..o 271
23.5 Work related analysiscccccceiiiieiiieeie e 278
PART VII. DEPENDABLITY AND SECURITY OF IOT 283
24. DEPENDABILITY AND SECURITY MODELS OF 10T 283
24.1. Dependability and security concepts for 10Tc.cccceeveveieneen 285
24.2 Dependability and safety models for 10T ..o 290
24.3 Security models fOr 10T ..o 302
24.4 Work related analysisccovviieiiiiiie e 312
25. SAFETY AND SECURITY MANAGEMENT OF IOT 317
25.1 Safety and security management requirements to 10T 319
25.2 Safety and security life cycle for 10T ..o 329

4

Contents

25.3 Review, analysis and testing techniques for 10Tccceevenee. 334
25.4 Work related analysSiSccccvveieeiieiiiieie e 337
26. ASSURANCE CASE FOR 0T ...t 341
26.1. Assurance Case fundamentalsccocevvrviieninneene e 343
26.2. Safety and security techniques and measures for 10T................ 347
26.3. Security informed and energy efficiency informed Assurance
(08 T o] gl [0) USSR 357
26.4 Work related analySiScceveiieiiiiiiieic e 363

27. SECURITY OF IOT BASED BLOCKCHAIN TECHNOLOGY 368
27.1. Bases of blockchain technology and examples of application ..370

27.2 Consensus algorithms in blockchain technology.............cc..c...... 377
27.3 Blockchain technology for the 10T SECUFItYccceevveivcieiiennnn 384
27.4 Work related analysiscocooveiiiiinineieneeees s 394
PART VIII. DEVELOPMENT AND IMPLEMENTATION OF 10T-
BASED SYSTEMS ... e 403
28. BASIC CONCEPTS AND APPROACHES TO DEVELOPMENT
AND IMPLEMENTATION OF IOT SYSTEMS. ..ot 403
28.1 loT-based system development ProCessccevveveveveeeesienneas 405
28.2 Strategies to planning 10T architectures.........cccoceevveveveiieniennnn 413
28.3 The base components of the 10T SYStemS..........ccccvvvrvivieiennenn. 419
28.4 The loT development boards and platforms for prototyping......426
28.5 The loT platforms: types and selection criteria...........ccccoeeveneee 429
28.6 Work related analysiscccooeiiiiininiieiceee e 431
29. MODELS FOR IOT-BASED DEVICES AND TECHNOLOGIES
FOR DATA PROCESSING AND TRANSFER.........cccceevviiniiiene 436
29.1 loT-based devices: models and network communication protocols
.. 438
29.2 Technologies for data processing in l0T-based systems 447
29.3 Protocols and standards for data transfer between loT-based
[0 LC Y oSS 456
29.4 Work related analysis ..o 464

30. INTELLIGENT METHODS AND APPROACHES FOR
MANAGEMENT AND LEARNING OF IOT-BASED SYSTEMS .470
30.1 Management systems and 10T platforms.........c.c.ccccevviviiernnnne. 472

Contents

30.2 Multi-agent approach for development and management of loT

R A1 (=] 1 1SR 482
30.3 Methods and approaches for learning of loT-based systems......490
30.4 Work related analysisccoovrirerenenenieeeesese e 497
31. PROTOTYPING AND RAPID DEVELOPMENT OF 10T
SYSTEMS ... 503
3 I I ol I (-1 o= S 505
31.2 Prototyping and rapid development principles..........cccccevvenenne. 511
31.3 Cases of 10T systems rapid developmentccccevviviiernnane 519
31.4 Work related analysisccceovrirereneneieieeesese e 530
JaN & (0 3) 1.6) (R 536
ANz 05 (0521 105 0 GRRRREUUR O TPRTTTR 542

Preface

PREFACE

ALIOT ERASMUS+ project. Three-volume book contains
material for lectures and training modules developed during carrying
out of project “Internet of Things: Emerging Curriculum for Industry
and Human Applications /ALIOTY” 1(Project Number: 573818-EPP-1-
2016-1-UK-EPPKA2-CBHE-JP, 2016-2019) funded by EU Program
ERASMUS+. Main ALIOT project objectives are development and
transfer of innovative Internet of Things (loT) and Internet of
Everything (loE) related research ideas and practices between the
academic and industrial sectors and for society as whole.

The tasks of the ALIOT project are the following:

1) to introduce a Multi-domain and Integrated Internet of Things
(10T) programme and develop 4 courses for MSc students:

- MC1 Fundamentals of 10T and IoE,

- MC2 Data science for 10T and IoE,

- MC3 Mobile and hybrid loT-based computing,

- MC4 loT technologies for cyber physical systems;

2) to introduce a Multi-Domain and Integrated loT programme and
develop 4 courses for doctoral students:

- PC1 Simulation of 10T and IoE-based systems,

- PC2 Software defined networks and 10T,

- PC3 Dependability and security of loT,

- PC4 Development and implementation of 1oT-based systems;

3) to establish multi-domain 10T cluster network and develop 6
training courses for human and industry applications:

- ITML1 loT for smart energy grid,

- ITM 2 10T for smart building and city,

- ITM 3 10T for intelligent transport systems,

- ITM 4 10T for health systems,

- ITM 5 10T for ecology monitoring systems,

- ITM 6 10T for industrial systems.

L The European Commission's support for the production of this publication does
not constitute an endorsement of the contents, which reflect the views only of the
authors, and the Commission cannot be held responsible for any use which may be
made of the information contained therein.

Preface

The tasks of the project have been solved by ALIOT consortium of
Ukraine and EU countries universities and organizations:

- Newcastle University (NU), United Kingdom (grant holder and
EU coordinator);

- National Aerospace University "Kharkiv Aviation Institute"
(KhALl), Ukraine (national coordinator);

- Leeds Beckett University (LBU), United Kingdom;

- Coimbra University (CU), Portugal;

- University KTH, Stockholm, Sweden;

- Institute of Information Science and Technologies ISTI-CNR,
Pisa, Italy;

- Chernivtsi National University (ChNU), Ukraine;
East Ukraine National University (EANU), Ukraine;
Odesa National Polytechnic University (ONPU), Ukraine;

- Ternopil National Economic University (TNEU), Ukraine;

- Petro Mohyla Black Sea National University (PMBSNU),
Mykolaiv, Ukraine;

- Zaporizhzhya National Technical University (ZNTU), Ukraine;

- Pukhov Institute for Modelling in Energy Engineering (IPME),
National Academy of Science of Ukraine, Kyiv, Ukraine;

- IT-Alliance (ITA), Ukraine;

- Smart.ME company (SM), Ukraine.

ALIOT books. To assure the ALIOT courses the following
books are edited:

- Three volume multi-book “Internet of Things for Industry and
Human Applications” for theoretical/lecture part of courses:

Volume 1. Fundamentals and Technologies (MSc study),

Volume 2. Modelling and Development (PhD study),

Volume 3. Assessment and Implementation (training modules);

- 4 practicum books for MSc courses:

- 4 practicum books for PhD courses;

- 6 books for domain oriented training modules.

The volumes consists of 14 parts according with list of MSc
(Parts 1-1V), PhD (Parts V-VIII) and training (Parts 1X-XIV) courses.
Parts are called according with corresponding courses (Parts I-1V as
MC1-MC4, Part V-VIII as PC1-PC14, Parts IX-XIV as ITM1-ITM6).

Preface

Parts consist of the sections 1-56 (4 sections for courses MC1-
MC2, MC4, PC1-PC4, ITM1-ITM5; 3 sections MC3, 5 sections for
ITM®6). Section 0 introduces into the multi-book.

Contents and authors of the Volume 2. Volume 2 consists of
parts V-VIII, sections 16-31.

PART V. SIMULATION OF 10T AND IOE-BASED
SYSTEMS.

Section 16 is devoted to the description of the general principles of
functioning of the Arduino board and the simulation of its work. The
differences between physical and computer simulation are shown. The
simulation methods that can be applied to the ARDUINO boards are
described. A comparative analysis of various software tools that can be
used for simulation is given. The operation with the PROTEUS
software package is described in detail.

Author of the section 16 are Assoc. Prof., Dr. O. Yu. Maevskaya
(ONPU), Prof., DrS D. A. Maevsky.

Three-level simulation of 10T/IoE based systems in their structure,
behavior and processes of synchronization is considered in section 17.
Visual modeling, simulation and verification of architectures,
functionality and temporal features of 10T/IoE based systems and their
components in static and dynamic modes with the use of UML
diagrams, Petri nets, temporal logic, corresponding methods and tools.
The features of the simulation based on evolutionary genetic and multi-
agent technologies, technigues and tools is suggested.

Authors of the section 17 are Assoc. Prof., Dr. O. M. Martynyuk,
Prof., DrS. O. V. Drozd (ONPU).

Section 18 describes the features of development of Markov and
semi-Markov models for research of the Internet of Things operation
and assessment of availability, cyber security and dependability.
Models are developed for typical 10T devices (switches, hubs, UBS)
and system (Smart Business Centre) as a whole. Markov models have
been used to assess SBC cyber security under DoS/DDoS attacks.

Authors of the section 18 are Assoc. Prof., Dr. M. O. Kolisnyk,
Prof., DrS. V. S. Kharchenko (KhAI)

Section 19 is devoted to the interaction simulation in loT systems.
In the chapter the common architecture of the loT systems are
considered as well as patterns of the simulation of the interactions. As
for simulation of the different interactions could be used variety of

9

Preface

techniques and tools, authors suggested several use cases. The use case
with remote laboratory GOLDi demonstrate the usage of the FSM
models and Kripke model, in the use case with smart campus there is
considered implementation of the IFML models for modelling
interactions with the users, for simulation of the cyber-physical systems
could be used digital twins, which was shown in the examples with the
ISTR system.

Author of the section 19 is Prof., Dr. G.V. Tabunshchyk (ZNTU).

PART VI. SOFTWARE DEFINED NETWORKS AND IOT.

Section 20 considers the fundamentals of software-defined
networking (SDN), principles of composition and functioning,
technologies, architectures. The accent is also put on the features of
technology, historical premises that have prompted the emerging of
SDN paradigm. OpenFlow specification evolution process, forming the
basis for granting the unified mechanism of communication between
the controller and switches have been analysed.

Authors of the sections 20 are Dr. V. V. Shkarupylo, MSc student
D. S. Mazur (ZNTU).

In section 21, the principles of software defined networks
programming and simulation are considered. The aspects of
programming have been covered on the basis of Python programming
language. Basic commands for network topology configuration are
given, the commands for resolving the automation tasks in particular.
The tips on Mininet environment and corresponding MiniEdit graphical
tool usage have been provided.

Authors of the section 21 is Dr. V. V. Shkarupylo (ZNTU).

Section 22 deals with a series of research problems related to the
implementing specific QoS models over SDN by developing and
implementing algorithms and approaches supplying efficient operation
of SDN in loT. Recent trends in algorithms utilization for SDN
technology were analyzed in terms of their suitability for establishing
and maintenance large-scale backbone SDN/OpenFlow networks
within 10T infrastructure. Perspectives on SDN performance prediction
using data fusion technique are discussed.

Authors of the section 22 are Prof., DrS. I. S. Skarga-Bandurova,
PhD student M. V. Nesterov, PhD student A. Y. Velykzhanin (EUNU).

Section 23 focuses on DevOps principles and practices supported
on the well-known platforms, like AWS, MS Azure, Google Cloud, etc.

10

Preface

A brief introduction to the origins of methodology DevOps sets the
scene and explains how and why DevOps has evolved. Interconnection
of DevOps, Software Defined Networks (SDN) and IoT is analysed.

Authors of the section 23 are, Assoc. Prof., Dr. D. D. Uzun,
Y.O. Uzun, Prof., DrS. V. S. Kharchenko (KhAI).

PART VII. DEPENDABLITY AND SECURITY OF IOT.

Dependability and security models for loT systems are considered
in the section 24. In frame of dependability and security concept we
propose the taxonomy of safety and security requirements, after to
represent dependability, safety and security attributes and risks analysis
fundamentals. Dependability and safety models are mostly quantitative
based on probabilistic analysis of indicators values. Security models are
mostly qualitative based on threats analysis and the attacks scenario.

Authors of the section 24 are Prof., DrS. V. V. Sklyar, Prof., DrS.
V. S. Kharchenko (KhAL).

Section 25 considers safety and security management requirements
including human resource management, configuration management,
tools selection and evaluation, documentation management, and safety
and security assessment. Also V-shape Safety and Security Life Cycle
is represented in details including requirements tracing. Finally, the
main issues of verification techniques including documents review,
static code analysis, functional and structural testing are considered.

The Assurance Case methodology is considered in section 26 as an
integral approach to integrate safety and security requirements and
artefacts. For that, the Assurance Case fundamentals as well as concept
and history are represented. For graphical representation of the
Assurance Case, semi-formal notations such as Claim, Argument and
Evidence (CAE) and Goal Structuring Notation (GSN) are used.
Security informed and energy efficiency informed Assurance Case
consists features appropriated to 10T systems.

Author of the sections 25, 26 is Prof., DrS. V. V. Sklyar (KhAl).

Section 27 considers the basics of blockchain technology and
examples of implementation in the Internet of things. The consensus
algorithms used in the blockchain technology and the principles of
ensuring the Internet of things safety and security using the blockchain
technology are discussed. The advantages and the existing problems of
the blockchain technology integration in the Internet of things are
highlighted. Resolving the security problem at different levels of 10T

11

Preface

application is a more complex issue due to the lack of performance and
high heterogeneity of devices.

Authors of the section 27 are Prof., DrS. V. V. Yatskiv, Ass. Prof.,
Dr. N. G. Yatskiv (TNEU).

PART VIII. DEVELOPMENT AND IMPLEMENTATION
OF IOT-BASED SYSTEMS.

Section 28 deals with a series of research problems related to the
developing 1oT architectures, device architectures, and loT-based
system integration. Efficient strategies and approaches to overcome
essential challenges in the development and implementation of an
efficient 10T solution are considered. The base components of the 10T
systems, phases and deliverables of an loT technical strategy as well as
selection criteria for 10T platforms deployment, are discussed.

Authors of the section 28 are Prof., DrS. I. S. Skarga-Bandurova,
PhD student A. Y. Velykzhanin (EUNU).

Models for loT-based devices and technologies for data processing
and transfer are considered in the section 29. This section discusses the
basic principles of constructing information models of loT-based
devices and tools for their creation, in particular Eclipse Vorto. Also
analyzed network communication protocols for loT-based devices. In
addition, an important component of the 10T network is the choice of
data processing technologies for loT based systems and methods of
management and forecasting. The protocols and standards for data
transfer between loT-based nodes and their cybersecurity are discussed.

Intelligent methods and approaches for management and learning
of loT-based systems are considered in the section 30. It discusses the
types and capabilities of 10T platforms, multi-criteria approach and soft
computing for choosing the 10T platform. Also analyzed the concept of
multi-agent approach in loT, in particular, types and characteristics of
agents, communication agents with the external environment and data
transfer techniques between agents. In addition, an important
component of the loT network is the choice of methods and approaches
for learning of loT-based systems. Also considered general principles
of M2M learning, self-learning systems and neural networks.

Authors of the sections 29 and 30 are
Prof., DrS. Yu. P. Kondratenko, Ass. Prof., Dr. G. V. Kondratenko,
Ass. Prof., Dr.le.V.Sidenko, PhD Student M. O. Taranov
(PMBSNU).

12

Preface

In Section 31 models of information exchange of elements of the
loT systems are considered. The order of development and fast
prototyping of devices is given. Standard solutions for creation of the
loT systems, use of virtual devices for software development are
shown. Examples of development and prototyping of the channel of
measurements on the basis of low-resource microcontrollers are given.
Acceleration of development of the loT device with use of modern
open platforms and libraries of high-level functions is shown.

Author of the section 31 is Assoc. Prof., Dr A. P. Plakhteyev, MSc
student H. Zemlianko (KhAI).

Volumes 1-3 edited by Prof., DrS. V.S. Kharchenko (KhAl).
Camera-ready versions of Volumes 1-3 were prepared by
Dr. O. O. llliashenko (KhAI).

Acknowledgements. The editor and authors would like to express
their appreciation and gratitude to all colleagues from partner
universities and organizations for discussion, advises and support.

We thank colleagues who develop the project ERASMUS+
ALIOT “Internet of Things: Emerging Curriculum for Industry and
Human Applications” http://aliot.eu.org/ and participate in discussions
of topics related to 10T during a few meetings and schools in Sweden
(Stockholm, December 2016), Ukraine (February 2017, 2018,
Chernivtsi; May 2017, Mykolaiv; May 2018, Kyiv; February 2019,
Ternopil; May 2019, Zaporizhzhya), Portugal (Coimbra, October
2017), United Kingdom (Newcastle-Leeds, July 2018).

We thank participants of International Workshops on Cyber
Physical Systems and Internet of Things Dependability (WS CyberloT-
DESSERT) at the conferences IDAACS (September 2017, Bucharest,
Romania), DESSERT (May 2018, Kyiv, Ukraine) and monthly Seminar
on Critical Computer Technologies and Systems (CriCTechS, KhAl,
2017-2019) at the Department of Computer Systems, Networks and
Cybersecurity for discussion of preliminary project results in point of
view research, development and education issues.

We would like to thank reviewers of the multi-book:

- Dr. Mario Fusani (ISTI-CNR, Pisa, Italy);

- Dr. Olga Kordas (KTH University, Stockholm, Sweden)

- Senior Project Manager Viktor Kordas (KTH University,
Stockholm, Sweden)

for very helpful advises and valuable recommendations.

13

http://aliot.eu.org/

16. Program Tools for the smart systems simulation

PART V. SIMULATION OF loT AND IoE-BASED SYSTEMS

16. PROGRAM TOOLS FOR THE SMART SYSTEMS
SIMULATION

Assoc. Prof., Dr O. Yu. Maevskaya, Prof., DrS D. A. Maevsky (ONPU)

Contents

PREFACEottt sttt 7

ADDIEVIALIONS ... e 14
16.1 Basic principles of 10T SIMUIALIONSccccovireieiineieeisiine 16
16.1.1 Classification and terminology. Real-world objects and kinds of
IS SIMUIALION ..o 18
16.1.2 Physical and computer SImulationsccocovvreneneieiininnnnns 20
16.1.3 Virtual simulation. Common user interaction systems for virtual
SIMUIALIONS. ... e 22
16.2 Simulation 10T devices based on Arduino platform.................... 25
16.2.1 General information about the Arduino platform..................... 26
16.2.2 Arduino and Arduino-compatible boards..........c.ccccceveiiiiennene. 27
16.2.3 Technical characteristics Arduino Megacccccceeveveieveennene, 28
16.2.4 Inputs and outputs of Arduino Mega 2560.cccccevvrvennnne. 29
16.3 Software development. Arduino C/C++ sketch...........cccccevvennene. 31
16.3.1 General methodology of Arduino sketch working 31
16.3.2 Arduino sketch example ... 34
16.4 Work related analysisccoeveiirineieinse e 36
Conclusions and QUESLIONS..........cc.eieiieieieeiie et sre e 37
RETFEIBNCES ...t 38

14

16. Program Tools for the smart systems simulation

Abbreviations

AC — Alternating Current

DC — Direct Current

GUI — Graphical User Interface

10T — Internet of Things

MQTT — Message Queuing Telemetry Transport
OPC - Open Platform Communications

OPC UA — Open Platform Communications Unified Architecture
REST — REpresentational State Transfer

XML - eXtensible Markup Language

15

16. Program Tools for the smart systems simulation

In this section, we will consider software tools for modeling
smart IOT systems. The terms "modeling™ and "model" we use so often
in everyday life that we even do not think what they mean. Everything
seems pretty intuitive and clear. In the headlines of scientific works on
Engineering Sciences, the phrase "models and methods" is used almost
more often than all other. A popular online resource
https://ieeexplore.ieee.org/ produces so more than 1 million 200
thousand results if you specify "Modeling" in the search machine. This
word is the most often found in the titles of the reports at conferences
(more than 900 thousand) and in the titles of articles in magazine (more
than 200 thousand). A part of these publications is about 25% of the
total number of publications posted on this Internet resource.

However, not everyone knows that modeling as a process of
scientific search has its own laws, rules and varieties. These laws and
regulations are the subject of a separate branch of science called
"Theory of Modeling and Simulation" [1, 2, 3, 4]. The main provisions
of this science bring to the exact science elements of the philosophical
thought and try to answer the question, how the world around us with
its models relate to each other. This is a difficult question, but, without
an answer, we risk losing the connection between the real object and its
model. Nobody needs simulation results when the model is not correct,
is not it? Therefore, firstly we will try to understand the terminology
and model types, as well as the differences between physical and
computer modeling.

16.1 Basic principles of 10T simulations

First of all, it should be noted that there are two separate terms in
English — "Modeling" (or the American version - "modelling"”, with two
letters "I") and "Simulation”. These terms are not synonymous in
English and are used to indicate two different processes. According to
the English Wikipedia [5], "Modeling” is the process of creating a
certain model, for instance, mathematical. In this process, for any
natural phenomenon, based on known physical laws, a model is created.
Often this model does not describe the phenomenon as a whole, but
reflects the law of variation of a certain characteristic (parameter) of
this phenomenon. For example, for the process of launching an
artificial satellite vehicle into orbit, such characteristics may be the law
of speed variation of the launch vehicle over time, or the law of altitude

16

16. Program Tools for the smart systems simulation

variation over time. Two separate models are created for these two
parameters. Another example is the transient simulation in electrical
circuits. Here also this process is not modeled completely, to the
contrary we find the change laws over time of certain currents or
voltages acting in this circle.

The result of the process, which in English is referred to
Modeling", is a certain model. In 10T, it is often a mathematical model,
that is, simply put, a certain formula, equation, or set of equations.The
word "Simulation" in English means the process of practical application
of the developed model. Here mathematical model is forced to work as
a rule, it is done by means of computer facilities. The mathematical
model is implemented in computer software. During the simulation, the
model is substituted with certain values, and the program, according to
the given mathematical equation, so that the result is calculated.In
Russian, the model creation and its application are also formally
different and the corresponding English terms are used for them.
However, usually, the most common is the term "Modeling", which
refers to the process of using the already developed model. While using
"Modeling "in English sense, it is often about "model creation".

Nevertheless, science does not like discrepancies. Therefore, in
this section we will use the terms "Modeling™ and "Simulation™ in their
conventional sense — modeling is the process of a model creation, while
simulation is the process of its use.

Internet of things systems are very complex systems that
combine electronic and mechanical devices, computers and information
transfer devices. It combines advanced technologies for creating
electromechanical devices and advanced information technology. This
leads to the fact that the construction of a mathematical model of 10T
devices (modeling) is difficult and, in many cases, impossible task. The
only solution of this problem is a development of independent
mathematical models for individual 10T devices and a storage in the
specialized databases. Simulation of loT systems is performed in
several stages.

Firstly, the user creates a block diagram of a particular system,
which shows, how the individual devices of the system are connected
and interact with each other.

In the second stage of the simulation, the user selects the specific
types and characteristics of all elements of the 10T system. Element

17

16. Program Tools for the smart systems simulation

types are references to specific, pre-prepared mathematical models that
are stored in a database. The characteristics of the selected elements are
the parameters of these models, which adjust them to specific types of
operation.

In the third stage, which begins after the simulation started, a
sequential simulation process is performed for each model included in
the overall 10T system. The results that are obtained for each model are
passed to the associated models. Afterwards, the processes are
simulated for each of these models.

At a cyclic performance the simulation of work of all system of
the Internet of things in is carried out in general.

Now, let us take a closer look at the modeling and simulation
processes.

16.1.1 Classification and terminology. Real-world objects and
kinds of its simulation

More than two centuries the scientists are aware with the fact that
the differential equations, same in a form, describe the phenomena,
various by the nature. Such similarity of mathematical equations for
various phenomena is called isomorphism [6]. It allows us to use a
certain mathematical model to build a model of almost any similar
object, phenomenon or process. Studying of model allows better
understanding of nature of the phenomenon, which is modelled.
Therefore, modeling can be considered one of the main tools of science.

Phenomena described by isomorphic equations can be similar. It
means that between them the one-to-one correlation can be established,
what makes it possible to extend the conclusions obtained in the study
of one phenomenon to another.

Sir Isaac Newton gave the first scientific justifications of
conditions of similarity as well as specification of this concept in
relation to mechanical motion at the end of the 17th century. Now the
similarity law strictly proved by mathematical apparatus of the
similarity theory is based on three theorems.

The first theorem of similarity (it is also called the "direct”
theorem) for the first time is intuitively formulated by Isaac Newton in
1686, and is proved nearly two hundred years later, in 1848 by the
member of the French academy of Sciences Bertran. According to this
theorem, the similarity of systems can always be found such

18

16. Program Tools for the smart systems simulation

dimensionless complexes of quantities, which for such points of these
systems are the same. Thus, such systems, phenomena or processes are
characterized by numerically equal values, which are called similarity
criteria. It means that if the phenomena are similar, the similarity
criteria can be found for them. To the contrary, for two systems, the
phenomena or processes in case of obtaining criteria of similarity,
identical in magnitude, this fact may be the basis for considering these
systems, phenomena or processes. However, the first theorem does not
specify how to establish similarity and how to implement it. It only
forms the necessary conditions for the existence of similarity (the same
similarity criteria).

The second theorem of similarity called p - the theorem, claims:
"The full equation of the physical process, written in a linear system of
units, can be represented by the dependence between the similarity
criteria, i.e., the dependence connecting dimensionless quantities,
obtained in a certain way from the existing parameters in the process."
It follows from the second theorem that if the functional dependence of
a phenomenon is known, that is, the parameters (factors) are known,
but its mathematical description is unknown, then the similarity criteria
can be obtained. The second theorem, as well as the first one, does not
indicate ways to identify similarity and ways to implement similarity.

The third similarity theorem determines the necessary and
sufficient conditions for the similarity of physical phenomena. The
third similarity theorem states: "the necessary and sufficient similarity
conditions are the proportionality of such parameters included in the
conditions of uniqueness, and the equality of the similarity criteria of
the phenomenon under study." Unambiguity conditions are the
conditions defining specific features of the studied phenomenon, for
example, terminal or boundary conditions. These conditions do not
depend on the mechanism of studied phenomenon.

Based on these three theorems, there was a special science about
model and modeling which is called "the theory of modeling and
similarity". This theory distinguishes between three types of models:
heuristic, natural (physical) and mathematical.

Generally, heuristic models represent the images drawn in
imagination of the person. Their description is conducted by words of
natural language, and therefore are ambiguous and subjective. These
models are not formalized, it means, they are not described by formal-

19

16. Program Tools for the smart systems simulation

logical and mathematical expressions, although they are based on real
processes and phenomena.

16.1.2 Physical and computer simulations

Natural (physical) models exist physically, so that they are quite
material. They differ from their prototypes in size, materials and
number of constituent elements. Numerous models of planes and ships,
which sets for production can be bought in specialized shops or in toy
stores, are known to all. These models are typical examples of physical
models. As a rule, these models perform the same function as the
prototypes — models of aircraft can usually fly, and models of ships can
swim. It is possible with them to carry out physical experiments and to
define as they behave in various conditions. These experiments are
usually cheaper, easier and safer than similar experiments with
prototypes. However, based on the similarity theorem, we can
understand how prototypes will behave under certain conditions.
Mathematical models are typically mathematical expressions (formulas
or equations) that define the relationship between the basic parameters
of a process or phenomenon. Mathematical models are not material.
Experiments with them (simulation) do not demand any equipment,
except the computing device. It is not necessarily that such device
should be a powerful modern computer. If you know how to count
orally, then you can use yourself as a device. The drawback of
mathematical models is that they usually do not take into account all
the parameters of the phenomenon or process and not all the
connections between these parameters. It means while applying
mathematical models, there is always some error that occurs because of
the inevitable errors of calculations as well as it can be incorporated in
the mathematical model itself.

However, today mathematical models are the most used in the
simulation of devices of the Internet of things. Advantages of computer
modeling are the reason:

1. No physical objects need to be created to perform the simulation.
Computer modeling does not demand expenses of materials and costs
of production of physical model, that is, this type of modeling is the
cheapest.

2. Simulation by mathematical model allows to study the behavior
of the object in such conditions that are difficult or impossible to

20

16. Program Tools for the smart systems simulation

implement in the experiment, such as ultrahigh temperatures or
pressures.

3. Mathematical models of objects can be combined among
themselves. Thus, it is possible to simulate a system of objects at once,
even those that can not be combined in real life.

By the way, loT devices almost never function separately from
each other. They are always integrated into the system. It is the main
feature of their operation. The Internet in term "Internet of Things"
serves only as a binding element of a system. Things are basic here, not
what unites them.

Finally, one more thought. Mathematical models, and simulation,
which is carried out using them, are the main source of information for
today about the behavior of the things that we use. Mathematical
models are built based on laws by which a particular object or
phenomenon of nature function. There is a question that worries the
most powerful minds of humanity such as the physicist Einstein and the
mathematician David Gilbert. The issue concerns why generally Nature
(with a capital letter) has to submit the mathematical equation.
Mathematics was born at the beginning of time as a mean for
calculations of what the person dealt with. These calculations were
reduced to integers and the operations of addition or subtraction. How
many Buffalo do | have now? Three ones. One more was born. How
many? Four. One fell into the gorge. How many lefts? Three again.
There are basics of modern mathematics. Anything else - fractional
numbers, multiplication and division - is only a consequence of our
imagination. Roots, logarithms, derivatives and integrals — where do
they exist in Nature? The same capital letters? Nowhere. If someone
remembers about well-known Pythagorean's theorem in which the root
appears — and it is also not in nature. In Nature, there is a relationship
between the legs and the hypotenuse. Why do mathematical equations
describe the behavior of Nature?

There is still no response to this question. Even so, every day we
use mathematics to predict something in our lives. Even so, the answer
can be very simple. May be laws, which, as we suppose, the Nature
follows, are also imagination of our mind, as well as mathematics,
which describes these laws?

21

16. Program Tools for the smart systems simulation

However, whatever the case with laws, we are able based on
these laws to do mathematical models and to predict behavior of
systems. We do this through software. Let us consider these means.

16.1.3 Virtual simulation. Common user interaction systems for
virtual simulations

Currently, in the Internet you can find a lot of specialized software
for simulation of objects, devices and systems of the Internet of things.
Use of 10T simulators is the first step in creating and testing smart
home and smart city devices. In this preliminary development step, a
computer model of the 10T system is created. This computer model is a
simulation, which aims to make sure the system efficiency and identify
possible problems in its operation. At this step takes place approbation
of future system and clarification of its working capacity.

Use of simulators is much cheaper than installing the system on site
and testing it in the real world. Let us consider some of the most used
computer simulation systems.

Simulator 10TIFY. It is a virtual online laboratory, that allows a user,
who has access to the Internet to create a workspace where he can
quickly assemble his own virtual hardware, download the desired
operating system or build a firmware of his own choice. This tool
allows to simulate large-scale 0T installations in virtual 10T lab. User
traffic can be created from thousands of virtual endpoints and platform
can be tested for scale, security, and reliability to identify and resolve
issues before deploying the end product in a real environment. Heavy
network traffic can be simulated to see how network latency affects
overall system performance. Thus, this system allows [7]:

Select an existing hardware and touch combination or create own.

— Choose an operating system that meets certain requirements or
create firmware for the microcontroller.

— Develop software on virtual hardware with the language for
choice.

— Share the project with colleagues and collaborate with other loT
projects.

I0oTIFY only allows network access to the resources of the
simulation. Only project work files are stored on the user's computer.

22

16. Program Tools for the smart systems simulation

NetSim. NetSim is a powerful network simulator that can be used to
model 10T systems. [8] It can be used to test the performance of real-
world applications over a virtual network. If you are creating a new loT
network or expanding an existing one, NetSim can be used to predict
how the relevant network will work.

NetSim can be used in three versions. The first version, NetSim Pro,
as its name suggests, is the most powerful. It can be used by corporate
users and allows:

— Create network scripts using the NetSim GUI or using XML
configuration files.

— To add devices, links, software applications, etc. in environment
using a graphical interface NetSim.

— Model large and complex networks using an XML configuration
file that comes with automatic validation

— Animate the flow of packets through wired and wireless links.

— To see performance metrics at different levels-networks, subnets,
links, queues, applications, and so on.

— Explore a variety of metrics such as bandwidth, latency, loss,
packet error, link usage and so on.

— To interpret the indices using the built-in scopes and schedules.

— Export packages and files to software packages such as Excel,
Notepad for processing and statistical analysis.

The external interface allows NetSim to transfer instantly simulation
results to other programs such as MATLAB. This program can start its
computing process and send the information to NetSim. Then, NetSim
can use this information to carry out their procedures for modeling
networks.

This simulator supports multiple sources of information and can be
scaled to hundreds of nodes. You can simulate a wide range of
situations using “What-if” scenarios and test metrics such as loss,
latency, errors, quality of service, and more.

MATLAB. MATLAB has a powerful 1oT module that allows you to
develop and test smart devices as well as collect and analyze 10T data
in the cloud. It is possible to use MATLAB to create a prototype of loT
systems. In particular, it is possible to develop algorithms in Simulink
and then deploy them on embedded hardware [9]. MATLAB can
simulate 10T systems built on Arduino and Raspberry Pi processors.

23

16. Program Tools for the smart systems simulation

MATLAB allows:

— Access streaming data and pre-archived data through built-in
interfaces for cloud storage, relational and non-relational databases, and
protocols such as REST, MQTT, and OPC UA.

— Create your own IOT algorithms using thousands of proven, out-
of-the-box functions for processes such as data cleaning, machine and
deep learning, computer vision, management and optimization.

— Develop data-driven physical models to understand, control, and
optimize the behavior of 10T systems.

— To use the platform ThingSpeak, 10T, Analytics MATLAB for
prototyping and operation of small systems.

BevyWise 10T Simulator. This 10T Simulator is an easy to use, but
powerful simulation tool that allows the simulation of thousands 10T
devices. Intuitively clear interface allows you to create and add the
necessary devices in the shortest possible time. You can customize the
simulated 10T devices. IoT Simulator can store simulation data in
FLAT or MySQL and SQL.ite files. The tool supports thousands of loT
devices in Windows 7 and later versions.

loT Simulator allows to create templates and dynamic networks for
devices. The simulation is performed using the same code signals as
real 10T devices. Simulation of loT systems behavior is performed
using templates, which allows you to create thousands of 10T devices in
a few minutes.

loT Simulator supports storage of simulated network in MySQL
database. It is possible to store multiple modeling environments and
reuse them.

ANSYS loT Simulator. This simulator is a powerful loT
engineering simulation software system. To create it, the experience of
the world's leading companies that create 10T systems in various
industries is used.

ANSYS loT Simulator allows developing reliable electronic devices
for industrial 10T. The solutions cover the development and optimal
placement of sensors, antennas, electronic control and their power
system required to connect intelligent machines and their ecosystems.
In addition, the virtual system ANSYS helps to record and certify the
embedded code that manages the smart devices and provides a reliable
signal without interference in the working industrial installation.

24

16. Program Tools for the smart systems simulation

Interaction with other software products of ANSYS family allows
performing modeling and technical development at all stages of loT
systems creation, from primary design to development solutions.

IBM Watson loT Platform. IBM's Watson loT Platform is an
innovative cloud platform that allows IoT developers to create their
own platform, even if they do not have physical devices. Built-in tools
allow tracking and analyzing IoT data and then use it to create and
optimize own programs. The tool supports a wide range of functions for
manipulating data, storing it and even interacting with social media.

IBM Watson to IBM loT Cloud Platform provides a comprehensive
set of tools, which includes gateway devices, control devices and access
programs. With the Watson loT platform, you can collect data from
connected devices and perform real-time data Analytics.

Proteus 10T Builder. loT Builder is the world's first software
product that provides a complete workflow for designing loT devices
on Arduino or Raspberry Pi hardware. It can be added either Visual
Designer for Arduino, or Visual Designer for Raspberry Pi product to
allow development of remote interfaces of embedded devices.

Simulation in Proteus loT Builder system has many features and at
the same time it is intuitive. It starts with designing the hardware of the
lIoT device on the layout. There is the possibility of adding electronic
screens, sensors, dials, buttons and many other devices using the gallery
controls.

Due to its simplicity and the presence of the student version of the
program, Proteus loT Builder today is the most common simulation
system. At the same time, the Arduino platform is the most common
platform for building real 10T systems. Therefore, the further process of
loT systems simulation will be considered on the example of this
software.

16.2 Simulation 10T devices based on Arduino platform

In this section, we will get acquainted with the basic concept and
principle of building the Arduino platform. The year of Arduino birth
can be considered as 2005, when a team of young designers from the
Italian town of Ivrea created the first prototype of Arduino Board.
Starting the work, the development team immediately set a goal to
make a microprocessor device, the price of which would be suitable for
a student's pocket - $ 30. They also wanted to make it with the capacity

25

16. Program Tools for the smart systems simulation

to build, like a normal children's designer. At the same time, Arduino is
even more than a regular constructor. Arduino is a platform based on
which a variety of complex things can be created. Today, there are
many interesting Arduino-based developments such as breathalyzers,
led cubes, home automation systems, Twitter notification displays, and
even DNA analysis Kits! Already there were whole clubs and
communities of Arduino fans. Google has recently released an
Arduino-based development kit for its Android smartphone [13].
Let us take a closer look at what it is — Arduino.

16.2.1 General information about the Arduino platform

Arduino is a tool for designing electronic devices (electronic
designer) more tightly interacting with the physical environment than
standard personal computers, which actually work only with the data
stored in it [14]. It is a platform designed to build open source cyber-
physical systems, based on a simple printed circuit Board with a
modern environment for writing software.

Arduino is used to create electronic devices with the ability to
receive signals from various digital and analog sensors that can be
connected to it, and control various actuators (Fig. 16.1).

nnnnnn

i i;tg %' s

POWER ANALOG IN
"o o SHMNmMm< N
5 <<a<<ax

Fig. 16-1 Arduino Board
The device projects, based on Arduino, can work independently or

interact with the software on computer (e.g. Flash, Processing,
MaxMSP). Boards can be assembled by the user himself or purchased

26

16. Program Tools for the smart systems simulation

in a set. The open source software development environment is
available for free download.

There are many microcontrollers and platforms for creating cyber-
physical systems, such as Parallax Basic Stamp [15], Netmedia's BX-24
[16], Phidgets [17], MIT's Handyboard [18], and many others that offer
similar functionality. All of these devices even look similar to the
Arduino. They integrate separated programming information into an
easy-to-use Assembly. Arduino also simplifies the work process with
microcontrollers, but has a number of advantages compared to other
devices for teachers, students and amateurs:

» Low-cost of Arduino boards are relatively cheap compared to
other platforms. The most inexpensive version of the Arduino module
can be assembled by hand, and some even ready-made modules cost
less than $ 50.

» Cross-platform - the Arduino software runs on Windows,
Macintosh OSX, and Linux. Most microcontrollers are limited to
Windows.

+ Simple and clear programming environment - Arduino
environment is suitable for both novice and experienced users. Arduino
is based on the programming environment Processing, which is very
convenient for teachers, as students who work with this environment
will be familiar with Arduino.

Extensible and open source Arduino software is released as a tool
that can be supplemented by other users. It can be supplemented with C
++ libraries. Users, who want to understand the technical nuances, have
the opportunity to switch to the language AVR C which is based on C
++. Accordingly, it is possible to add code from the AVR-C
environment to the Arduino program.

16.2.2 Arduino and Arduino-compatible boards

Arduino is a set of electronic unit and software storage. An
electronic unit here is a printed circuit board with a set microcontroller
and a minimum of elements, which are necessary for its functioning.
The software is needed to create control programs. It consists of a
simple development environment the Arduino IDE and programming
language, namely the C/C++ version for microcontrollers,
supplemented by certain functions for controlling inputs/outputs on the
contacts of board.

27

16. Program Tools for the smart systems simulation

In fact, the electronic unit Arduino is analogous to the
motherboard of the modern computer. Arduino Mega 2560 (Fig. 1) —
this is a device, which based at microcontroller ATmega2560
(datasheet). The board itself consists of:

—54 digital inputs/outputs (15 can be used as PWM-outputs);

—16 analog inputs;

—4 UART (hardware receivers for the implementation of serial
in-terfaces);

—(quartz resonator at 16 MHz;

—USB connector;

—power connector;

—ICSP connector for internal circuit programming;

—reset button.

16.2.3 Technical characteristics Arduino Mega

The main characteristics of the Arduino Mega 2560 are shown in
the table 1.1.

Table 1.1 - Characteristics of the Arduino Mega 2560

Operating voltage 5V
Power supply (Recommended) 7-12V
Power supply (Maximum) 6-20 V
Digital inputs / outputs 54
Analogue inputs 16
Maximum current of 5 V output 40 mA
Maximum current of 3.3 V 50 mA
output
Clock frequency 16 MHz

The board Arduino Mega 2560 can powered by two methods,
namely:
—from a computer by using a USB cable;
—from an AC / DC adapter or from battery.
When using an external power supply, it is necessary to select its
value in the range of 6 to 20 V. But when using a power source with a
voltage below 7 V, the voltage at the output 5 V decreases, which leads

28

16. Program Tools for the smart systems simulation

to unstable function of the board. Using a power supply with a voltage
higher than 12V leads to overheating of the voltage regulator and to
breaking down of board. Considering this, it is recommended to use a
power source with a voltage value in the range of 7to 12 V.

16.2.4 Inputs and outputs of Arduino Mega 2560.

The main inputs and outputs that are located on the Arduino
Mega 2560 (Fig. 16-2) are designed to connect of contacts boar with
sensors or actuators. Pins on the board Arduino Mega 2560:

¢ VIN — the input voltage to the board when it's using an external
power source (as opposed to 5 volts from the USB connection or other
regulated power source). You can supply voltage through this pin, or, if
supplying voltage via the power jack, access it through this pin.

¢ 5V — this pin outputs a regulated 5V from the regulator on the
board. The board can be supplied with power either from the DC power
jack (7 - 12V), the USB connector (5V), or the VIN pin of the board (7-
12V).

¢ 3.3V — this pin comes in 3.3 V from the voltage regulator on
the board. Maximum current is 50 mA;

¢ GND - 2 ground pins;

Fig. 16.2 — The pins location of the board Arduino Mega 2560
¢ IOREF - this pin on the board provides the voltage reference

with which the microcontroller operates. A properly configured shield
can read the IOREF pin voltage and select the appropriate power source

29

16. Program Tools for the smart systems simulation

or enable voltage translators on the outputs for working with the 5V or
3.3V.

The Arduino Mega 2560 is located 54 digital pins. Each digital
contact can be used as an input and output, using functions pinMode(),
digitalWrite() and digitalRead(). They work at 5 V voltage. Each pin
can provide or receive 20 mA in the recommended operating mode and
has an internal load resistor (default disabled) with a nominal
impedance of 20-50 kQ. The maximum permissible current value is 40
mA - this value should not be exceeded to avoid damage to the
microcontroller. In addition, some foams have specialized functions:

Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial
2: 17 (RX) and 16 (TX); Serial 3: 15 (RX) and 14 (TX). Used to
receive (RX) and transmit (TX) TTL serial data. Pins O and 1 are also
connected to the corresponding pins of the ATmegal6U2 USB-to-TTL
Serial chip.

External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt
5), 19 (interrupt 4), 20 (interrupt 3), and 21 (interrupt 2). These pins can
be configured to trigger an interrupt on a low level, a rising or falling
edge, or a change in level. See the attachinterrupt() function for details.

PWM: Bix 2 o 13 i Big 44 mo 46Provides 8-bit PWM output
using the analogWrite () functionPWM is a pulse-width modulation, an
operation for obtaining a variable analog value using digital devices. By
outputting a signal that consists of high and low levels, the voltage is
modeled between the maximum (5 V) and the minimum (0 V) values.
The duration of switching on the maximum value is called the pulse
width. It changes to get different analog values.

SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These foams
support the SPI connection using the SPI libraryl. SPI is a serial
peripheral interface. SPI is a synchronous interface in which each
transmission is synchronized with a clock signal generated by the
master device (microcontroller).

LED: 13. There is a built-in LED connected to digital pin 13.
When the pin is HIGH value, the LED is on, when the pin is LOW, it's
off.

TWI: 20 (SDA) and 21 (SCL). Support TWI communication
using the wire library

The Mega 2560 has 16 analog inputs, each of which provide 10
bits of resolution (i.e. 1024 different values). By default they measure

30

16. Program Tools for the smart systems simulation

from ground to 5 V, though is it possible to change the upper end of
their range using the AREF pin and analogReference() function.

There are a couple of other pins on the board:

AREF: Reference voltage for the analog inputs. Used with
analogReference().

Reset. Bring this line LOW to reset the microcontroller.
Typically used to add a reset button to shields which block the one on
the board.

16.3 Software development. Arduino C/C++ sketch

The development of programs to perform certain tasks with the
help of the Arduino boards is carried out in the official programming
environment of the Arduino IDE. This environment is intended for
writing, compiling and downloading created programs in the memory
of the microcontroller.

A program written in the Arduino IDE programming
environment is called sketch. It is written in a program code editor.
When saving and exporting a project in the notification area appear
explanations and error information. The text output window shows
Arduino messages, which show full error reports and other important
information. The toolbar buttons allow you to check and write the
program, create, open and save the sketch; open the monitor for the
serial bus.

Developed sketches can receive additional functions through
libraries, which are a specially designed code. It helps to realize some
of the opportunities that can be added to the project. There are many
specialized libraries. Usually, libraries are written to simplify the
decision of a task.

16.3.1 General methodology of Arduino sketch working

Sketches for Arduino are written in a language very similar to the

C programming language. However, if in the standard C language, the

function main() is necessary, then it is missing in the sketches. But here
two functions are necessary — setup() and loop().

When enabled, the Arduino firmware calls the setup() function.

The setup() function is called only once, each time the board is started.

This place is ideal for initialization (setting initial values) of variables,

setting pin modes (input or output), setting correspondence between

31

16. Program Tools for the smart systems simulation

connected sensors, servo drives or other pins. After the setup() function
is executed, the loop() function is looped (i.e., immediately after exiting
the setup function, the loop function is executed, after exiting it, it is
called again. This process continues until the power is turned off (Fig.
16.3).

sketch_jun26a | Arduing 1.8.3

File Edit Sketch Tools Help

sketch_jun26a

void setup{) {

// put your setup code here, toc run once:

}

void loop() {
// put your main code here, to run repeatedly:

Fig. 16.3 — Basic elements of the Arduino IDE programming
environment

After the functions setup() and loop() in the sketch can be placed
other functions that are written by the user. These functions perform the
actions provided by the algorithm of work and at least one of them must
be called from the function loop(). The syntax of writing custom
functions completely coincides with the syntax of the C language.

A standard example of the simplest sketch is a sketch that makes
the LED blink. Consider all the steps for writing and running such a
sketch.

Step 1. Connect with the USB cable the appropriate outputs of
the multi-function unit and computer to work with the board Arduino
Mega 2560, which is located inside the multifunction unit.

Step 2. Check for the Arduino IDE environment development
required on your computer to work with the board Arduino Mega 2560.
In the absence of this program - download it from the official site [19].

Step 3. Run on the computer the program of development
environment Arduino IDE. Select the board Arduino Mega 2560 by:
«Tools/Board/Arduino Mega 2560» (Fig 16.4).

32

16. Program Tools for the smart systems simulation

©® sketch_jun26a | Arduine 1.8.3

File Edit Sketch Tools Help

sketch_jun26a

void setup()
/7 put your|

}

void loop{) |
/7 put your|

Auto Format Ctrl+T
Archive Sketch

Fix Encoding & Reload

Serial Menitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

WiFi101 Firmware Updater

Board: "Arduino/Genuino Mega or Mega 2560"

Bosrds Manager...

Processor: "ATmega?360 (Mega 2360)"
Port
Get Board Info

Programmer: "AVRISP mkll"

Burn Bootloader

Arduino AVR Boards

Arduine Yin

Arduino/Genuino Uno

Arduine Duemilanove or Diecimila

Arduine Nane

Ardui jinc Mega or Mega 2560
Arduine Mega ADK

Arduinc Leonarde

Arduino Leonardo ETH

Arduino/Genuino Micro

Fig. 16.4 — Choice of board Arduino Mega 2560

Step 4 is to select the appropriate port by «Tools/Port/COM1

(Arduino Mega 2560) (Fig. 16.5).

sketch_juna |

Arduino 1.8.5

File Edit Sketch Tools Help

sketch_jun2éa

wold setup()
/¢ put your|

wold loop() {
// put your

Auto Format

Archive Sketch

Fix Enceding & Reload
Serial Menitor

Serial Plotter
WiFi101 Firmware Updater

Board: "Arduino/Genuino Mega or Mega 2560"
Processor: "ATmega2360 (Mega 2360)"

Port

Get Board Info

Programmer: "AVRISP mkll"

Burn Bootloader

Ctrl+T

Ctrl+Shift+M
Ctrl+Shift+L

b

>

¥ Serial ports
ComM1

>

Fig 16.5 — Choice of port

33

16. Program Tools for the smart systems simulation

Consider working with a sketch on a simple example. This
example has become traditional for illustration work with sketches.

16.3.2 Arduino sketch example

In this example, we will make the LED blink at intervals 1

second.
The LED connection is made as follows:

1) Cathode connects to any GND in foam panel of the
multifunction unit;

2) Anode connected to pin 22 in foam panel of the multifunction
unit (this pin is digital).

Next you need to open the program Arduino IDE, create a new
sketch (in the toolbar, click “File / New” (Fig. 16.6)

and load the next sketch there:

int led = D22;
void setup()

{

pinMode(led, OUTPUT);
}

void loop()

{

digitalWrite(led, HIGH);
delay(1000);
digitalWrite(led, LOW);
delay(1000);

}

Next, need to check the sketch text for errors: in the toolbar, click
“Sketch / Verify” (Fig. 16.7). After that, at the status window will
display information about the structure of the sketch, as well as the
presence or absence of pillocks.

34

16. Program Tools for the smart systems simulation

sketch_jun2éa

| Arduino

File Edit Sketch Tools Help
Mew Ctrl+M
Open... Ctrl+ O
Open Recent
Sketchbook »
Tl , [E2y TO run once:
Close Ctrl+W
Save Ctrl+5
Save As... Ctrl+5hift+5
=, to run repeatedly:
Page Setup Ctrl+5hift+P
Print Ctrl+P
Preferences Ctrl+Comma
Quit Ctrl+

Fig. 16.6 — Create a new sketch

2@ sketch_jun2ba | Arduino 1.8.5

File Edit Sketch Tools Help

Verify/Compile Ctrl+R
Upload Ctrl+U
sketch Upload Using Programmer Ctrl+5Shift+U
int led Export compiled Binary — Ctrl+Alt+S
vold sg
{ Show Sketch Folder Ctrl+K
1;in}ic:1& Include Library >
void 1o Add File...
{
digitalWrite (led, HIGH);
delay (1000} ;
digitalWrite (led, LOW);
delay (1000} ;

Fig 16.7 — Function of verify a sketch

35

16. Program Tools for the smart systems simulation

If the program does not detect any inequalities in the code, man
can download sketch to the microprocessor. To do this, click : “Sketch /
Upload” (Fig. 16.8). After this, the LED should be measured once a
second.

sketch_jun2ba | Arduino 1.8.5
File Edit Sketch Tools Help

Verify/Compile Ctrl+R
Upload Ctrl+U
sketch Upload Using Programmer Ctrl+Shift+U

int led Export compiled Binary Ctrl+ Alt+5
void a9

{ Show Sketch Folder Ctrl+K
ointod Include Library »

Add File...

lWrite (led, HIGH)r
F{1000});

Write(led, LCHW);
r{1000)

Fig. 16.8 — Function of upload a sketch

16.4 Work related analysis

The simulation of the Internet of things is a relatively young area
of research. Therefore, there are few publications on this topic.
However, European universities conduct research and modeling of the
Internet of things and individual devices. In addition, a separate
direction of modeling and simulation is the modeling of the
communication component. So, in the article [20] S. Forbacha and C.
Pattinson simulated an energy-aware mobile agent (MA) NMS in
OPNET which could operate efficiently in a power saving environment.
He created an infrastructur wireless network with scenarios which
represented non-power saving and power saving and then compared the
impact of power saving on both centralized and optimized paradigms.

This topic continues the publication [21] in which the authors
model self-configuring wireless network in which each node could act
as a router, as well as a data source or sink. Its application areas include

36

16. Program Tools for the smart systems simulation

battlefields and vehicular and disaster areas. It is shown that any
techniques applied to infrastructure-based networks are less effective
than this self-configuring wireless network.

A series of publications of researchers from Royal Institute of
Technology (KTH, Stockholm, Sweden). In paper [22] authors model
an emerging network architecture based on edge computers. This
network can be protected even under situations such as network failures
or denial-of-service (DoS) attacks. This model allows I0T devices to
migrate to other local authorization entities served in trusted edge
computers when their authorization entity becomes unavailable.

Conclusions and guestions

This chapter describes the methods and tools for modeling and
simulating Internet of things systems and individual devices. The main
attention is paid to the modeling of smart home systems, which are built
on the basis of microprocessor boards ARDUINO. A review of the
main software tools used to simulate the Internet of Things systems has
been completed. The PROTEUS software system is considered in
detail, which allows simulating the operation of ARDUINO devices in
a convenient form.

To control the assimilation of the material we recommend that you
answer the following questions.

1. What is modeling?

2. How does computer modelling differ from computer
simulation?

3. What types of models do you know?

4. What is a physical model?

5. What is a verbal model?

6. What is a mathematical model?

7. Can Einstein's famous formula be considered a mathematical
model?

8. Why do I need to simulate the work of the Internet of things?

9. What software for simulating the Internet of things do you
know?

10. What are the possibilities of the simulation program IoTIFY?
11. What are the possibilities of the simulation program NetSim?

37

16. Program Tools for the smart systems simulation

12. What are the possibilities of the simulation program
MATLAB?

13. What are the possibilities of the simulation program BevyWise
loT Simulator?

14. What are the possibilities of the simulation program ANSYS
loT Simulator?

15. What are the possibilities of the simulation program IBM
Watson loT Platform?

16. What are the possibilities of the simulation program
PROTEUS?

17. List the technical characteristics of the Arduino Mega.

18. List the components of the ARDUINO Input-Output System.
19. What is ARDUINO sketch?

20. Why in the sketch function Setup() is needed?

21. Why in the sketch function Loop() is needed?

22. What is the methodology of the sketch?

23. In what language sketches are written for ARDUINO?

24. List the main research directions in the field of simulation of
the Internet of things.

25. Download the PROTEUS program and repeat the example
given in this section.

References

1. Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer. 2000.
Theory of Modeling and Simulation (2nd ed.). Academic Press, Inc., Orlando,
FL, USA.

2. John H. Holland, "Theory and Models: General Principles,” in Signals
and Boundaries:Building Blocks for Complex Adaptive Systems , 1, MIT
Press, 2012, pp.35-56

3. Sumit Ghosh; Tony Lee, "Principles of Modeling Complex
Processes," in Modeling and Asynchronous Distributed Simulation: Analyzing
Complex Systems, 1, Wiley-IEEE Press, 2000, pp.332. doi:
10.1109/9780470545300.ch3

4. Rothmaler, P., 2000, Introduction to Model Theory, Amsterdam:
Gordon and Breach.

38

16. Program Tools for the smart systems simulation

5. "Modeling and simulation”, En.wikipedia.org, 2019. Auvailable:
https://en.wikipedia.org/wiki/Modeling_and_simulation. [Accessed: 01- Jan-
2019].

6. M. Hazewinkel, Encyclopaedia of mathematics. Dordrecht: Kulver
academic, 1995.

7. "loTIFY- Develop full stack 1oT Application with virtual device
simulation”, lotify.io, 2019. Available: https://iotify.io/. [Accessed: 06- Jan-
2019].

8. "NetSim-Network Simulator & Emulator | Emulator”, Tetcos.com,
2019. Available: https://www.tetcos.com/emulator.html. [Accessed: 06- Jan-
2019].

9. "Internet of Things", Mathworks.com, 2019. Available:
https://www.mathworks.com/solutions/internet-of-things.html. [Accessed: 06-
Jan- 2019].

10."l1oT Simulator, Simulate 10T Devices - Bevywise Networks",
Bevywise Networks | 10T Platform & loT Solutions, 2019. Available:
https://www.bevywise.com/iot-simulator/. [Accessed: 06- Jan- 2019].

11."10T - Industrial Equipment and Asset Management | ANSYS",
Ansys.com, 2019. Available: https://www.ansys.com/Campaigns/internet-of-
things/industrial-equipment-and-asset-management. [Accessed: 06- Jan-
2019].

12."IBM Cloud Docs", Console.bluemix.net, 2019. Available:
https://console.bluemix.net/docs/services/loT/index.html#gettingstartedtemplat
e. [Accessed: 06- Jan- 2019].

13. Arduino Project Hub. (2019). Google Assistant Robot Using Arduino.
Available at: https://create.arduino.cc/projecthub/jithinsanal1610/google-
assistant-robot-using-arduino-0c70d6 [Accessed 9 Jan. 2019].

14. Arduino.cc. (2019). Arduino - Home. Available at:
https://www.arduino.cc/ [Accessed 9 Jan. 2019].

15. Parallax.com. (2019). Getting Started | Parallax Inc. [online]
Available at: https://www.parallax.com/getting-started [Accessed 9 Jan. 2019].

16. Basicx.com. (2019). BasicX by NetMedia Inc.. Available at:
http://www.basicx.com/ [Accessed 9 Jan. 2019].

17. Phidgets.com. (2019). Phidgets Inc. - Products for USB Sensing and
Control. [online] Available at: https://www.phidgets.com/? [Accessed 9 Jan.
2019].

18. Handyboard.com. (2019). THE HANDY BOARD AND THE SUPER
CRICKET. [online] Available at: http://www.handyboard.com/ [Accessed 9
Jan. 2019].

19. Arduino.cc. (2019). Arduino - Software. Available at:
https://www.arduino.cc/en/Main/Software [Accessed 13 Jan. 2019].

39

16. Program Tools for the smart systems simulation

20.Forbacha, S. and Pattinson, C. (2011). Simulation of Energy-Aware
Mobile Agent Based Network Management System. 2011 Fifth Asia
Modelling Symposium.

21.Pullin, A., Pattinson, C. and Kor, A. (2018). Building Realistic
Mobility Models for Mobile Ad Hoc Networks. Informatics, 5(2), p.22.

22.Kim, H., Kang, E., Broman, D. and Lee, E. (2017). An Architectural
Mechanism for Resilient 10T Services. Proceedings of the 1st ACM Workshop
on the Internet of Safe Things - SafeThings'17.

40

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

17. THREE-LEVEL SIMULATION OF IOT/IOE BASED
SYSTEMS WITH THE USE OF UML DIAGRAMS, PETRI NETS

AND TEMPORAL LOGIC
Dr. Ass. Prof. . O. Martynyuk, DrS. Prof. O. V. Drozd (ONPU)

Contents
P AN o] o] (=AY L1] 4 TR 42
(o110 o 18 To1 170 [P RRR 43
17.1. Simulation and verification in architecture of 10T and loE-based
systems with the use of visual UML diagrams..........ccccccevereivcnnnnnn. 43

17.1.1 Introduction to representation of architecture of loT and loE-
based systems with the use of visual UML diagrams (precedents,

components, classes, interaction, activities, sequences, states)........... 44
17.1.2 Static visual UML diagrams for the description of architecture of
IoT and loE-based systems and their analysis..........ccccceevvvevenninenne. 47
17.1.3 Dynamic visual UML diagrams for the description of
architecture of loT and loE-based systems and their analysis............. 50
17.2 Simulation and verification in behavior of 10T and IoE systems on
the basis of the Queuing Systems and Petri Netsc.ccccocvevvrvinennn. 53

17.2.1 Introduction to the general description of the operation of 10T
and IoE systems at the level of resource and functional mode
PrESENTALION.uiiiiiiecie ettt s sresre e 54
17.2.2 Resource imitating modeling and simulation on base of
functioning of 10T and IoE systems and their components using QS . 59
17.2.3 Behavior imitating modeling of features for functioning of loT

and IoE systems and their components using Petri Nets 61
17.3 Simulation and verification of synchronization processes in loT
and loE-based systems on the basis of temporal logicc............ 64
17.3.1 Introduction to specification of synchronization process in lIoT
and loE-based systems by using of temporal 10giCcccccovvvrnnnne. 64
17.3.2 Simulation and verification of 10T and loE-based systems at the
level of temporal 10giC.........cccveiiiiiiiciicee e 66
17.3.3 Special temporal simulation and verification of 10T and IoE-
DASEA SYSTEMS ... s 66
17.4 Work related analysisccveiieniinciicnecsc e 67
Conclusions and QUESLIONS..........cceiverieieieinisiee e 69
RETEIENCESve et 72

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

Abbreviations

CPN — Colored Petri Nets

CTL — Concurrent Temporal Logic

DFD — Data-flow Diagram

EGS - Evolutionary-Genetic System

ERD - Entity-Relationship Diagram

GPSS — General Purpose Simulation System
IDE - Integrated development environment
IoE — Internet of Everything

loT — Internet of Things

LTL — Linear Temporal Logic

MAS — Multi-Agent Systems

QS — Queuing System

TINA — Time Petri Net Analyzer

UML — Universal Modeling Language

UML-CSAS — UML-diagrams of Communications, Sequences,
Activity, States

42

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

Introduction

The purpose of section is formation of complete idea of
mathematical base, formal the specification and modeling of Internet of
Things (1oT) and Internet of Everything (IoE) [1 —4] of systems on
structural, functional and event — time levels with the use of the
corresponding Universal Modeling Language (UML) diagrams [5 — 7],
Queuing Systems (QS) [8, 9], automata [10, 11] and Petri nets [12 —
14], temporal logic [15, 16] and also development of skills in the use
of the gained knowledge in practice of the general system for the
specification and modeling of 10T and IoE.

Obijective is to understand formal structural, component, object,
behavioral and temporary models of the architecture for systems of 1oT
and IoE in the form of UML diagrams, QS, Petri nets, expressions and
conclusions of temporal logic.

Subjects are formal processes of modeling and the verification of
the structural, component, object, behavioral and temporary models’
architectures for systems of 10T and IoE.

Tasks solved:

1) Visual modeling, simulation and verification of architectures
for systems of 10T and l0E on the basis of visual UML diagrams.

2) Resource modeling, simulation and verification of architectures
for systems of 10T and IoE on the basis of QS.

3) Behavioral modeling, simulation, analysis of correctness,
verification, on-line testing and testing check of architectures and
processes for 10T and IoE systems on the basis of QS, expanded finite
automata and Petri nets.

4) Modeling and verification in synchronization of processes for
systems of 10T and IoE on the basis of temporal logic.

17.1. Simulation and verification in architecture of loT and
I0E-based systems with the use of visual UML diagrams

The following objects are taken as input:

1) Specifications of the technical description for the architecture
of components, subsystems IoT and l0E-based systems, as well as such
systems, in future — as a whole in analytic-text, tabular, graphical

43

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

representations, defining the structure of topological relationships,
functions, information objects, interfaces of topological interactions (in
future — format, dimension, type, conditions of transmission over the
topological connections of the objects to be sent — parameters, data,
methods and their compositions), the temporal behavior of functions
and scenarios (in future — time diagrams, graph, automaton, algorithmic
representations).

2) The previously prepared static and dynamic UML diagrams,
which in UML standards define the architecture of components, loT
and loE-based systems subsystems, and also such systems as a whole in
analytic-text, tabular, graphical representations, for which system-wide
interactive-visual analysis, simulation and verification, in particular, in
the Star UML tool environment is necessary.

The following objects are considered as output objects: the
resulting correct and verified UML static and dynamic diagrams, which
in UML standards represent the architecture of components, lIoT and
IoE-based systems, as well as such systems in general, for which in the
corresponding instrumental environment, particular, Star UML, system-
wide interactive-visual analysis, simulation and verification, special
conditions obtained, parameters and scenarios of such analysis,
simulations, verifications, special results of fulfillment of conditions,
application of parameters and scenarios.

17.1.1 Introduction to representation of architecture of 10T
and loE-based systems with the use of visual UML diagrams
(precedents, components, classes, interaction, activities,
sequences, states)

In the construction of both specifications and models on the basis
of UML (also on QS, automata, Petri nets, temporal logic) in the
analysis and synthesis of the architecture of systems and processes in
loT and loE, the following basic stages of early system engineering
technology are usually defined:

Stage 1. Building the structure of system and determining the
composition of the components.

Stage 2. Definition of syntax for system and component
operations and functions.

44

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

Stage 3. Determining the structure and format of information
objects and classes for system, components and functions.

Stage 4. Building system intercomponent interfaces (structure
links) with their formats, dimensionality of values, binding conditions
and events on both sides.

Stage 5. Determining the own logical time, conditions and events
both for the system as a whole, and for components, functions,
information objects and classes, interfaces.

Stage 6. Building the relationship of temporal interactions,
synchronization, processing of conditions and events for functions,
information objects and classes, interfaces.

Stage 7. Construction of timing diagrams, procedures and
algorithms for executing system scripts, component functions, methods
and handlers of classes and objects.

Universal Modeling Language UML [5 — 7] and appropriate tool
environments, for example, Star UML, MS Visual Studio (UML) [5, 6,
17], are used for loT architectural analysis and design, for system
structural, functional, object, component, event-time characteristics of
objects and relationships of 10T, their visual simulation and
verification.

In UML, all objects can be divided into the following basic types:
a) structural or static; b) behavioral or dynamic; c) grouping;
d) annotational.

In accordance with stages 1 — 7 of early system design technology,
the procedure for constructing and analyzing of the UML diagrams,
depending on the objects of the systems and components of IoT is
determined by the use of 7 types of the static UML diagrams at the
stages 1 — 4 for describing of precedents, components, objects, classes,
packages, layout, structure and by using of the 6 types of the dynamic
UML diagrams at the stages 5 — 7 for describing of synchronization,
activity, communication, sequences, automata and state machines,
interaction.

To determine the relationships of objects and entities of all types
of UML diagrams, also depending on the objects of the systems and
components of 10T, four types of basic relations are used, such as:

1) Dependence indicates that change of independent essence
somehow influences dependent essence. Graphically the relation of

45

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

dependence is represented in the form of a dashed line with the arrow
directed from dependent essence to independent.

2) Generalization as the relation between two entities, one of
which is a special (specialized) case another. Graphically generalization
is represented in the form of the line with the triangular not painted
over arrow on the end directed from private (subclass) to general (super
class).

3) Association points that one essence is directly connected with
another (or with others — the association can be not only binary).
Graphically, the association is represented in the form of the continuous
line with various additions connecting the connected entities.

4) Realization specifies that one essence is realization another.
Graphically realization is represented in the form of a dashed line with
the triangular not painted over arrow on the end directed from the
realizing essence by realized.

The tool environments (frameworks) with their operation bases,
such as Star UML, MS Visual. NET (UML) [5, 6, 17], are used at
specification, analysis and verification of visual UML diagrams.

System modeling requires the description of several models,
because it is not enough to describe the system from a single point of
view. A model is a description of any aspect of systems, such as
structure, behavior, requirements, etc. The model can be presented in a
text-analytical, tabular or visual-graphic form.

The model element is a building block of a model. Diagram is a
visual graphical symbolic representation of a model. A model can be
represented in one or more diagrams with different aspects. For
example, a diagram can focus on class hierarchical structure while
another diagram can focus on interaction between objects.

Diagrams consists of graphical elements, which are visual
representations of a model element.

Star UML possesses some features. So, Star UML is an open
source project to develop fast, flexible, extensible, featureful, and
freely-available UML/MDA platform. The goal of the Star UML
project is to build a software modeling tool. Star UML is a
sophisticated software modeler aimed to support agile and concise
modeling. The key features of Star UML are: Multi-platform support
(MacOS, Windows and Linux); UML 2.x standard compliant; Entity-
Relationship diagram (ERD); Data-flow diagram (DFD); Flowchart

46

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

diagram; Multiple windows; Modern UX; Dark and light themes;
Retina (High-DPI) display support; Model-driven development; Open
APIs; Various third-party extensions; Asynchronous model validation;
Export to HTML docs; Automatic updates.

MS Visual.NET (UML) possesses some own features too. MS
Visual.NET create UML models at different levels of detail throughout
the application lifecycle as part of development process. Track
requirements, tasks, test cases, bugs, and other work associated with
models by linking model elements to Team Foundation Server work
items and development plan. The key features of MS Visual.NET for
UML are: visualize code; describe and communicate user requirements;
define the architecture; validate system with the requirements and
intended design; share models, diagrams, and code maps using Team
Foundation version control; customize models and diagrams; generate
text using T4 templates.

17.1.2 Static visual UML diagrams for the description of
architecture of 1oT and loE-based systems and their analysis

The analysis of static and dynamic visual UML diagrams allows to
define and verify the description of architecture of 10T and loE-based
systems. Static visual UML diagrams [5 — 7] serve to describe the static
part of architecture of the 10T and loE-based systems in representation
of structure, their components, component functions and information
objects, intercomponent interfaces with their formats, conditions,
events and means of processing, in particular, hardware, software,
information objects of data collection, transfer and storage, sensory and
executing nodes, brokers, servers, administrative stations.

The seven types of the static UML diagrams are applicable for
describing of the precedents, components, objects, classes, packages,
placements and structures.

Precedents are the subjects and objects of loT and the IoE systems,
their components and interactions. Components are the structural
components in systems of IoT and IoE. Objects are the program
objects, using the frames, variables, structures, functions, methods from
systems of IoT and IoE, their components. Classes are the program
classes, using the frames, variables, structures, functions, methods from
systems of 10T and IoE, their components. Packages are the program

47

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

packages, including program objects, components and classes from
systems of 10T and IoE, their components. Placements are objects of
physical positioning / allocation for components, objects, classes,
packages in 10T and IoE systems. Structures are the directional and
nondirectional point-to-point, peer tire and star, treelike, hierarchical
and cluster topological structures of relational and interaction of
component in systems of 10T and IoE.

Static visual UML diagrams are used to describe the static part of
architecture of complex subsystems, in particular, on base of loT and
IoE. The main applications of static UML diagrams for describing
structures and systems of 10T and IoE include a number of approaches,
cases, stages and steps described below.

General static, spatial structures, described by static UML
diagrams, usually are formed in the natural sequence of the following
procedure of construction:

Step 1. Construction of diagrams of the precedents.

Step 2. Construction of diagrams of the components.

Step 3. Construction of diagrams of the classes.

Step 4. Construction of diagrams of the packages.

Step 5. Construction of diagrams of the objects.

Step 6. Construction of diagrams of the placements.

Step 7. Construction of diagrams of the composite structures.

Special spatial architecture of static network environment of loT
and IoE by static UML diagrams is formed in the sequence of the
procedure of visual determination, construction, placement, simulation
and verification of the above special static UML diagrams for/into the
next network hosting and designing environment, further — the UML-
design procedure*, namely for/into:

Step 1. Existing product/resource service network for modification
of monitoring and control (UML-diagrams of components, classes,
structure (UML-CCS¥*) for end-points, network, control environment —
lighting, power supply, temperature/heating/air conditioning,
ventilation, humidity, ionization).

Step 2. Existing computer network consisting of wired and
wireless network environment (UML-CCS* for end-points, network,
control environment — administrative and end-user stations,
routers/access-points, servers).

48

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

Step 3. Developed external end-points of 10T and IoE subsystem;
(UML-CCS* for developed end-point environment — end-point
sensors/actuators, end-point controllers, controller buffers, controller
intercomponent interfaces).

Step 4. Developed topology structure and internal node
components of loT and IoE subsystem (UML-CCS* for — developed
topology, nodes — brokers/routers/access-points, broker/router/access-
point buffers, broker/router/ /access-point intercomponent interfaces).

Step 5. Extended developed topology structure and internal
servers of 10T and IoE subsystem (UML-CCS* for — extended
developed topology, servers, server buffers, server intercomponent
interfaces).

Step 6. Extended developed topology structure and external
terminals of loT and IoE subsystem (UML-CCS* for — extended
developed topology, end-user/administrative terminals, terminal
buffers, terminal intercomponent interfaces).

Step 7. Composition these partial developed static UML-CCS*
into general developed system of static diagrams and their structure for
existing product/resource service network, existing computer network
and developed IoT and IoE subsystem.

Spatial structure for special resource properties of dynamic
transport/service data flows by static UML diagrams is formed in the
sequence of the following UML-design procedure* for/into graph
structures (nodes, paths, trees, hammocks, cycles) of dynamic processes
through the developed general spatial structure of components of
subsystem of 10T and IoE (with all its components — sensors/actuators,
end-point controllers, buffers, intercomponent interfaces,
brokers/routers, servers, terminals), namely for:

Step 1. Computational, memory, communicative metric units,
min/max tensions and capacity, capacity of buffers, its values (UML-
CCS* with properties and methods and their placement for all trivial
graph nodes of dynamic processes, as components of transport/service
data flows).

Step 2. The same units and their values and properties but for all
nontrivial graph structures of dynamic processes, as components of
transport/service data flows).

Step 3. Selected technological standards, interface and
communication protocols of computer networks and l1oT and IoE for

49

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

the all above static UML diagrams of the developed resource,
transport/service and computer subsystem of loT and IoE.

Special spatial resource and transport/service evolutionary-genetic
system (EGS), their EGS-models — genes, chromosomes, individuals,
populations, signatures of operations and relationships [18, 21 — 23] is
formed by static UML diagrams into life cycles of 10T and IoE in the
sequence of the following technologies of construction — defining,
analysis, modeling, simulation and verification of next stages (each of
which includes own special evolutionary steps):

Stage 1. Developed slow spatial evolution by static UML
diagrams into life cycles of static general spatial topology system
structure of 10T and IoE.

Stage 2. Developed fast spatial evolution by static UML diagrams
into life cycles of dynamic transport/service data flows for spatial
system structure of loT and IoE.

Stage 3. Developed coevolution as composition of slow spatial
evolution for spatial system structure and fast spatial evolution for
transport/service data flows by static UML diagrams.

Special spatial resource and transport/service multiagent systems
(MAS), with their MAS-models — agents, properties, signatures of
operations and relationships, properties autonomy, mobility,
intellectuality, cooperativeness [19, 20] is formed by static UML
diagrams into life cycle of 10T and IoE with the use the same sequence
of technologies and stages as it was considered for EGS.

17.1.3 Dynamic visual UML diagrams for the description of
architecture of 1oT and loE-based systems and their analysis

Dynamic visual UML diagrams [5—7] serve to describe the
dynamic part of architecture of the loT and loE-based systems in
ordered, temporary representation of processes, their synchronization
and interactions of conditions, events and means of processing, in
particular for main, component and interface functions and methods of
hardware, software, information objects of data collection, transfer and
storage, sensory and executing nodes, brokers, servers, administrative
stations.

50

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

The 6 types of dynamic UML diagrams can be applicable for
describing of the communications, survey interaction, the sequences,
synchronization, activity and states (automata).

Communications are the interactions of 10T and IoE systems
according to intercomponent network interfaces in structure of IoT and
IoE. Survey interaction is the special case of communications limited to
component functions and communications, essential to the general
external consideration of IoT and IoE. The sequences are logic-time
diagrams of scenarios of work of loT and loE, their components.
Synchronization is the special case of the sequences limited to
accounting interconnected only. Activity is a kind of graphic schemes
of algorithms for functions and methods of processes for 10T and IoE.
States (automata) are kinds of graphic schemes of machines of states
(Kripke's structures) and automata models for functions and methods of
processes for 10T and IoE.

Dynamic visual UML diagrams are used to describe the dynamic
part of architecture of complex subsystems, in particular, on base loT
and IoE. The main applications of dynamic UML diagrams for
describing structures and systems of 10T and IoE include a number of
approaches, cases and steps described below.

General dynamic, spatial and temporary structure, described by
dynamic UML diagrams, are formed in the possible sequence of the
following procedure of construction:

Step 1. Construction of diagrams of communications, in
particular, survey interaction.

Step 2. Construction of diagrams of sequences, in particular,
synchronization.

Step 3. Construction of diagrams of activity.

Step 4. Construction of diagrams of states.

Special temporal individual functional architecture of static
network environment of 1oT and IoE by dynamic UML diagrams is
formed in the sequence of the UML-design procedure*, namely
for/into:

Step 1. Service network* for modification of monitoring and
control (UML-diagrams of communications, sequences, activity, states
(UML-CSAS*) for functions of end-points, network, control
environment — lighting, power supply, temperature/heating/air
conditioning, ventilation, humidity, ionization).

51

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

Step 2. Computer network™ consisting of wired and wireless
network environment (UML-CSAS* for functions of end-points,
network, control environment — administrative and end-user stations,
routers/access-points, servers).

Step 3. End-point subsystem*, (UML-CSAS* for functions of —
developed end-point sensors/actuators, end-point controllers, controller
buffers, controller intercomponent interfaces).

Step 4. Node subsystem*, (UML-CSAS* for functions of -
developed topology, nodes — brokers/routers/access-points,
broker/router/access-point buffers, broker/ /router/access-point
intercomponent interfaces).

Step 5. Server subsystem*, (UML-CSAS* for functions of —
extended developed topology, servers, server buffers, server
intercomponent interfaces).

Step 6. Terminal subsystem*, (UML-CSAS* for functions of —
extended developed topology, end-user/administrative terminals,
terminal buffers, terminal intercomponent interfaces).

Step 7. Composition these partial developed dynamic UML-
CSAS* into general developed system of dynamic diagrams, further —
dynamic system*, and their general structure for functions of existing
product/resource service network, existing computer network and
developed IoT and IoE subsystem.

Temporal structure for special resource properties of dynamic
transport/service data flows by dynamic UML diagrams is formed in
the sequence of the following UML-design procedure* for/into graph
structures (nodes, paths, trees, hammocks, cycles) of dynamic processes
through the general temporal hierarchical structure of functions of
components of subsystem of IoT and IoE (with functions of all its
components), namely for:

Step 1. Function and lows of distribution of values of
computational, memory, communicative metric unit, min/max tensions
and capacity, capacity of buffers (simple UML-CSAS* and their
placement for all trivial graph nodes of dynamic processes, as
components of transport/service data flows).

Step 2. The same function and lows of distribution in case of
complex UML-CSAS* and their placement for all nontrivial graph
structures of dynamic processes.

52

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

Step 3. Selected technological standards, interface and
communication protocols of computer networks and 10T and loE for
the all above dynamic UML diagrams of the developed resource,
transport/service and computer subsystem of IoT and IoE.

Special spatial and temporal resource and transport/service EGS
for optimization analyze, their EGS-models is formed by dynamic
UML diagrams of loT and IoE life cycle in the sequence of the
corresponding technology from determination to verification and the
following stages (each of which includes own special evolutionary
steps):

Stage 1. Developed slow evolution by dynamic UML diagrams
into life cycles of static general temporal system structure of loT and
IoE.

Stage 2. Developed fast evolution by dynamic UML diagrams
into life cycles of dynamic transport/service data flows for temporal
hierarchical system structure of loT and IoE.

Stage 3. Developed coevolution as composition of slow temporal
evolution for spatial system structure and fast temporal evolution for
transport/service data flows by dynamic UML diagrams.

Special spatial and temporal resource and transport/service MAS
for distribution, with their MAS-models is formed by dynamic UML
diagrams into life cycle of 10T and IoE in the sequence of the
corresponding technology from visual determination to verification and
with the use of the same stages as it was believed for EGS.

17.2 Simulation and verification in behavior of loT and IoE
systems on the basis of the Queuing Systems and Petri Nets

The following objects are taken as input for QS:

1) The specifications of the technical description of the
architecture of components, subsystems IoT and loE-based systems, as
well as such systems, defining the structure of topological relationships,
functions, information objects, interfaces of topological interactions,
the temporal behavior of functions and scenarios.

2) The previously prepared QS networks, that define in QS
standards, and automata/Petri nets, that define in Petri nets standards,
set accordingly resource and behavioral models of process,
components, loT and IoE-based systems, as well as such systems as a
whole in analytic-text, tabular, graphical representations, for which

53

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

system resource and behavior analysis and simulation and verification
are needed, in particular, in the ExtendSim Demo tool environment.

The following objects are considered as output objects for QS and
Petri Nets: the obtained correct, verified QS and Petri nets, representing
resource and functional models of process, components, subsystems of
lIoT and loE-based systems, as well as such systems in general, for
which in the corresponding tool environment, in particular, ExtendSim
Demo and CPN Tools, system resource and automata analysis,
simulation and verification, obtained special conditions, parameters and
scenarios of such analysis, simulation, verification, and also special the
results of the fulfillment of conditions, the application of parameters
and scenarios.

17.2.1 Introduction to the general description of the
operation of 10T and IoE systems at the level of resource and
functional mode presentation

General description of the operation of 10T and IoE systems at the
level of the resource mode presentation is provided by queue systems —
QS and on their basis networks of QS [8, 9]. As is known, basic QS
includes two main objects — queues and service devices, which process
the streams of requests for some service. Queues and service devices
are characterized by own special working laws.

The main classification of QS is performed on the basis of
structural and functional properties. Accordingly, QS can be: single-
channel and multichannel; with expenses (refusal) and without
expenses; with expectation and without expectation; with a limited
length of turn and not limited length of turn; with limited waiting time
and not limited waiting time; with priority and without priority; single-
phase and multiphase; opened and closed; Markov and non-Markov;
QS compositions and also feature of the use of various QS for imitating
modeling of loT and loE-based systems, their components and
processes.

Except, classification of the QS is executed basrd on the streams of
requests, namely: uniform and non-uniform; regular and irregular;
recurrent and not recurrent; stationary, ordinary and extraordinary and
also, on the basis of features of the use of various streams for imitating

54

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

modeling of loT and loE-based systems, their components and
processes.

Various instrumental environments — frameworks ExtendSim
Demo, GPSS World, OMNet ++ [24—-26] can be applied for
simulating of QS and networks of QS, analyzing the loading of
resources of the 10T and IoE and their components.

As it is known, simulation is the imitation of the operation of a real-
world process or system over time. The act of simulating something
first requires that a model be developed; this model represents the key
characteristics or behaviors/functions of the selected physical or
abstract system or process.

The model represents the system itself, whereas the simulation
represents the operation of the system over time. Verification and
validation are independent procedures that are used together for
checking that service or system meets requirements and specifications
and that it fulfills its intended purpose.

Specifically, specifications, resource modeling and simulation,
features of validation and verification of the QS-models of IoT and IoE
systems and their components can be performed, in particular, in
frameworks ExtendSim Demo, GPSS World, OMNet ++.

The built-in compiler is a computer program that transforms source
code, written in a programming language, into another computer
language, with the latter often having a binary form, known as object
code. Frameworks ExtendSim Demo, GPSS World, OMNet ++ have
the following features.

ExtendSim is a proven simulation environment capable of
modeling of 10T and IoE. ExtendSim is used to model continuous,
discrete event, discrete rate, and agent-based systems. ExtendSim's
design facilitates every phase of the simulation project, from creating,
validating, and verifying the model, to the construction of a user
interface that allows others to analyze the system. Simulation tool
developers can use ExtendSim's built-in, compiled language, ModL, to
create reusable modeling components. All of this is done within a
single, self-contained software program that does not require external
interfaces, compilers, or code generators.

GPSSWorld presents a graphical interface with an embedded text
editor that allows the definition of the model inside the tool itself. The
user can also find in a window all the defined GPSS blocks

55

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

implemented in the tool, simplifying the modeling process. GPSSWorld
presents the capability to represent the movement of the transactions
over the different elements of the model. Language Plus allows to
define the more complex behavior (the Plus syntax). GPSS World
brings all the simulation primitives up to the user interface, and makes
it easy to visualize and manipulate simulations. The result is that
simulations can be developed, tested, and understood more quickly than
before. There is more to GPSS World than just the GPSS language.
Since all the blocks have a graphical representation, the definition of a
GPSS process can be represented graphically.

OMNET++ has a domain-specific functionality such as support for
sensor networks, wireless ad-hoc networks, Internet protocols,
performance modeling, photonic networks, etc., is provided by model
frameworks, developed as independent projects. OMNeT++ provides
component architecture for models. Components (modules) are
programmed in C++, and then assembled into larger components and
models using a high-level language (NED). OMNeT++ IDE makes it
possible to run simulations directly from the integrated environment. It
is possible to run a simulation as a normal C/C++ application and
perform C++ source-level debugging on it. The user can also run it as a
standalone application or run batches of simulations where runs differ
in module parameter settings or random number seeds. OMNET++
SENSOR NETWORK helps to communicate among them using radio
signals, and deployed in quantity to sense, monitor and understand the
physical world. Wireless Sensor nodes are called motes. Wireless
Sensor Network is a self-configuring network.

Models and methods for analyzing the functioning of the
automaton class, in particular, extended automata [10, 11] and Petri
nets [12 — 14], can be used in processes of specification, modeling,
simulation, verification and check of the various aspects of behavior of
the 10T and IoE systems and their components. The features of such
models assume the following classifications and cases for:

1) Automata models, namely, synchronous, asynchronous,
temporary, nondeterministic, indistinct, contextual, predicate automata,
automata networks and hierarchies and also features of the use of
various automata models for behavioral modeling of the loT and IoE-
based systems, their components and processes.

56

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

2) Petri nets, namely, simple, temporary, nondeterministic,
indistinct, contextual, predicate, painted Petri nets, compositions and
hierarchies of Petri nets and also features of the use of various Petri nets
for behavioral modeling of IoT and IoE systems, their components and
processes.

3) Features in analyze (specification, modeling, simulation and
check) of processes in functioning of the 10T and IoE systems, their
components on the basis of their representation by:

— synchronous, monoprocessing automata and their compositions;

—asynchronous, multiprocessing Petri nets and their compositions.

For behavior analysis of the loT and loE systems and their
components frameworks TINA, CPN Tools [27] can be applied.

Simulation is the imitation of the operation of a real-world process or
system over time. The act of simulating something first requires that a
model be developed, this model represents the key characteristics or
behaviors/functions of the selected physical or abstract system or process.
The model represents the system itself, whereas the simulation represents
the operation of the system over time. As before, verification and
validation are independent procedures that are used together for checking
that service or system meets requirements/specifications and that it fulfills
its intended purpose. The behavioral operating and testing check the
conformity of the behavior of the system under check to the behavior of
the reference system, in the mode, respectively, for the first, basic
operating functioning and, for the second, specific testing functioning.

Specifications, behavioral modeling and simulation, features of
validation and verification, elements of operating an testing check of
the extended automata [10, 11] and Petri net [12 — 14] models of 10T
and IoE systems and their components can be performed, in particular,
in frameworks TINA, CPN Tools. Frameworks TINA, CPN Tools have
the following features:

TINA (TIme petri Net Analyzer) [27] is a toolbox for the editing
and analyzing Petri nets and Time Petri nets, with possibly inhibitor
and read arcs, Time Petri Nets, with possibly priorities and
stopwatches, and an extension of Time Petri Nets with data handling
called Time Transition Systems. The toolbox includes an editor for
graphical or textual description of Petri nets and Time Petri nets. TINA
can perform construction of reachability graphs, perform structural and
path analysis. It also has a conversion tool that translates among several

57

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

Petri net formats. TINA accepts as input, descriptions of a Petri net or
Time Petri net in textual (.net, .pnml, .tpn formats) or graphical form
(.ndr format of files produced by nd, .pnml with graphics). Here “nd” is
the textual/graphical editor of TINA called NetDraw. TINA provides a
number of options for output formats depending on the flags selected.
Options those were useful my thesis were a textual format printing full
results and a textual format printing a summary of results. TINA also
outputs graphs for various available model checkers and equivalence
checkers.

CPN Tools [27] is a tool for editing, simulating and analyzing
Colored Petri Nets. The GUI is based on advanced interaction
techniques, such as toolglasses, marking menus, and bi-manual
interaction. Feedback facilities provide contextual error messages and
indicate dependency relationships between net elements. The tool
features incremental syntax checking and code generation which take
place while a net is being constructed. A fast simulator efficiently
handles both untimed and timed nets. Full and partial state spaces can
be generated and analyzed, and a standard state space report contains
information such as boundedness properties and liveness properties.
The functionality of the simulation engine and state space facilities are
similar to the corresponding components in Design/CPN, which is a
widespread tool for Colored Petri Nets.

Thus, these features of TINA, CPN Tools allow the following
stages of behavioral analysis: Stage 1. Specifications/modeling of loT
and loE of systems and their components in modes: synchronous;
asynchronous/event; sequential; parallel. Stage 2. Simulation in modes:
step by step; automatic; graph of attainable states and markings. Stage
3. Analysis of correctness for steps: unattainable states and markings;
dead-end states and markings; infinite cycles; multiplying markings.
Stage 4. Compositional verification for adjacent subsystems of steps:
spatial network compositions; spatial hierarchical compositions;
temporal network compositions; temporal hierarchical compositions.
Stage 5. Operating and testing check for: neighborhoods of states,
positions, transition; Rabin-Scott automata for identifiers; operating and
testing primitives and fragments; recognizing and check experiments.

58

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

17.2.2 Resource imitating modeling and simulation on base
of functioning of 10T and IoE systems and their components
using QS

Resource imitating modeling, simulation and features of
verification of functioning of loT and IoE systems and their
components (in future — end-point sensors/actuators, end-point
controllers, zone brokers/routers/access-points, system servers, end-
user/administrator terminals and their special subcomponents — buffers,
interfaces, memory, control, analyze), that using QS is performed
taking into account the basic architecture of loT and IoE, its
components, topological intercomponent structure of interactions (two-
point, one-way, star, tree, hierarchical and cluster).

As noted, the structural-functional features of loT and IoE and
their components and also the processes of loading their resources
affect the classification of QS with laws for queues, service devices and
streams for 10T and IoE. Basic classes of QS for 10T and IoE systems
can be represented as simple and difficult [8, 9].

Simple classes — single-channel, without expenses and expectation,
with an unlimited length of turn and unlimited waiting time and also
with streams of simple classes including uniform, regular, recurrent,
stationary and ordinary classes and difficult classes: non-uniform,
irregular, not recurrent, non-stationary, extraordinary.

Difficult classes — multichannel with expenses, expectation, a
limited length of turn, limited waiting time, Markov and non-Markov —
with streams of simple and difficult classes described above.

The QS is possible and appropriate to apply also with more
detailed descriptions of processes for resources and their consumption
in 10T and loE systems, their components and topological interaction
structure.

In particular, QS can consider the peculiarities of their
architecture, multi-level, advanced technologies, including loT and IoE.
These special approaches, architectures, structures and their properties,
defining the features of models and methods of 10T and IoE for QS,
determine the technology of construction — defining, analysis,
modeling, simulation and verification, which contains the following 4
stages.

59

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

Stage 1 is executed for construction of components of the general
static, spatial topological structure for subsystems of 10T and IoE by
models of some type of QS and their objects and components by steps
for: end-point sensors/actuators (step 1), end-point controllers —
decision making units (step 2), brokers/routers/ access points (step 3),
servers (step 4), end-user/administration terminals/work stations (step
5), bufferss/memory/storages for all components (step 6),
intercomponent interfaces (transport units) for all components (step 7).

Stage 2 provides designing of the general static spatial topological
structure of subsystem of loT and IoE through the intercomponent
interfaces by interconnection of models of some type of QS and their
objects and topological properties by steps for: end-point
sensors/actuators — end-point controllers connection, as point-to-point,
star (step 1), end-point controllers — brokers/routers/access points, as
point-to-point, star (step 2), brokers/ routers/access points —
brokers/routers/ /access points, as point-to-point, one-way, star, tree,
hierarchical, hammocks, cycles, mesh and cluster (step 3)
brokers/routers/access points — servers, as point-to-point, star (step 4),
brokers/routers/access points — end-user/ /administration terminals/work
stations, as point-to-point, star (step 5), servers — end-user/administration
terminals/ /work stations, as point-to-point, star (step 6), servers —
servers, as point-to-point, one-way, star, tree, hierarchical, hammocks,
cycles, mesh and cluster (step 7), end-user/administration terminals/work
stations — end-user/administration terminals/work stations, as point-to-
point, one-way, star, tree, hierarchical, mesh and cluster.

Stage 3 is performed for construction of the general static spatial
structure of data flows for the developed resource, transport/service and
computer subsystem of 10T and IoE by models of service flows for some
type of QS and their objects and properties — bandwidth, queue length,
transmission time, delay, transmission errors, its values for individual
queues and service devices — individual graph nodes of service flows
(step 1), fragments (graph structures) of service flows and service flows
generally (step 2), preselected technological standards, interface and
communication protocols of computer networks and IoT and IoE for the
all above QS models (step 3).

Stage 4 provides designing of the general dynamic temporal
structure of data flows for the developed resource, transport/service and
computer subsystem of 1oT and IoE by models of service flows for

60

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

some type of QS and their objects — queues and service devices by steps
of defining, analysis, modeling, simulation and verification of lows of
distribution of values of service flows for QS-properties on base types
of service flows — uniform/non-uniform, regular/irregular,
recurrent/not-recurrent, stationary/non-steady, /ordinary/extraordinary,
continuity/discreteness — for individual queues and service devices —
individual graph nodes of service flows (step 1), fragments (graph
structures) of service flows and service flows generally (step 2), post
selected technological standards, interface and communication
protocols of computer networks and loT and IoE, based on analysis all
above QS-models (step 3).

Special spatial and temporal resource and transport/service EGS
or/and MAS with special EGS- and MAS-models is formed by QS-
models (in life cycle of loT and IoE) in the sequence of the
corresponding technologies of construction and the following stages:

Stage 1. Developed slow evolution by QS-models of static spatial
structure of EGS or/and MAS into life cycles of static general spatial
topology system structure of loT and IoE.

Stage 2. Developed fast evolution by QS-models of dynamic
transport/service flows of EGS or/and MAS into life cycles of dynamic
transport/service data flows for temporal hierarchical system structure
of 10T and IoE.

Stage 3. Developed static and dynamic coevolution of EGS’s
or/and composition of MAC’s for slow spatial system structures and
fast transport/service data flows by QS-models.

17.2.3 Behavior imitating modeling of features for functioning
of 10T and IoE systems and their components using Petri Nets

Behavior imitating modeling is performed taking into account
scenarios and functions of the basic architecture, functions of all
components of architecture 10T and IoE, functions of interactions for
ports and interfaces into topological intercomponent structure (two-point,
one-way, star, tree, hierarchical, mesh and cluster).

The general functional features of loT and IoE and their
components and also their processes affect the classification of
automata and Petri Nets with special functions input/output, storage,
processing for 10T and IoE.

61

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

Special behavioral analysis of loT and loE systems and their
components is focused on the tasks of the modeling, simulation,
analyzing correctness, verification, operating and testing check of the
basic, component, interface and subsystem functions presented at the
system level of the IoT and IoE architecture.

This special modeling can essentially rely on evolutionary and
multiagent models and methods.

Thus, these tasks are defined as follows actions for correctness,
verification and also behavioral operating and testing check [28]:

1) The stages and steps for correctness:

Stage 1 confirms that the model has the following properties by
steps: The absence of static locks (Step 1). Completeness (Step 2).
Unambiguous correspondence of states (Step 3). Lack of redundancy
(Step 4). Limitedness (Step 5). Lack of dynamic locks (Step 6). Self-
synchronization (Step 7). Partial correctness (Step 8). Complete
correctness (Step 9). Security (Step 10). Liveliness (Step 11).

Stage 2 selects the basis of the methods for analyzing the
correctness, these methods of check is performed of: Analysis of
achievable states and mapping in classical and improved version (the
method of dialog matrices). Phase diagrams. Adjacent states. Joint
paths that preliminarily identifies static locks.

Stage 3 lowers the dimension of the model of achievable states due
steps: Structural and functional decomposition (Step 1). Previously
created "equivalent” states (Step 2). Limiting the number of parameters
and detectable errors (Step 3).

2) Verification, that includes the following stages and steps:

Stage 1 proves that the specification of the service objects of some
verifiable level, together with: The specification of the lower level, that
are used by these service objects, is consistent with the description
provided by the checked level (Step 1). The specification of the higher
level, that use these service objects, is consistent with the description
provided by the checked level (Step 2).

Stage 2 is performed on the basis of methods of: analysis of the
achievable states and markings in a version extended in comparison
with the analysis of correctness (Step 1); logical induction by the
number of events based on axioms and verification rules (Step 2); time
logic method with confirmation of safety and liveliness (Step 3).

62

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

Stage 3 achieves using the methods of: combining, that is based on
methods of analysis of achievable states and logical induction, where
the development of the system is reflected in the states it achieves, and
the requirements for the system (service) in statements (Step 1);
structural induction, that is on the basis of abstract data types, with the
proof that low-level specification implements high-level specification;
axiomatic, that is in the specifications of formal languages (Step 2).

3) The stages and steps of behavioral operating and testing check:

Stage 1 consists in verifying, that the behavior of the system on the
conceptual boundary with the environment corresponds to the intended
one.

Stage 2 allows to get test scenarios, like recognizing and checking
experiments, in terms of abstract service primitives and data elements
of the system;

Stage 3 consists in passive recognizing experiment of the automata
class by behavioral on-line testing. This is based on a formal method of
recognizing behavioral check in the external flow of the system's
operational functioning based on the identification of reference states
(Step 1) and it establishes the conformity of the reference and verified
models by searching for recognizing primitives and fragments in a
fixed working behavior of the system (Step 2).

Stage 4 executes an active checking experiment of the automaton
class by behavioral testing check. This is based on a formal method of
constructing behavioral checks in the internal specially formed stream
of test functioning of the system based on the identification of reference
states (Step 1) and it establishes the correspondence of the reference
and verified models, for which it embeds checking primitives and
fragments in the test behavior of the system (Step 2).

Special EGS with their genes, chromosomes, individuals,
populations, signatures of operations, relationships, evolutions and
special MAS with their agents, signatures of operations and
relationships are used for consideration of the special behavior of
automata and Petri nets. In particular, they examine correctness by
verification, on-line testing and testing check in life cycle of 10T and
IoE of SBC (in properties: autonomy; mobility; intellectuality;
cooperativeness) for stages: behavior hosting analyzes of stationary and
mobile, static communication network environment, as special slowly
developing EGS or MAS (stage 1); behavior analyze of processes of

63

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

dynamic transport service flows, as special highly developing EGS or
MAS (stage 2); cooperation of behavior analyze of static
communication and dynamic transport evolution systems or MAS’s
(stage 3).

17.3 Simulation and verification of synchronization processes
in 10T and loE-based systems on the basis of temporal logic

The following objects are taken as input:

1. The specifications of the technical description of the
architecture of components, subsystems IoT and loE-based systems, as
well as such systems, defining the structure of topological relationships,
functions, information objects, interfaces of topological interactions,
the temporal behavior of functions and scenarios.

2. The previously prepared abstract-temporal models that define
in the LTL and CTL time logic standards the properties of mutual
ordering and synchronization of abstract-time conditions, events and
process relationships for components, 10T and loE-based systems, as
well as such systems as a whole in analytic-text, tabular, graphical
representations for which it is necessary to perform system time
analysis, simulation and verification, in particular, in the XSPIN tool
environment.

The following objects are considered as output objects: The
obtained correct, verified abstract-temporal models, representing in
LTL and CTL temporal logic standards, the properties of mutual
ordering and synchronization of abstract-temporal conditions, events
and process relations for components, 10T and IoE-based systems, as
well as such systems, for which system time analysis, simulation and
verification, special conditions obtained, parameter, are performed in
the appropriate tool environment, in particular, XSPIN. s and scenarios
for the organization of such analyzes, simulations, verifications, special
results of condition fulfillment, application of parameters and scenarios.

17.3.1 Introduction to specification of synchronization process in
10T and lIoE-based systems by using of temporal logic

The temporal logic of Linear Temporal Logic (LTL) and
Concurrent Temporal Logic (CTL) [15, 16] can be used for analytical
analysis and synthesis of temporal expressions, proof of the conclusions

64

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

in the synchronization of processes in 10T and IoE systems and their
components. Temporal analysis involves the following parts:

1) Temporal classification of objects, properties, conditions,
events, relations, operations, laws of temporal logic of processes of
functioning of 10T and IoE and their components.

2) Special models and methods — logical conclusion, machine of
states, Kripke’s structures, Buchy automata, Promela specifications.

3) Distinctions of objects, properties, the relations, operations,
laws, a logical conclusion of temporal logic of CTL from LTL for
processes of functioning of the 10T and IoE systems and their
components.

4) Features of temporary specification, analytical analysis and
synthesis of expressions, proofs of conclusions at synchronization of
conditions and events in processes of functioning of lIoT and loE and
their components on the basis of their representation by expressions and
conclusions of temporal logic.

Various instrumental environments and linguistic tools for
analytical time analysis and synthesis of LTL and CTL time-logic
expressions and outputs [15, 16] are used to synchronize of processes
of 10T and IoE and their components. Among such environments are, in
particular, Promela language, SPIN and XSPIN framework [27].

These tools allow to solve the following tasks:

1) Description of expressions and conclusions of temporal logic in
Promela language for synchronization of conditions and events of
processes in functioning of loT and IoE and their components.

2) Specifications of expressions and conclusions of temporal logic
for synchronization of conditions and events of processes in functioning
of 10T and IoE and their components in the tool environments SPIN
and XSPIN.

3) Temporary asynchronous and event interpretation of
expressions and conclusions temporal logic, as analytical temporary
models of processes in functioning of loT and loE and their
components, in the tool environments SPIN and XSPIN.

4) Features of the analysis and synthesis of expressions, proofs of
conclusions of temporal logic, as analytical temporary models of
processes in functioning of 10T and IoE and their components, in the
tool environments SPIN and XSPIN.

65

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

17.3.2 Simulation and verification of loT and loE-based
systems at the level of temporal logic

Temporal simulation and verification of loT and loE-based
systems at the level of Temporal Logic (LTL) [15, 16] have their own
peculiarities for synchronizing the processes and interactions of 10T and
IoE and their components, depending on the task being solved and the
model.

Temporal specifications and modeling of processes synchronization
of the main component and interface functions of 10T and IoE, in
particular, temporary expressions; Kripke's structures; Buchy automata;
Promela language, include stages and steps [29, 30]:

Stage 1. Temporary analysis of conditions and events at
synchronization on the basis of temporary expressions, Kripke's
structures, Promela language, in particular, for: general dynamic,
spatial and temporary structures of 10T and IoE on base of the UML
(Step 1); special structures of dynamic transport service flows on base
of the QS (Step 2); processes of functioning of 10T and IoE, their
components on the basis of their representation by automata and the
Petri nets (Step 3).

Stage 2. Temporary transformation, conclusion and proof of
expressions for conditions and events at synchronization by repeating a
sequence of stages which are considered for temporary analysis.

Stage 3. Temporary verification, optional working and testing
check for functioning of 10T and IoE and their components by repeating
a sequence of stages for temporary analysis and transformation.

17.3.3 Special temporal simulation and verification of 10T
and loE-based systems

Special temporary analyzes of EGS properties for optimization
or/and MAS properties for distribution are used for temporary
simulation and verification at the following stages:

Stage 1. Temporary EGS- or MAS-analysis of special dynamic,
spatial and temporary entities, relations and properties of components,
subsystems and SBC on base of the UML-evolution or UML-MAS.

Stage 2. Temporary EGS- or MAS-analysis of special structures of
dynamic transport service flows through queues and service devices of

66

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

components, subsystems and SBC on base of the QS-evolution or the
QS-MAS.

Stage 3. Temporary EGS- or MAS-analysis of special processes of
transformation of states, conditions, events, actions, markers in
functioning of components, subsystems and SBC on the base of Petri-
net-evolution or Petri-net-MAS.

17.4 Work related analysis

Development of loT and IoE systems was prepared by
improvement of formal methods, techniques and tools for designing
and the analysis of the distributed computer systems, Internet
technologies, technologies of Green computing and the
communications directed to resource-saving, functional safety and
information security, having business and social components in the
scientific, industrial and educational sphere.

Three-level system, behavioural, temporary modeling and
simulation of 10T and IoE systems widely uses the formalism of UML
diagrams, foundations of QS and Petri nets, elements of temporal logic
for verification of properties in processes of functioning of the
components and systems in general.

Formation and development of the tools of UML diagrams for the
description of static and dynamic processes of interaction of
components found reflection in works of Grady Booch, James
Rambaugh, lvar Jacobson. UML became one of new paradigms of the
object-oriented methods on the basis of development in fundamental
elements of the object model, such as abstraction with focus on
interface and separate consideration of behaviour and the
implementation, hierarchy as a way of ordering abstractions,
encapsulation like complementary to abstraction and modularity based
on a common “Divide and conquer” approach [5, 6].

I. Sander, J. Oberg from KHT, Sweden, presented the connection
between a framework dedicated to the enrichment of UML with formal
semantics, a framework based on formal models of computation
supporting validation by simulation, and a system synthesis tool
targeting a flexible platform with well-defined execution services [31].

67

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

UML enhances focus on modeling, and the UML diagrams gain
development for check of nonfunctional properties, including
requirements to performance and the dependability [7].

Queueing Theory is represented for common case of its
implementation in 10T and loE systems during their life cycle by using
of the QS-models. A number of elementary queueing models with
attention to methods for the analysis of these models, and also to their
applications, including production systems, transportation and stocking
systems, communication systems and information processing systems
important for 10T and IoE area is considered. Queueing models are
particularly useful for the design of these system in terms of layout,
capacities, control and verification [8].

Except elements of queueing theory are applied to providing of the
healthiness for modelling and availability assessment of mobile
healthcare 10T. Exponentially growing technology — Internet of Things
(1oT) in the field of healthcare is spoken about the networked
healthcare and medical architecture. Networked medical and healthcare
devices and their applications create an Internet of Medical Things for
better health monitoring and preventive care with the use of tree
analysis and queueing theory [9].

The use of state machines and the Petri nets for the analyses of
basic, component and interface functions, represented at the system and
structural-behavioral levels of the loT and IoE architecture is
considered for verification of its behavioral models [10, 11].

Extended automata and Petri nets, which support models and
methods in analyzing the functioning of the distributed systems are
important for research in behavior of the 10T and loE systems and their
components concerning the various aspects including processes of
specification, modeling, simulation and verification are represented in
[12, 13].

A. Yakovlev from New-Castle University, UK. considered
problematic circuit behaviour, such as potential hazards and deadlocks,
in a reasonable amount of time a technique. It is required which would
avoid exhaustive exploration of the state space of the system, this paper
presents a special type of Petri nets to represent circuits. An algorithm
for automatic conversion of a circuit netlist into a behaviourally
equivalent Petri net is proposed. Once the circuit Petri net is
constructed and composed with the provided environment specification,

68

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

the presence and reachability of troublesome states is verified by using
methods based on finite prefixes of Petri net unfoldings. The shortest
trace leading to a deadlock or a hazard in the circuit Petri net is mapped
back onto the gate-level representation of the circuit, thus assisting a
designer in solving the problem. The method has been automated and
compared against previously existing circuit verification tools [14].

Luca Ferrucci, Marcello M. Bersani and Manuel Mazzara describe
a business workflow case study with abnormal behavior management
and demonstrate how temporal logics and model checking can provide
a methodology to iteratively revise the design and obtain a correct-by
construction system [32].

Multi-agent and evolutionary approaches, genetic algorithms
applied for research in behavior of the 10T and IoE systems and their
components considered are examined in a point of the life cycle.
Genetic algorithms, the best-known technique in the area of
evolutionary computations, numerical optimization and various
applications of evolutions programs important for 1oT and IoE systems
are represented in [20 — 23].

The impact of the 10T and IoE systems on society, a problem of
dependable IoT development for human and industry, techniques of
modelling and the assessment for dependable and secure IoT,
implementation of loT for smart cities, business and industry
application are considered in [2, 30].

Conclusions and questions

The formation of a knowledge system of a formalized
description, analysis and synthesis of Internet of Things systems is
becoming an important part of the process of training specialists in the
field of computer science. Such formalization presupposes a formal
study of the models of the components of 10T and IoT as a whole, the
modeling and verification of their properties and the process of
functioning.

At the system behavioral level of 10T, research is carried out for
components, subsystems and 10T as a whole, taking into account their
structural, functional, informational, and interface features.

69

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

In this section, a three-level system, behavioral, and temporal
modeling and simulation of 10T systems is considered using UML
diagrams, QS and Petri nets, and time logic, respectively.

Visual modeling, simulation and verification of architectures for
IoT, IoE and loT SBC systems based on UML visual diagrams are
based on static diagrams that describe the static part of the architecture
in representing the structure, their components, component functions
and information objects, and intercomponent interfaces with their
formats conditions, events and means of processing, as well as on
dynamic diagrams, which are used to describe the dynamic part of the
architecture in an ordered, temporal representation of processes, their
synchronization and interaction of conditions, events and means of
processing.

Resource models of building, resource simulation and
verification of architectures for 10T, IoE and loT SBC systems based on
gueuing systems (QS) and queuing nets QS during the operation of loT
and IoE systems and their components, which is performed basic
architecture, its components, structure of topological interaction. In QS,
it is possible and appropriate to use a detailed description of the
processes for resources and their consumption in the loT and loE
systems, their components and the structure of the topological
interaction.

Behavioral models, simulation, correctness analysis, verification
and testing of architectures and processes for 10T, IoE and loT SBC
systems based on advanced state machines and Petri nets, that are
focused on the analyses of basic, component and interface functions,
presented at the system and structural-behavioral levels of the 10T and
IoE architecture.

In the process of such analysis, special evolutionary genetic
systems with evolutions, their genes, individuals, populations,
signatures of operations and relationships, and also multi-agent systems
with their agents, signatures of operations and relationships, properties
of autonomy, mobility, intellectuality, cooperativity are used for the
special behavior of automata and Petri nets in the life cycle of 10T and
IoE SBC.

The construction of temporal models, temporal simulation,
synchronization check and verification of 10T, IoE and loT SBC
systems are based on LTL and CTL temporal logic taking into account

70

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

time delays and synchronization features of 10T and IoE processes and
their components depending on the tasks they solve.

1. What can describe and model UML diagrams, SMS resource
models, automata and Petri nets, temporary logic?

2. What features distinguish tool environments Star UML, MS
Visual.NET (UML), ExtendSim Demo, CPN Tools, SPIN?

3. What and how to simulate UML diagrams?

4. What are the features of verification UML diagrams?

5. What are the features of static UML diagrams, which static
diagrams are used for visual analysis of 10T, IoE and IoT SBC?

6. What are the features of dynamic UML diagrams, which
dynamic diagrams are used for visual analysis of 10T, IoE and loT
SBC?

7. What components and QS types are applicable for IoT, IoE and
loT SBC analysis?

8. What and how can QS be modeled in 10T, IoE and loT SBC
systems?

9. What are the features of QS verification for 10T, IoE and loT
SBC systems?

10. What are the features of QS application at different levels of
loT, IoE and 10T SBC systems?

11. What and how do they allow to simulate automatons and Petri
nets in 10T, IoE and 10T SBC systems?

12. What are the features of verification and testing of machines
and Petri QS networks for 10T, IoE and loT SBC systems?

13. What is the difference between evolutionary and multi-agent
modeling and verification of automatics and Petri QS networks for IoT,
IoE and 10T SBC systems?

14. What and how do you model temporal models based on LTL
and CTL temporal logic in 10T, IoE and 10T SBC systems?

15. What are the features of synchronization and verification of
temporal models based on LTL and CTL temporal logic for 10T, IoE
and loT SBC systems?

71

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

References

1. Pallavi Sethi and Smruti R. Sarangi Internet of Things: Architectures,
Protocols, and Applications // Journal of Electrical and Computer Engineering
Volume 2017, Article ID 9324035, 25 p.
https://doi.org/10.1155/2017/9324035

2. Dependable 10T for Human and Industry: Modeling, Architecting,
Implementation, Vyacheslav Kharchenko, Ah Lian Kor, Andrzej Rucinski
(Eds), River Publishers Series in Information Science and Technology, 2018,
450 p.

3. Tara Salman Networking Protocols and Standards for Internet of
Things. — https://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html

4. Saber Talari, Miadreza Shafie-khah, Pierluigi Siano, Vincenzo Loia,
Aurelio Tommasetti and Jodo P. S. Cataldo. A Review of Smart Cities Based
on the Internet of Things Concept, Energies 2017, 10, 421. 23 p.
http://www.mdpi.com/1996-1073/10/4/421/pdf

5. Rambaugh James The unified modeling language reference manual —
2-nd edition / James Rambaugh, Ivar Jacobson, Grady Booch. Addison-
Wesley on Web: http://www.awprofessional.com Available from:
https://www.utdallas.edu/~chung/Fujitsu/UML_2.0/Rumbaugh--
UML_2.0_Reference_CD.pdf.

6. Grady Booch James Rumbaugh Ivar Jacobson The Unified Modeling
Language User Guide. Addison-Wesley Longman Inc., 1999. 391 p. Available
from: https://pdfs.semanticscholar
.org/fc51/1dcebd3dae76133d5dbbda4250bebd0fb5e3. pdf

7. Toledo Rodriguez F., Lonetti F., Bertolino A., Polo Usaola M., Pérez
L. B. Extending UML testing profile towards non-functional test modeling
Second International Conference on Model-Driven Engineering and Software
Development, pp. 488-497, Lisbon, 7 - 9 January 2014.

8. lvo Adan, Jacques Resing, Queueing Systems. Department of
Mathematics and Computing Science Eindhoven University of Technology,
March 26, 2015. 182 p. Available from:
https://www.win.tue.nl/~iadan/queueing.pdf

9. A, A Strielkina, D. D. Uzun, V. S. Kharchenko, A. H. Tetskyi.
Modelling and Availability Assessment of Mobile Healthcare 10T Using Tree
Analysis and Queueing Theory. In book: Dependable loT for Human and
Industry: Modeling, Architecting, Implementation, Vyacheslav Kharchenko,
Ah Lian Kor, Andrzej Rucinski (Eds.), River Publishers Series in Information
Science and Technology, 2018.

10. Javier Esparza Automata theory. An algorithmic approach. Lecture
Notes. August 26, 2017. 321 p. Available from:
https://lwww?7.in.tum.de/~esparza/autoskript.pdf

72

https://doi.org/10.1155/2017/9324035
https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html
http://www.mdpi.com/1996-1073/10/4/421/pdf
http://www.awprofessional.com/
https://www.utdallas.edu/~chung/Fujitsu/UML_2.0/Rumbaugh--UML_2.0_Reference_CD.pdf
https://www.utdallas.edu/~chung/Fujitsu/UML_2.0/Rumbaugh--UML_2.0_Reference_CD.pdf
https://openportal.isti.cnr.it/results?option=com_dnetindexclient&view=doc&id=people______::164d7a32a013309d53ae685e1f999028
https://www.win.tue.nl/~iadan/queueing.pdf
https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www7.in.tum.de/~esparza/autoskript.pdf

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

11. Y. Kondratenko, O. Kozlov, A. Topalov, O. Korobko, O. Gerasin.
Automation of Control Processes in Specialized Pyrolysis Complexes Based
on Industrial Internet of Things. In book: Dependable 1oT for Human and
Industry: Modeling, Architecting, Implementation, Vyacheslav Kharchenko,
Ah Lian Kor, Andrzej Rucinski (Eds.), River Publishers Series in Information
Science and Technology, 2018.

12. Jorg Desel, Javier Esparza Free Choice Petri Nets. Cambridge
University Press, Cambridge, 1995. 256 p. Available from:
https://www7.in.tum.de/~esparza/fcbook-middle.pdf

13. J. Kleijn and A. Yakovlev (Eds). Petri nets and Other Models of
Concurrency — ICATPN 2007, Lecture Notes in Computer Science, vol. 4546,
ISBN 978-3-54073093-4, Springer-Verlag, 2007, 515 p.

14. 1. Poliakov, A. Mokhov, A. Rafiev, D. Sokolov and A. Yakovlev.
Automated Verification of Asynchronous Circuits Using Circuit Petri Nets,
Proceedings of the 14th IEEE International Symposium on Asynchronous
Circuits and Systems, Newcastle upon Tyne, UK, April 2008, pp. 161-170.
DOI: 10.1109/ASYNC.2008.18

15. Daniel Shahaf Temporal Logics I: Theory. Tel-Aviv University
November 2007. P. 155. Available from: http://
www.cs.tau.ac.il/~annaz/teaching/TAU_winter08/Seminar/daniel.pdf

16. Patricia Bouyer Model-Checking Timed Temporal Logics. LSV —
CNRS & ENS de Cachan - France. 142 p. Available from:
http://www.lsv.fr/~bouyer/files/tfit08.pdf

17. For Programmer (UML diagrams in Visual Studio Feature Pack)
http://cc.ee.ntu.edu.tw/~farn/courses/BCC/NTUEE/2012.spring
/vs.uml.instruction.pdf

18. Dan Simon Evolutionary Optimization Algorithms. Biologically-
Inspired and Population-Based Approaches to Computer Intelligence. Wiley,
Cleveland State University, 2013. 727 p.
https://books.google.com.ua/books?hl=en&Ir=&id=gwUwIEPgk30C&oi=fnd
&pg=PP1&dg=computer+evolutionary-
genetic+systems+pdf&ots=GLm3DqUag2&sig=UeVaj6 EE41SAdXKgEUMM
Q6LtUyM&redir_esc=y#v=onepage&q=computer%20evolutionary-
genetic%20systems%20pdf&f=false

19. Yoav Shoham, Kevin Leyton-Brown Multiagent Systems.
Algorithmic, Game-Theoretic, and Logical Foundations. Revision 1.1. Shoham
and Leyton-Brown, 2010. 532 p. http://www.masfoundations.org/mas.pdf

20. A. Sugak, O. Martynyuk, O. Drozd. The Hybrid Agent Model of
Behavioral Testing, International Journal of Computing, 2015, Volume 14,
Issue 4, Ternopil, pp. 232-244.

73

https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www7.in.tum.de/~esparza/fcbook-middle.pdf
https://doi.org/10.1109/ASYNC.2008.18
http://www.lsv.fr/~bouyer/files/tfit08.pdf
http://cc.ee.ntu.edu.tw/~farn/courses/BCC/NTUEE/2012.spring%20/vs.uml.instruction.pdf
http://cc.ee.ntu.edu.tw/~farn/courses/BCC/NTUEE/2012.spring%20/vs.uml.instruction.pdf
https://books.google.com.ua/books?hl=en&lr=&id=gwUwIEPqk30C&oi=fnd&pg=PP1&dq=computer+evolutionary-genetic+systems+pdf&ots=GLm3DqUag2&sig=UeVaj6EE41SAdXKgEuMMQ6LtUyM&redir_esc=y#v=onepage&q=computer%20evolutionary-genetic%20systems%20pdf&f=false
https://books.google.com.ua/books?hl=en&lr=&id=gwUwIEPqk30C&oi=fnd&pg=PP1&dq=computer+evolutionary-genetic+systems+pdf&ots=GLm3DqUag2&sig=UeVaj6EE41SAdXKgEuMMQ6LtUyM&redir_esc=y#v=onepage&q=computer%20evolutionary-genetic%20systems%20pdf&f=false
https://books.google.com.ua/books?hl=en&lr=&id=gwUwIEPqk30C&oi=fnd&pg=PP1&dq=computer+evolutionary-genetic+systems+pdf&ots=GLm3DqUag2&sig=UeVaj6EE41SAdXKgEuMMQ6LtUyM&redir_esc=y#v=onepage&q=computer%20evolutionary-genetic%20systems%20pdf&f=false
https://books.google.com.ua/books?hl=en&lr=&id=gwUwIEPqk30C&oi=fnd&pg=PP1&dq=computer+evolutionary-genetic+systems+pdf&ots=GLm3DqUag2&sig=UeVaj6EE41SAdXKgEuMMQ6LtUyM&redir_esc=y#v=onepage&q=computer%20evolutionary-genetic%20systems%20pdf&f=false
https://books.google.com.ua/books?hl=en&lr=&id=gwUwIEPqk30C&oi=fnd&pg=PP1&dq=computer+evolutionary-genetic+systems+pdf&ots=GLm3DqUag2&sig=UeVaj6EE41SAdXKgEuMMQ6LtUyM&redir_esc=y#v=onepage&q=computer%20evolutionary-genetic%20systems%20pdf&f=false
http://www.masfoundations.org/mas.pdf

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

21. Zbigniev Michalewicz Genetic Algorithms + Data Structures =
Evolution Programs. Third Edition. / Springer, 1996. 388 np.
http://web.ist.utl.pt/adriano.simoes/tese/referencias/Michalewicz%20Z.%20Ge
netic%20Algorithms%20+%20Data%20Structures%20=%20Evolution%20Pro
grams%20%283ed%29.PDF

22. A. Sugak, O. Martynyuk, O. Drozd. Models of the Mutation and
Immunity in Test Behavioral Evolution, Proceedings of the 2015 8th IEEE
International Conference on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications, 2015, Warsaw, Poland, pp.
790-795.

23. 0. Martynyuk, A. Sugak, D. Martynyuk, O. Drozd. Evolutionary
Network of Testing of the Distributed Information Systems, Proceedings of the
2017 9th IEEE International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications, 2017,
Bucharest, Romania, pp. 888-893.
https://ieeexplore.ieee.org/document/8095215

24. ExtendSim. User Guide / Imagine That Inc. 2007. P. 808.
http://www.edgestone-it.com/papers/ExtendSim7_Manual.pdf

25. |. Skarga-Bandurova, M. Derkach, A. Velykzhanin, A Framework for
Real-Time Public Transport Information Acquisition and Arrival Time
Prediction Based on GPS Data. In book: Dependable IoT for Human and
Industry: Modeling, Architecting, Implementation, Vyacheslav Kharchenko,
Ah Lian Kor, Andrzej Rucinski (Eds.), River Publishers Series in Information
Science and Technology, 2018.

26. OMNeT++. Simulation Manual. Version 5.4.1 / Andras Varga and
OpenSim Ltd. 2016. 538 p.
https://www.omnetpp.org/doc/omnetpp/SimulationManual.pdf

27. Michael Westergaard CPN Tools / Eindhoven, 2010. — P. 46.
https://westergaard.eu/wp-content/uploads/2010/09/CPN-Tools.pdf

28. Anduo Wang Formal Analysis of Network Protocols. University of
Pennsylvania Department of Computer and Information Science Technical

Report No. MS-CIS-10-16. 2010. 32 p.
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1970&context=cis_re
ports

29. Daniel Camara Formal Verification of Communication Protocols for
Wireless Networks. Belo Horizonte, 20009. 136 p.
http://www.eurecom.fr/~camara/files/ThesisCamara_FormalVerification.pdf

30. A. Boyarchuk, V. Kharchenko, O. Illiashenko, D. Maevsky, C.
Phillips, A. Plakhteev, L. Vystorobska. Internet of Things for Human and
Industry Applications: ALIOT Based Curriculum. In book: Dependable loT
for Human and Industry: Modeling, Architecting, Implementation, Vyacheslav

74

http://web.ist.utl.pt/adriano.simoes/tese/referencias/Michalewicz%20Z.%20Genetic%20Algorithms%20+%20Data%20Structures%20=%20Evolution%20Programs%20%283ed%29.PDF
http://web.ist.utl.pt/adriano.simoes/tese/referencias/Michalewicz%20Z.%20Genetic%20Algorithms%20+%20Data%20Structures%20=%20Evolution%20Programs%20%283ed%29.PDF
http://web.ist.utl.pt/adriano.simoes/tese/referencias/Michalewicz%20Z.%20Genetic%20Algorithms%20+%20Data%20Structures%20=%20Evolution%20Programs%20%283ed%29.PDF
https://ieeexplore.ieee.org/document/8095215
http://www.edgestone-it.com/papers/ExtendSim7_Manual.pdf
https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www.omnetpp.org/doc/omnetpp/SimulationManual.pdf
https://westergaard.eu/wp-content/uploads/2010/09/CPN-Tools.pdf
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1970&context=cis_reports
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1970&context=cis_reports
http://www.eurecom.fr/~camara/files/ThesisCamara_FormalVerification.pdf

17. Three-Level Simulation of 10T/IoE Based Systems with the Use of UML Diagrams

Kharchenko, Ah Lian Kor, Andrzej Rucinski (Eds.), River Publishers Series in
Information Science and Technology, 2018.

31. P. I. Diallo, S.-H. Attarzadeh-Niaki, F. Robino, 1. Sander, J.
Champeau, J. Oberg. A formal, model-driven design flow for system
simulation and multi-core implementation. 10th [|EEE International
Symposium on Industrial Embedded Systems (SIES), 2015.

32. L. Ferrucci, M. M. Bersani, M. Mazzara. An LTL semantics of
business workflows with recovery. 9th International Conference on Software
Paradigm Trends (ICSOFT-PT), 2014.

75

https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology

18. Markov’s Modelling of 10T Systems

18. MARKOV’S MODELLING OF 10T SYSTEMS
DrS. Prof. V. S. Kharchenko, Dr., Ass. Prof. M. O. Kolisnyk (KhAI)

Contents
ADDIEVIALIONS ... e 77
18.1 Features of Markov’s modeling of IoT systemscccccovevnene 78
18.1.1 Principles of Markov’s and semi Markov’s modeling.............. 78
18.1.2 Features and assumptions for functionality modeling............... 79
18.1.3 Features and assumptions for availability modeling 81
18.1.4 Metrics and iNdICALOrScccererverieiieisisene e 83
18.2 Markov’s modeling of IoT systems reliability and availability... 85
18.2.1 TECANIGUE ..c.vveveeiectie ettt 86
18.2.2 Development of Models..........ccccooeieiiiiniiiiii e 88
18.2.3 Research of MOdelS.........ccovviiienieriiicssee e 90
18.3 Markov’s modeling of [oT systems cyber security and availability
... 93
18.3. 1 TECANIQUE ..o 93
18.3.2 Development of Markov model of loT system functioning 94
18.3.3 Research of MOdelS...........covvieieieiiici e 96
18.4 Semi Markov’s modeling of [0T Systems........cc.cceovrviieiiniennens 99
18.4.1 TECHNIGUE ..c.veeeeeiectee e e 99
18.5 Work related analysis 105
Conclusions and QUESLIONS..........cceruerierieieinisesie e 106
RETFEIBNCES ...t 107

76

18. Markov’s Modelling of 10T Systems

Abbreviations

DoS — Denial-of-Service

DDoS - Distributed Denial-of-Service
HMM — Hidden Markov Model
HSMM - Hidden Semi-Markov Model
0T — Internet of Things

MTBF - Mean Time Between Failures
MTTF - Mean Time to Failure

MTTR - Mean Time to Recover

NLP - Natural Language Processing
RUL - Remaining Useful Lifetime
SA - Service Available

SMR - Service May Recover

SMNR - Service May Not Recover
SNA - Service Not Available

TTF - Time to Failure

TTR - Time to Recover

7

18. Markov’s Modelling of 10T Systems

18.1 Features of Markov’s modeling of IoT systems

This section describes the features of Markov modeling in the
Internet of Things systems. This book is intended for MSc-, PhD-
students and engineers, who will be involved in design and
development of such integrated projects, so we will provide an
overview of the modeling of the function process of 10T system with
use of Markov models. This chapter covers the following topics:

- Principles of Markov’s and semi Markov’s modeling.
- Features and assumptions for functionality modeling.
- Features and assumptions for availability modeling.

- Metrics and indicators.

To start with, we will consider characteristics of the Big Data and
try to highlight the most important from the 10T point of view ones.

18.1.1 Principles of Markov’s and semi Markov’s modeling

The question of the expediency of using the theory of Markov
processes for solving one or another practical problem is determined,
first of all, by its content and the possibility of constructing for it a
Markov model, on the one hand, not very complicated, and on the other
- that adequately reflects the regularities that are inherent in the task.
The correct justification for the fundamental possibility of using the
Markov model is the first and very crucial stage in solving the problem.
The second stage, no less responsible, is to decide on the specific type
of Markov model to use and with which parameters. Of course, one can
formulate the problem differently - both as a continuous one and as a
discrete one. Models based on Markov chains are simpler and clearer
than models that use discrete or continuous Markov processes. In
addition, they are easier to model with the use of computer technology.
Therefore, if there are no compelling reasons to use other models,
Markov chains should be preferred. An important feature of the discrete
Markov process is the property of singularity, which means, in this
case, that the probability of transition to any new state for a short time
At is significantly less than the probability that the state remains
unchanged.

78

18. Markov’s Modelling of 10T Systems

18.1.2 Features and assumptions for functionality modeling

A Markov model [1] is a stochastic method for randomly changing
systems where it is assumed that future states do not depend on past
states. These models show all possible states as well as the transitions,
rate of transitions and probabilities between them.

Markov models are often used to model the probabilities of
different states and the rates of transitions among them. The method is
generally used to model systems. Markov models can also be used to
recognize patterns, make predictions and to learn the statistics of
sequential data.

There are four types of Markov models that are used situationally
[2]:

e Markov chain - used by systems that are autonomous and have
fully observable states.

o Hidden Markov model - used by systems that are autonomous
where the state is partially observable.

e Markov decision processes - used by controlled systems with a
fully observable state.

o Partially observable Markov decision processes - used by
controlled systems where the state is partially observable.

Markov models can be expressed in equations or in graphical
models. Graphic Markov models typically use circles (each containing
states) and directional arrows to indicate possible transitional changes
between them. The directional arrows are labeled with the rate or the
variable one for the rate. Applications of Markov modeling include
modeling languages, natural language processing (NLP), image
processing, bioinformatics, speech recognition and modeling computer
hardware and software systems.

Consider the random process X(t) in which the region T of
definition of an argument is a continuous set of points t € T, and the
space of states is a discrete set of points S, ®, €S, 1= 1...L. At any
random moments of time to<ti<... changes in the state may occur. Such
a process is a discrete random function.

Definition [2]. The discrete Markov process is called a discrete
random function for which the one-dimensional distribution function

79

https://whatis.techtarget.com/definition/stochastic
https://whatis.techtarget.com/definition/probability
https://searchwindowsserver.techtarget.com/definition/system
https://searchbusinessanalytics.techtarget.com/definition/natural-language-processing-NLP
https://searchoracle.techtarget.com/definition/bioinformatics
https://searchcrm.techtarget.com/definition/voice-recognition

18. Markov’s Modelling of 10T Systems

Fi(Xyita I Xgus Xy i lgaent g V= F (X0t I Xy g3t ay) -

Note: From the above equality it follows that the probability that
a random variable

P{x ity Xgss Xy ilgaenl oy }

will be taken value, provided that the random variables take values
X(tn), is determined by the equality xn € S if random values
X(to),. . .,X(tN.l).

Semi-Markov [3-7] is called a discrete random process X(t), one-
step transitions of which from the state ®; (j=1...L) to the state O
(j=L1...L) are described by the matrix II of the probabilities of one-step
transitions with the elements mjx, and the time of stay in the state T«
until the transition ®; to the state ®¢ by matrix F(t) of probability
density with elements fix(t) (fig. 18.1).

Remark 1. For the complete probabilistic description of the semi-
Markov process, in addition to the matrices I, we must set the initial
conditions, namely the state F(t) i ®; at the instant of time to.

Remark 2. A characteristic feature of the semi-Markov process is
that the matrices Il and F(t) do not depend on the behavior of the
process outside the considered steps.

N 7N P

. A A - 4
AN, /’} N TN
e 7 A -~ S
- N s "
- e / e y
/

- S Py S N

Start End

Fig. 18.1 — Semi-Markov model

Remark 3. If the term of stay in the states is a value T (with fik(t)
= 3(t-T¢), then the semi-Markov process at time points t=0, T, 2T. is a

80

18. Markov’s Modelling of 10T Systems

homogeneous Markov chain, which is called an embedded Markov
chain.

Remark 4. In general, the semi-Markov process is not Markov,
but it is proved that, in a particular case, the probability density fi(t)
(j=1...L) does not depend on the states ®; and ®x and are described by
the exponential function, fi(t) = v-exp(lt), v is a constant; the semi-
Markov process is a discrete Markov process.

18.1.3 Features and assumptions for availability modeling

loT systems combined with their high-availability requirements
means that these systems are more at risk of unintended, non-malicious
downtime [8-13]. When designing loT system, it is necessary to
provide the security of the operation and the reliability of hardware and
software components of the system. Understanding new
communication protocols, hardware types, and obscure operating
systems is difficult, making loT security an incredible challenge.

In the network equipment that used for the organization of loT
system, according to statistics, more and more vulnerabilities found in
software code. When exposed to hacker attacks via these vulnerabilities
can be stolen proprietary information of the company, and making
failure of the software and hardware components of network devices
and servers. Manufacturers proposes decisions on the release of patch,
redundancy of components to reduce the risks of vulnerabilities of
network equipment in loT. However, vulnerabilities are discovered
again and again, and the attacks translates them inoperable technical
condition. In order to provide network dependability of 10T, which
includes providing a high reliability and high safety at the required
level, it is necessary to develop a mathematical model for a more
accurate quantification.

Assumptions in the development of the model [14]:

estream hardware failures of the system obeys Poisson
distribution;

e the flow of failures of subsystems is subject to Poisson for-
grabs, as the results of monitoring and diagnostics, anti-virus software
testing corrected secondary error (the result of the accumulation of the
effects of primary errors and defects, bookmarks), and to fix a
malfunction or failure of software, eliminating or the consequences of

81

18. Markov’s Modelling of 10T Systems

software bookmarks and code vulnerabilities, DoS- and DDoS-attacks,
the number of primary software defects permanently. Therefore, the
assumption is true, that the flow of software failures obeys Poisson
distribution, the failure rate is constant;

o the model does not take into account that eliminating software
vulnerabilities and design faults changes the parameters of the flow of
failures (and recovering). To investigate the 10T system dependability
use the theory of Markov models, as the failure rates of hardware and
software and the availability of software vulnerabilities is constant.

Fig. 18.2 is a Markov graph of functioning of the main
subsystems of 10T system, A - the rate of failure or attack, u - the rate of
the recovery system.

The basic state of the system [14]:

1) Normal condition (up-state) system.

2) Failure due to faulty feeder from the stationary power supply
(220 V).

3) Failure due to a malfunction of the second feeder (a solar
battery).

4) Failure of the battery in the UPS.

5) Reconfigure the power subsystem;

6) Failure of the cable connecting the Router and Server.

7) Failure of the cable connecting the UPS and Switch, and / or
the Router, and / or Server.

8) Failure of the cable connecting the Router and Switch.

9) Firewall Denial.

10) Refusal Server due to a fault server components, or exposure
to attacks on the code server system software with vulnerabilities.

11) Failure Router as a result of failure of the router components,
or the impact of the attacks on the code of the router operating system
vulnerabilities.

12) Switch Failure due to a fault switch components, or exposure
to an attack on the system software code switch with the presence of
vulnerabilities.

13) Partial failure of the system due to the failure of cable
connecting any or multiple sensors and IP cameras.

14) Partial failure of the system due to the failure of any one or
more sensors and IP cameras.

82

18. Markov’s Modelling of 10T Systems

15) Failure of the system.
loT system availability function AC(t) is defined as the sum of
the probabilities of staying the system in an up-states:

AC(t) = Pa(t) + Ps(t).

Solving the system of Kolmogorov-Chapmen equations, can get
the value of the availability function components and SBS network, the
number of network failures due to software vulnerabilities, and how
and with what intensity the system is restored after such failures. It
follows that service availability, service continuity, cyber security, data
integrity, resilience and high dependability of software and hardware
should be inherent in 10T networks.

nis1

Fig. 18.2 — Markov’s graph of IoT system’s states
18.1.4 Metrics and indicators

Using a unified fail to recovery model that assumes time to failure
(TTF) and time to recover (TTR) are exponentially distributed for all
the three cases. Suppose once the system becomes operational, it takes
certain time to fail again. The average time it takes the system to fail is
called MTTF (mean time to failure). Once the system fails it takes

83

18. Markov’s Modelling of 10T Systems

certain time to recover from failure and return to operational state. The
average time it takes for the system to recover is called MTTR (mean
time to recover). The average time between failures is called MTBF
(mean time between failures) and can be written as

MTBF = MTTF + MTTR, (18.1)

shown in table 18.1.
Availability is defined as the fraction of time that a component is
operational [15].

Table 18.1 — Metrics for loT systems maintenance

Category Parameter Metrics
Design Inherent Reliability MTBF
Fault Detection & Isolation CND
RTOK
Scheduled Maintenance MTBPM
My
Maintainability MTTR
Maintenance Maintenance Workforce No. of Maintainers
Infrastructure I'g) oo Availability MALDT
Administration Time
Operation Remote Maintenance Premote

Metrics: Service Available (SA), Service May Recover (SMR),
Service May Not Recover (SMNR), Service Not Available (SNA) use
for description of cloud availability in 10T infrastructure.

In all such cases the service requests may encounter unavailable
web service. But it may happen that in next interval some of the
services may be available after QoS satisfaction. Hence two more status
is introduced known as Service may recover and Service may not
recover.

Service Available (SA): This status indicates that the service is
running stable and no invocation failure has happened, for these
requests. Service May Recover (SMR): This status indicates that the
service is not currently available, but chances are there to recover it,

84

18. Markov’s Modelling of 10T Systems

because this unavailability is not due to failure but it is due to
incompliance of QoS metrics by the controller. Service May Not
Recover (SMNR): This status indicates that the service is not currently
available, but chances are less for recovery.

Service Not Available (SNA): this status indicates that service is
down due to a specified reason. In this approach the metrics
computation is based on invocation of records, the model is simple, and
in this model the short term down is further divided in two sub
categories SMR and SMNR.

Just as inherent reliability can impact operational performance,
maintainability metrics can also have a large impact. These metrics can
include Mean Time to Repair (MTTR), Mean Time to Fault Isolate,
Mean Administrative Logistics Delay Time (MALDT), and wait times.
Maintainability issues can be addressed in a fielded system, whereas
inherent reliability is typically a design function and subject to
engineering improvements only in extreme cases of substandard
performance. Maintainability can be improved by increasing
maintenance resources such as manpower, spares, and repair locations
and by improving the maintenance concept and maintenance decisions.
Unlike design and production efforts to improve inherent reliability,
each of these comes at a significant annual recurring cost.

The metric estimation - it’s a three step approach [15]:

1) Calculate the success percentage for each sequence.

2) Calculate the weighted average of success rates for status
SMR and SMNR.

3) Calculate the time percentage for each status.

18.2 Markov’s modeling of IoT systems reliability and
availability

When designing the Internet of things system, it is necessary to
consider and ensure its reliability and cyber security. To assess the
reliability indicators, the section discusses the features of the
application of the Markov models mathematical apparatus. Chapter
consists of such topics:

1) Technique.

2) Development of models.

3) Research of models.

85

18. Markov’s Modelling of 10T Systems

18.2.1 Technique

Graphical Markov models provide a method of representing
possibly complicated multivariate dependencies in such a way that the
general qualitative features can be understood, that statistical
independencies are highlighted, and that some properties can be derived
directly. Variables are represented by the nodes of a graph. Pairs of
nodes may be joined by an edge. Edges are directed if one variable is a
response to the other variable considered as explanatory, but are
undirected if the variables are on an equal footing. Absence of an edge
typically implies statistical independence, conditional, or marginal
depending on the kind of graph. The need for a number of types of
graph arises because it is helpful to represent a number of different
kinds of dependence structures. Of special importance are chain graphs
in which variables are arranged in a sequence or chain of blocks, the
variables in any one block being on an equal footing, some being
possibly joint responses to variables in the past and some being jointly
explanatory to variables in the future of the block considered. Some
main properties of such systems are outlined, and recent research
results are sketched. Suggestions for further reading are given. As an
illustrative example, some analysis of data on the treatment of chronic
pain is presented.

Types of Markov models [2]:
1) Homogeneous CTMCs (Fig. 18.3).

2ch

Fig. 18.3 — Homogeneous Markov model

86

18. Markov’s Modelling of 10T Systems

- Simplest, most commonly used.

- Markov property always holds.

- Transition rates are constant.

- State holding times are exponentially distributed.

- "Memoryless Property” - time to next transition is not
influenced by the time already spent in the state.

2) Non-homogeneous CTMC (Fig. 18.4).

2cA(1)

Fig. 18.4 — Non-homogeneous Markov model

- more complex;

- Markov property always holds;

- transition rates are generalized to be functions of time -
dependent on a "global clock".

The control system example may again be used to illustrate the
difference between a semi-Markov model and the previous two types of
Markov models. Assume that the failure rate of a processor is again
constant. Now, however, assume that the repair duration is a function of
the time f(t) that the processor has been under repair. The state-
transition diagram for the resulting semi-Markov model is shown in the
slide. It is identical to that for the homogeneous CTMC case except that
the repair transition rate is a function of the time z that the processor
has been under repair (i.e. the time that the system has been in state [3-
7]). Semi-Markov models require the most computational effort of all
the Markov model types to solve. They are often produced when
detailed fault/error handling is included in a Markov model. This is the
case because non-constant transitions between states that model fault
handling often depend on the time elapsed since the fault occurred and
handling/recovery commenced rather than on the elapsed mission time.

87

18. Markov’s Modelling of 10T Systems

18.2.2 Development of models

Based on the analysis of standard solutions for the
implementation of 10T system is proposed the wired architecture of the
network. Using for 10T system Internet wire network devices are: router
with Ethernet-ports and wireless access ability, softswitch the second
layer, firewall, power block, server with control software, IP-camera,
sensors, cables [8-13]. The system can operate as a standalone or with
Internet connection.

Assumptions for the developed Markov model of 10T system
availability are the following [16]:

- the flow of hardware system failures obeys the Poisson
distribution law;

- there is reserve of the server and the router;

- failures caused by software design faults of loT system
subsystems obeys Poisson distribution, as on the results of monitoring
and diagnostics, testing corrected secondary error (the result of the
accumulation of the effects of primary errors and defects, software
backdoors) to fix a malfunction or failure of the software, remove of
impacts on software wvulnerabilities, DoS- and DDoS-attacks, the
number of primary defects in the software permanently;

- the process, which occurs in the system, it is a process without
aftereffect, every time in the future behavior of the system depends
only on the state of the system at this time and does not depend on how
the system arrived at that state.

Therefore, the process has the Markov property. The mode of the
server when software system shutdown and startup cycles in this model
S4 is absent, because in this mode it is impossible to manage the server
remotely.

A Markov model of IoT system subsystems functioning
represented on fig.18.2.3, considering DDoS-attacks and energy modes
of server and router, which has the following states [17-24]: good-
working state (1); the server is fully used with high power consumption
state (2); the server is fully used, the hardware, that are not used, can
enter the low-power mode S1 (3); sleep mode of the server with low
power consumption, a computer can wake up from a keyboard input, a
LAN network or USB device S2 (4); server appears off, power
consumption is reduced to the lowest level S3 (5); server failure (6);

88

18. Markov’s Modelling of 10T Systems

switching to the backup server device after the server failure (7);
restarting the server software after the software fault (8); successful
DDoS-attack on the server after the firewall failure (9); firewall
software or hardware failure (10); attack on the power supply system
after the firewall failure, that lead the failure of general power system
of 10T system (11); technical condition of switch from the general
power system after its failure on the alternative energy sources (solar,
diesel generator, wind turbine) (12); router status active - sending
packages with high power consumption (13); DDoS- successful attack
on the router (14); good-working state of the router without
transmitting packets - Normal Idle (15); good-working state of the
router without packet transmission Low-Power Idle (16); router
software or hardware failure (17); server software or hardware fault
(18); router hardware or software fail (20); switching to the backup
router device after the router failure (21); restarting the router software
after the router software fault (22).

A system of linear differential equations of the Kolmogorov-
Chapmen composed and solved in the paper with the initial conditions:

22 Pi(t)=1,i=1...22,P1(0) = 1. (18.2)

An important indicator of loT system dependability under the
influence of different kinds of DDoS-attacks is the availability factor.
As an index of 10T system reliability we choose availability function
AC(t), that is defined as the sum of the probabilities of staying the
system in an up-states. Availability function AC(t) is determined from
equation:

AC(t) =P1(t)+P2(t)+P3(t)+P4(t)+P5(t)+P12(t)+P13(t)+
+P15(t)+P16(t), (18.3)

where Pi(t) — probability of good condition loT system
components.

Solving the system of Kolmogorov-Chapmen equations, we can
get the value of the availability function components and 10T system
after successful DDoS-attacks and with considering energy modes of
the server and the router. It follows that service availability, service
continuity, cyber security, data integrity, resilience and high

89

18. Markov’s Modelling of 10T Systems

dependability of software and hardware should be inherent in loT
networks.

Fig. 18.5 — A Markov model of IoT system’s general subsystems
functioning

18.2.3 Research of models

On the basis of the analysis of statistical data we assess the main
indicators of dependability - AC and built a graph shown in Fig. 18.2.4-
18.2.6. As an example, we give graphical dependencies for different
technical states of the server. We constructed the dependence of the
system availability function (we denote it AC) from the transitions rates
to different states (Aij, aij, vij, where i = 1...22 j = 1...22), which
depend on events occurrence time. The analysis of the Markov’s model
simulation results shows decreases the value of SBC availability
function AC with increase of:

90

18. Markov’s Modelling of 10T Systems

- the transition rate A218 from an active-power mode of the
server 2 to a state of the server fail 18 (Fig. 18.8);

- the transition rate 1317 from active-power mode of the router
13 to a state of the router failure 17 (Fig. 18.6);

- the transition rate A26 from server’s active-power mode 2 to a
state of the server failure 6 and the transition rate A36 from server’s
low-power mode 3 to a state of the server failure 6 (Fig. 18.7).

Fig. 18.6 — Graph of dependence of SBC AC on the transition
rate 11317 from active power state of the router 13 to a state of the
router failure 17

Increase the transition rate from a good state of a server with full
power consumption 2 to a server failure state 6 (A26); from a good state
of a server with a reduced power consumption 3, to the server's failure
state 6 (A36) results to AC decrease. With an increase of the transition

rate from a good state 1 to a state with full power consumption 2 (A12),
increase the nominal value of AC(t).

91

18. Markov’s Modelling of 10T Systems

Fig. 18.7 — Graph of dependence of SBC AC on the transition rate 126
from active power state of the server 2 to a state of the server failure 6
and the transition rate 236 from server’s low-power mode 3 to a state of
the server failure 6 if 212=30 1/hour; u61=0,02083 1/hour; u67=60
1/hour; u71=20 1/hour

Fig. 18.8 — Graph of dependence of SBC AC on the transition rate 2218
from active power state of the server 2 to a state of the server fail 18

Moreover, at a high rate of the transition from the failure state of
the server 6 to the working state 1 (p61), and also to the reconfiguration
state 7 (67), a smoother change in the availability function is observed
than values of p61, pu67 are low. Moreover, at a high transition rate
from the server failure state 6 to the working state 1 (61), and also to
the reconfiguration state 7 (67), a smoother change in the availability

92

18. Markov’s Modelling of 10T Systems

function is observed than at low values of p6l, p67. With the
transitions rates A12=30 1/hour; pn61=0,02083 1/hour; u67=60 1/hour;
p71=20 1/hour — the value of AC with 226=0,004 1/hour is about equal
to 0,9999340. If A12=100000 1/hour; n61=20 1/hour; H67=1000
1/hour; p71=50 1/hour availability function value with A26=0,004
1/hour is equal to 0,9999650. Therefore, it is necessary to choose such
values of SBC parameters at which the availability factor of the
proposed system for any changes in parameters taking into account the
power consumption modes and under states of DoS- and DDoS-attacks
will not change significantly. Reducing the availability function when
increasing the transition rate from a good state with a high power
consumption of the server into a software fail mode occurs due to the
impact of external influences (DoS- and DDoS-attacks), and because of
internal causes associated with defects in the software and/or hardware
of the server. The initial value of the AC is less than 1 when the
transition rate from state 9 to state 2 (A92) changes (by the DoS- and
DDoS-attacks influence on the state of the server with high power
consumption if there is a vulnerability in the server firewall), because
the AC is influenced both by external influences (attack), and internal
causes (defects of software and/or hardware). With the increase in the
attack flow to the server through the firewall vulnerability, it is
perceived as a simple increase in the flow of data to the server, which
leads to the server's transition into a good state of high energy
consumption. With a further increase in A92, the change in AC
function. Under the influence of DDoS-attacks, the server, which is in
one of the energy saving modes, will switch to the mode of increased
power consumption. The practical significance of the results is the
following. They allow to assess the availability factor and to develop
recommendations for the IoT system design for reduce the
vulnerabilities of the software.

18.3 Markov’s modeling of IoT systems cyber security and
availability

18.3.1 Technique

When organizing IoT system, it is necessary to take into account
the security, reliability of software and hardware of its components and
their energy consumption modes [16-24]. The Markov model proposed

93

18. Markov’s Modelling of 10T Systems

in [16], describes the process of 10T system functioning taking into
account the attack on the system and the various power modes of the
server and the router. Assumptions taken to construct and research the
advanced 10T system availability model assume a Poisson flow of
failure distribution of hardware and software of the loT system
components and allow the apparatus of Markov random processes to be
used to estimate its availability. The means of control and diagnostics,
as well as the means of switching to backup units, are considered ideal
(they correctly identify the failed units and perform the switching to
serviceable ones).

18.3.2 Development of Markov model of loT system
functioning

The description of the states of the improved model (Fig. 18.9) is
similar to [16]. The improved Markov model of IoT system availability
presented in Fig. 18.9 [25] takes into account the possibility of
successful attacks on the router, the transition of the server and the
router to different energy modes, and the installation of software
patches on the vulnerability of the router's firewall without new
vulnerabilities.

For the Markov model, systems of Kolmogorov-Chapman
equations with initial conditions [19]:

P1(0) = 1. (18.4)

The sum of the probabilities of finding the system in each of the
states is 1.

94

18. Markov’s Modelling of 10T Systems

Fig. 18.9 — A graph of a Markov model of SBC systems functioning
when installed patches on the router firewall and server firewall

To assess the loT system availability with the conditions of
external factors, such as various attacks on the router, the availability
factor AC was chosen, the value of which for 10T system is defined as
the sum of the probabilities of such systems being in good working
states:

AC = P1(t)+P2(t)+P3(t)+P4(t)+P5(t)+P12(t)+ P13(t)+P15(t)+
P16(t)+P21(t). (18.5)

Pi(t) — probability of operable IoT system states.

95

18. Markov’s Modelling of 10T Systems

18.3.3 Research of models

Fig. 18.10 shows the graphical dependence of the AAC with a
change in the rate transition 1317, which is determined by the
difference in the values of AC loT system using a patch on the router's
firewall and the AC loT system without a patch. Fig. 18.11 shows the
graphical dependencies of AAC1, determined by the difference in the
values of AC loT system if A1517 changing with installation of patch
on router firewall software and AC loT system without a patch, and
AAC2, determined by the difference in the values of IoT system’s AC if
11617 changing with installation of patch on router firewall software
and IoT system’s AC without a patch (Fig. 18.12). Analysis of changes
in [oT system’s AC when installing a patch on the vulnerabilities of the
router software firewall showed: the router's transition rate from the
Active state (13) to the router's failure state (17) varies slightly
AAC=6-10° 1/hour (Fig. 18.10, Fig. 18.11). This is explain by loading
the router if impacts an attack without a software firewall patch at low
transition rates A1317=0...2-10® 1/hour is close to loading the router in
the active mode if there is a patch, since attacks impacts on the router
gradually, first simulating the active mode of the router; the transition
rate from the Normal (15) state to the router's failure state (17) varies
from AAC1=2,90525-105...2,90448-10° if 11517 =0...0,0001 1/hour
(fig. 18.3.5); the transition rate from the Low (16) state to the router
failure state (17) varies from AAC2=2,9048.10°...2,9027-10° if
A1617=0...0,0001 1/hour (fig. 18.13).

The research showed that the timely establishment of a patch on
the vulnerability of the router's firewall makes it possible to increase
the value of IoT system’s AC.

To assess loT system availability, the Markov model was
improved and researched, taking into account the impact of successful
cyber-attacks on the loT system, failures and fails of hardware and
software components 10T system, the transition of the router in modes
of reduced power consumption, patching the vulnerabilities of the
router firewall software.

96

18. Markov’s Modelling of 10T Systems

1,00000000

0,99999998

0,99999980
0,0000000 0,0000005 0,0000010 0,0000015 0,0000020

1317, 1/hour

Fig. 18.10 — Dependencies of IoT system’s AC from the
transition rate 1317 with the installation of patches on the router
firewall and without patches

0,999995
B+
0,999985
0,999980
og9ge97s | e witha pa
0,999970

0,999965

0,999960
0,00000 0,00002 000004 0,00006 000008 0,00010
A1517, 1/hour

Fig. 18.11 — Dependencies of IoT system’s AC from the
transition rate A1517 with the installation of patches on the router
firewall and without patches

The study showed that installing the patch on the router's firewall
when it is operating in the Active mode has little effect on changing of
the loT system AC with the patch installed. When the router is
operating in low power mode, the I0T system availability increases by
an order of magnitude when installing the patch on the router firewall
software vulnerabilities, compared to the 10T system AC value without
a patch.

97

18. Markov’s Modelling of 10T Systems

0,9939950

0,9999900

0,9999850

0,9999800
g

0,9999750

0,9995700

0,9999650

0,9999600
0,00000 0,00002 0,00004 0,00006 0,00008 0,00010
41617, 1/hour

Fig. 18.12 — Dependencies of 10T system’s AC from the
transition rate 11617 from LP_IDLE state in the failure state with the
installation of patches on the router firewall and without patches

0,000029055
0,000029050
0,000029045
O
<4t 0,000029040 —o— delta ACL
= delta AC2

0,000029035

0,000029030

0,000029025
0,00000 0,00002 0,00004 0,00006 0,00008 0,00010

A, 1/h

Fig. 18.13 — Dependencies of IoT system’s AAC1 and AAC2

98

18. Markov’s Modelling of 10T Systems

18.4 Semi Markov’s modeling of 10T systems
18.4.1 Technique

The semi-Markov processes were introduced independently and
almost simultaneously by P. Levy, W. L. Smith and L. Takacs in 1954—
1955. The essential developments of semi-Markov processes theory
were proposed by R.Pyke, E. Cinlar, Koroluk, Turbin, N. Limnios and
G. Oprisan, D. C. Silvestrov. We present only semi-Markov processes
with a discrete state space. A semi-Markov process (Fig.18.14) is
constructed by the Markov renewal process which is defined by the
renewal kernel and the initial distribution or by another characteristics
which are equivalent to the renewal kernel [2-7].

Suppose that N = {1,2,...}, NO={0,1,2,...}, R+=[0,00) and
S is a discrete (finite or countable) state space. Let be a discrete
random variable taking values on and let be a continuous random
variable with values in the set R+.

Definition 1. A two-dimensional sequence of random variables
{(én,9n): n € NO} is said to be a Markov Renewal Process (MRP) if:
1) foralln e NO, j€S, teR+ Plntl=jInt+tl <t|én=
,9n,...£0,90) = P(én+1l = jIn+1 < t | &n = i) (1) with probability 1; 2)
forall ijesS, P(£0=i90=0)=P(é0=1).(2) From the definition 1
it follows, that MRP is a homogeneous two-dimensional Markov chain
such that its transition probabilities depend only on the discrete
component (they do not depend on the second component). A matrix
Q(t) = [Qij(t): ij €S (3) Qij(t) = PEn+l = jIn+l <t|én = i)
is called a renewal matrix. A vector p = [pi: i € S], where pi=
P{&0 = i} defines an initial distribution of the Markov renewal
process. It follows from the definition 1 that the Markov renewal matrix
satisfies the following conditions:

1. The functions (t), t>0, (i,) €S x S are not decreasing and
right-hand continuous.

2. For each pair (i,)) e SxS, Qij(0)=0 and Qij(t)<1 for t
€ R+.3. Foreach i€ S, limt—ow Y ES (t)=1. One can prove that
a function matrix (t) =[(¢t): i,j € S] satisfying the above mentioned
conditions and a vector pO=[pi (0): i €S] such that }i€S pi (0) =
1 define some Markov renewal process. From definition of the renewal
matrix it followsthat =[: ij€S], pij=Ilimt—ow Qij(t) (4)isa

99

18. Markov’s Modelling of 10T Systems

stochastic matrix. It means that for each pair (i,) € S xS pij >0 and
foreach i€ S, >jeS pij=1.
It is easy to notice that for each i€ S

(t) =2J€S Qij (t) (18.6)

is a probability cumulative distribution function (CDF) on R+.
The definition 1 leads to the interesting and important conclusions (90
= 0) = 1. For a Markov Renewal Process with an initial distribution p0
and a renewal kernel (t), t >0 a following equality is satisfied

P(60=i0,61=i191 <tl,...én=indn <tn)=
pi0Qi0i1(£1)Qili2(¢2)...Qin—lin(tn). (18.7)

For tl1 — o,..., — 00, we obtain

(60=1i0,1=1i1,....6n = in) = piOpiOilpili2 ...pin—1lin. (18.8)

It means that a sequence {én: n € NO} is a homogeneous
Markov chain with the discrete state space S, defined by the initial
distribution p =[pi0: i0 € S] and the transition matrix

P =[Pij: i,j €S], where pij=Ilimt—o Qij(t). (18.9)

The random variables 91,..., are conditionally independent if a
trajectory of the Markov chain {én: n € NO} is given. It means that

W1<tl,2<t2...9n<tn|é0=i0,é1=il,...én=in) =
=[1r=1 POk < tk|ék = ik, ék—1 = ik —1). (18.10)

The Markov renewal matrix (t) = [(t): ij € S] is called
continuous if each row of the matrix contains at least one element
having continuous component in the Lebesgue decomposition of the
probability distribution. The matrix (t) = [(t):i, € S] with elements
(t) = pijGi(t), i€S, where

P(d) = c[Loo)(t) + (1 —) f, hy Wdu, c € (0,1), pij =0,

100

18. Markov’s Modelling of 10T Systems
YjeS pij=1

and hi(-) is a continuous probability density function, is an
example of the continuous Markov renewal matrix.

The Markov renewal matrix Q(t) = [Qij(t):ij € S] with
elements Qij(t) = pijI[1,0)(t), i€ S, where pij >0, YjeSpij=1
is not continuous Markov renewal matrix. Moreover, in the whole
paper we will assume that the Markov renewal matrix (t) = [(¢): i,j €
S] s continuous. Let 0 =90, m=91+392+ -+ 9n,n e NO,
(10) too = lim n—oo tn = sup{tn: n € NO}. The sequence {(én,tn):n
€ NO} is two-dimensional Markov chain with transition probabilities
P(én+tl=jnt+t1 <t | én=in=h)=Qij(t—h), ij€eS (11)and
itis also called Markov Renewal Process (MRP) Koroluk.

Hidden Markov Models (HMMSs) basically represent Bayesian
networks triggered to collect contextual information based on scanty
approach data in order to recognize possible threats or conducts that
may turn abusive. HMMs in other words can be described as a doubly
stochastic embedded network for identifying threats based on visual
appearances and verbal conversations (Fig. 18.1).

Predictive models that are able to estimate the current condition
and the Remaining Useful Lifetime of an industrial equipment are of
high interest, especially for manufacturing companies, which can
optimize their maintenance strategies.

If we consider that the costs derived from maintenance are one of
the largest parts of the operational costs and that often the maintenance
and operations departments comprise about 30% of the manpower, it is
not difficult to estimate the economic advantages that such innovative
techniques can bring to industry. Moreover, predictive maintenance,
where in real time the Remaining Useful Lifetime (RUL) of the
machine is calculated, has been proven to significantly outperforms
other maintenance strategies, such as corrective maintenance. In this
work, RUL is defined as the time, from the current moment, that the
systems will fail. Failure, in this context, is defined as a deviation of the
delivered output of a machine from the specified service requirements
that necessitate maintenance [3-7].

101

18. Markov’s Modelling of 10T Systems

Hidden o /\ o
states Q U S
Observation $ % jg
probabilities

P(0/s,) P(0/s,) P(0/s;)

Observed Observed Observed

Sojourn
probabilities

dy () dy () dy ()

/!
\ /o
- /)

Time (1) Time (u) Time (1)

Fig. 18.14 — Hidden Semi-Markov model

Models like Support Vector Machines, Dynamic Bayesian
Networks, clustering techniques, and data mining approaches have been
successfully applied to condition monitoring, RUL estimation, and
predictive maintenance problems. State space models, like Hidden
Markov Models (HMMs), are particularly suitable to be used in
industrial applications, due to their ability to model the latent state
which represents the health condition of the machine.

Classical HMMs have been applied to condition assessment;
however, their usage in predictive maintenance has not been effective
due to their intrinsic modeling of the state duration as a geometric
distribution.

To overcome this drawback, a modified version of HMM, which
takes into account an estimate of the duration in each state, has been
proposed in the works of Tobon-Mejia et al. Thanks to the explicit state
sojourn time modeling, it has been shown that it is possible to
effectively estimate the RUL for industrial equipment. However, the
drawback of their proposed HMM model is that the state duration is

102

18. Markov’s Modelling of 10T Systems

always assumed as Gaussian distributed and the duration parameters are
estimated empirically from the Viterbi path of the HMM.

A complete specification of a duration model together with a set
of learning and inference algorithms has been given firstly by Ferguson.
In his work, Ferguson allowed the underlying stochastic process of the
state to be a semi-Markov chain, instead of a simple Markov chain of a
HMM. Such model is referred to as Hidden Semi-Markov Model
(HSMM). HSMMs and explicit duration models have been proven
beneficial for many applications. A complete overview of different
duration model classes has been made by Yu [3]. Most state duration
models, used in the literature, are nonparametric discrete distributions
[4-7]. As a consequence, the number of parameters that describe the
model and that have to be estimated is high, and consequently the
learning procedure can be computationally expensive for real complex
applications. Moreover, it is necessary to specify a priori the maximum
duration allowed in each state.

To alleviate the high dimensionality of the parameter space,
parametric duration models have been proposed. For example, Salfner
proposed a generic parametric continuous distribution to model the
state sojourn time. However, in their model, the observation has been
assumed to be discrete and applied to recognize failure-prone
observation sequence. Using continuous observation, Azimi et al.
specified an HSMM with parametric duration distribution belonging to
the Gamma family and modeled the observation process by a Gaussian.

Inspired by the latter two approaches, in this work we propose a
generic specification of a parametric HSMM, in which no constraints
are made on the model of the state duration and on the observation
processes. In our approach, the state duration is modeled as a generic
parametric density function. On the other hand, the observations can be
modeled either as a discrete stochastic process or as continuous mixture
of Gaussians. The latter has been shown to approximate, arbitrarily
closely, any finite, continuous density function. The proposed model
can be generally used in a wide range of applications and types of data.
Moreover, in this paper we introduce a new and more effective
estimator of the time spent by the system in a determinate state prior to
the current time. To the best of our knowledge, a part from the above
referred works, the literature on HSMMs applied to prognosis and
predictive maintenance for industrial machines is limited. Hence, the

103

https://www.hindawi.com/journals/mpe/2015/278120/#B26

18. Markov’s Modelling of 10T Systems

present work aims to show the effectiveness of the proposed duration
model in solving condition monitoring and RUL estimation problems.

Dealing with state space models, and in particular of HSMMs,
one should define the number of states and correct family of duration
density, and in case of continuous observations, the adequate number of
Gaussian mixtures. Such parameters play a prominent role, since the
right model configuration is essential to enable an accurate modeling of
the dynamic pattern and the covariance structure of the observed time
series. The estimation of a satisfactory model configuration is referred
to as model selection in literature.

While several state-of-the-art approaches use expert knowledge
to get insight on the model structure an automated methodology for
model selection is often required. In the literature, model selection has
been deeply studied for a wide range of models [2-7]. Among the
existing methodologies, information based techniques have been
extensively analyzed in literature with satisfactory results. Although
Bayesian Information Criterion (BIC) is particularly appropriate to be
used in finite mixture models, Akaike Information Criterion (AIC) has
been demonstrated to outperform BIC when applied to more complex
models and when the sample size is limited, which is the case of the
target application of this paper.

In this work AIC is used to estimate the correct model
configuration, with the final goal of an automated HSMMs model
selection, which exploits only the information available in the input
data. While model selection technigues have been extensively used in
the framework of Hidden Markov Models, to the best of our
knowledge, the present work is the first that proposes their appliance to
duration models and in particular to HSMMs [4-7].

In summary, the present work contributes to condition
monitoring, predictive maintenance, and RUL estimation problems by
(i) proposing a general Hidden Semi-Markov Model applicable for
continuous or discrete observations and with no constraints on the
density function used to model the state duration; (ii) proposing a more
effective estimator of the state duration variable , that is, the time spent
by the system in the next state, prior to current time; (iii) adapting the
learning, inference and prediction algorithms considering the defined
HSMM parameters and the proposed estimator; (iv) using the Akaike
Information Criterion for automatic model selection.

104

18. Markov’s Modelling of 10T Systems

Hidden Semi-Markov Models (HSMMs) introduce the concept
of variable duration, which results in a more accurate modeling power
if the system being modeled shows a dependence on time.

In this section we give the specification of the proposed HSMM,
for which we model the state duration with a parametric state-
dependent distribution. Compared to nonparametric modeling, this
approach has two main advantages: (i) the model is specified by a
limited number of parameters; as a consequence, the learning procedure
is computationally less expensive;(ii)the model does not require the a
priori knowledge of the maximum sojourn time allowed in each state,
being inherently learnt through the duration distribution parameters.

A Hidden Semi-Markov Model is a doubly embedded stochastic
model with an underlying stochastic process that is not observable
(hidden) but can only be observed through another set of stochastic
processes that produce the sequence of observations. HSMM allows the
underlying process to be a semi-Markov chain with a variable duration
or sojourn time for each state. The key concept of HSMMs is that the
semi-Markov property holds for this model: while in HMMs the
Markov property implies that the value of the hidden state at
time depends exclusively on its value of time, in HSMMs the
probability of transition from state to state at time depends on the
duration spent in state prior to time.

18.5 Work related analysis

Nowadays there are many projects, which describes and
researches 10T systems.

Smart Vehicle features shown by the Volvo Car Group company,
working on new car projects - exchange of information about the
dangers on the road through the "cloud" and control of the driver's state
[17].

Toyota Motor Corp. and Panasonic jointly develop a service that
will connect cars and home appliances through the 10T [18].

The project PRORETA [19] is a research in the area of the
cooperative HMIs. The research object is the prototype of the
cooperative automobile HMI that implements the scenarios of
preventing collisions at the cross-roads.

105

18. Markov’s Modelling of 10T Systems

The PRORETA HMI system implements a huge number of use
scenarios, it does not complicate or irritate and ensures the multimode
support.

The HMI provides 4 support levels — information messages,
warnings, actions recommendations, automatic intervention.

A lot of EU universities including ALIOT project partners
conduct research and implement education MSc and PhD programs in
the Internet of Things application for transport and other domains.
Development of cooperative HMI for cloud and loT systems based on
analysis of these programs and providing some of the educational
topics and research directions.

In particular, the following courses and programs have been
considered:

- Coimbra University, Portugal: IoT course for MSc [20]. The
courses represents a new stage in the digital evolution and focuses on
the Internet of Things for smart transport and cities, and the
development of tools to transform city infrastructure;

- KTH University, Sweden: three MSc programs including:

a) loT related topics in Information and Network Engineering
[21],

b) Communication Systems [22],

c) Embedded Systems [23];

- Newcastle University, United Kingdom: MSc Program on
Embedded Systems and Internet of Things (ES-10T) MSc [24].

Conclusions and questions

The section presents an analysis of Markov and semi-Markov
models of the Internet of things systems functioning, conducted their
study from the point of view of reliability and cyber security.

The research of Markov models showed that the 10T system,
even with the required high AC value, is highly dependent on the
correct failure-free operation of the firewalls. Analysis of the graphical
dependencies obtained for the developed models, taking into account
the rearrangement in case of appearance and installation of the patch on
the vulnerability of the firewall software, showed that AC SBC is most
sensitive to patching the firewall software of the router and the network
firewall. When the patch is set, the AC remains high (0.9999925), even
with a transition rate to a failure state of 0.001 1/h. The hypothesis is

106

18. Markov’s Modelling of 10T Systems

confirmed that the establishment of the patch significantly increases the
AC value even at clearly high values of the transition rates to the failure
state. The practical importance of the results allows to assess the SBC
availability and to develop recommendations to reduce the vulnerability
of its software from the impact of DDoS attacks, as well as reduce its
power consumption.

Questions:
1. Define the requirements to the Markov process.
2. Explain the difference between Homogeneous and Non-

Homogeneous Markov model.

3. Give the definition of semi-Markov process.

4. Give the classification of Markov models.

5. What are the basic availability metrics of the Internet of
things?

6. Explain what is the difference between the functional graph of
the Markov model and the state model of the Internet of things system?

7. Explain, please, the principle of constructing state graphs of
Markov models.

8. Explain, please, principles of Markov’s modeling.

9. Explain, please, principles of Semi Markov’s modeling.

References

1. Margaret Rouse. Markov model. [https://whatis.techtarget.com/
definition/Markov-model].

2. Charles M. Grinstead, J.Lauri Snell. Probability. The CHANCE
Projectl. Version dated 4 July 2006. Markov Chains. 518 p.
[https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability
book/Chapter11.pdf].

3. Grabski F. Semi-Markov models of reliability and operation, 1BS
PAN, Warsaw, 2002 [in Polish].

4. Grabski F. Semi-Markov Processes: Applications in Systems
Reliability and Maintenance, Elsevier, Amsterdam, Boston, Heidelberg,
London, New York, Oxford, Paris, San Diego, San Francisco, Sydney, 2014.

5. Franciszek Grabski. Semi-markov reliability model of the cold
standby system. Zeszyty Naukowe AMW — Scientific Journal of PNA.
International Symposium on Stochastic Models in Reliability Engineering,
Life Sciences and Operations Management (SMRLO'10).

107

https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf

18. Markov’s Modelling of 10T Systems

6. Limnios N., Oprisan G., Semi-Markov Processes and Reliability,
Birkhauser, Boston 2001.

7. Grabski Franciszek. Semi-Markov reliability model of system
composed of main subsystem, cold backup component and switch. Summer
Safety and Reliability Seminars, Vol. 8, Number 1, 2017, pp. 47-53.

8. Internet of Things. 10T Governance, Privacy and Security Issues.
European Research Cluster on the Internet of Things. Ovidiu Vermesan, Peter
Friess, Coordinators of IERC Cluster. January, 2015. 128 p.

9. Delivering on the 10T customer experience. Business white paper.
Hewlett Packard Enterprise. Available at: [http://h20195.www2.hpe.com
Iv2/GetDocument.aspx?docname =4AA6-5128ENW (accepted at 5.08.2016)].
8p.

10. Internet of Things and its future. Available at:
[http://www.huawei.com/ilink/en/about-
huawei/newsroom/pressrelease/HW_080993?dInID=23407&relatedID=19881
& relatedName= HW_076569&dInDocName=HW_076557 (access date:
20.11.2017)].

11. IETF Standardization in the Field of the Internet of Things (IoT): A
Survey. Isam Ishag, David Carels, Girum K. Teklemariam, Jeroen Hoebeke,
Floris VVan den Abeele, Eli De Poorter, Ingrid Moerman and Piet Demeester. J.
Sens. Actuator Netw. 2013, 2, 235-287; doi:10.3390/jsan2020235. Journal of
Sensor and Actuator Networks ISSN 2224-2708. Available at:
[http://www.mdpi.com/journal/jsan/].

12. ISO/IEC 27000 family — Information security management systems.
[https://www.iso.org/isoiec-27001-informationsecurity.html].

13. Internet Architecture Board (IAB). RFC 7452 “Architectural
Considerations in Smart Object Networking”.
[https://www.rfceditor.org/pdfrfc/rfc7452.txt.pdf].

14. Kharchenko Vyacheslav, Kolisnyk Maryna, Piskachova Iryna.
Reliability and Security Issues for loT-Based Smart Business Center:
Architecture and Markov Model. IEEE; Computer of science, MCSI 2016,
Greece, Chania, 2016. Paper 1D: 4564699.

15. Gerrod Andresen, Zachary Williams. Metrics, key performance
indicators, and modeling of long range aircraft availability and readiness.
NATO, RTO-MP-AVT-144. 12 p.

16. Maryna Kolisnyk, Iryna Piskachova, Vyacheslav Kharchenko.
Patching the Firewall Software to Improve the Awvailability and Security:
Markov Models for Internet of Things Based Smart Business Center. CEUR-
WS, Workshop Thermit 2018, 13 p.

17. Lynn Walford, Volvo New Connected Car Features-Magnets, Real-
Time Cloud Road Data & Driver Sensing [http://www.autoconnected car. com

108

http://www.mdpi.com/journal/jsan/

18. Markov’s Modelling of 10T Systems

[2014/03/volvo-new-connected-car-features-magnets-real-time-cloud-road-
data-driver-sensing/], 2014.

18. Toyota and Panasonic develop cloud service to connect cars and
household appliances [http://panasonic.ru/press_center/news/detail/ 464204],
2014.

19. Bauer, E. PRORETA 3: An Integrated Approach to Collision
Avoidance and Vehicle Automation / E. Bauer, F. Lotz, M. Pfromm // At -
Automatisierungstechnik. — 2012. — Ne 12. — P. 755-765.

20. Internet Of Things Course - Immersive Program Master in City and
Technology [https://apps.uc.pt/search?g=Internet+of+Things].

21. Master's program in Information and Network Engineering
[https://www.kth.se/en/studies/master/information-and-network-
engineering/master-s-programme-in-information-and-network-engineering-
1.673817]

22. Master's program in Communication Systems_[https://www.kth.se
len/studies/ master/communication- systems/ description - 1.25691]

23. Master's program in Embedded Systems
[https://www.kth.se/en/studies/master/ embedded-systems /description-
1.70455/].

24. Related Programs to Embedded Systems and Internet of Things (ES-
10T) MSc [https://www.ncl.ac.uk/postgraduate/courses /degrees/embedded-
systems-internet-of-things-msc/relateddegrees.html].

109

http://panasonic.ru/press_center/news/detail/%20464204
https://www.google.com/aclk?sa=l&ai=DChcSEwilmM2Gi6rjAhWNyrIKHbSYCNMYABAAGgJscg&sig=AOD64_27dh93cxSXkir78gqu1WZHI9Di6Q&adurl=&q=&nb=0&res_url=https%3A%2F%2Fapps.uc.pt%2Fsearch%3Fq%3DInternet%2Bof%2BThings&rurl=https%3A%2F%2Fwww.uc.pt%2Fen&nm=101&bg=!f3ylfGREDaBlpklBXogCAAAAJlIAAAAJmQE8oAB9aGtm8bAMUAKQAS_stWTgpRmippO7CchBIE_NC_WIAV8Mp9bNaW0CvBhhxLis_fVh_pqTRLaPXkD-1j9lDQ8dY1JjhdF1lmNzgppvcSTOH6xqq0GoZxGTF5ttyAu0hrg-T2KnwU4LjGIhVGoJh-pjhqV_U9eUIE_R8acyA_2tUR3yEpaBwiquioFJpry2OcGX8lDgcNVOCQzKMAO1v1DzaWsBuF5aRYxxd68DhkxuYI8Vj6yQuHvOxbooXGrdrCPjnrqCAsNysqnq2g-u5sStdbQ1hFKRQmlkvw-NmFWobDBrV_3-NSv-YKUOVLlL_x73PUMRVYau8THhhtG3bXyWoeWUZ_dJrPIFQSgOKUy8iCVeeJK9fn0WjD89prwJIMq1lVVyMBrnfVLIyl_xc0uh2El3uKEoMhqJhQ
https://www.google.com/aclk?sa=l&ai=DChcSEwilmM2Gi6rjAhWNyrIKHbSYCNMYABAAGgJscg&sig=AOD64_27dh93cxSXkir78gqu1WZHI9Di6Q&adurl=&q=&nb=0&res_url=https%3A%2F%2Fapps.uc.pt%2Fsearch%3Fq%3DInternet%2Bof%2BThings&rurl=https%3A%2F%2Fwww.uc.pt%2Fen&nm=101&bg=!f3ylfGREDaBlpklBXogCAAAAJlIAAAAJmQE8oAB9aGtm8bAMUAKQAS_stWTgpRmippO7CchBIE_NC_WIAV8Mp9bNaW0CvBhhxLis_fVh_pqTRLaPXkD-1j9lDQ8dY1JjhdF1lmNzgppvcSTOH6xqq0GoZxGTF5ttyAu0hrg-T2KnwU4LjGIhVGoJh-pjhqV_U9eUIE_R8acyA_2tUR3yEpaBwiquioFJpry2OcGX8lDgcNVOCQzKMAO1v1DzaWsBuF5aRYxxd68DhkxuYI8Vj6yQuHvOxbooXGrdrCPjnrqCAsNysqnq2g-u5sStdbQ1hFKRQmlkvw-NmFWobDBrV_3-NSv-YKUOVLlL_x73PUMRVYau8THhhtG3bXyWoeWUZ_dJrPIFQSgOKUy8iCVeeJK9fn0WjD89prwJIMq1lVVyMBrnfVLIyl_xc0uh2El3uKEoMhqJhQ
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817
https://www.ncl.ac.uk/postgraduate/courses%20/degrees/embedded-systems-internet-of-things-msc/relateddegrees.html
https://www.ncl.ac.uk/postgraduate/courses%20/degrees/embedded-systems-internet-of-things-msc/relateddegrees.html

19. Interaction Simulation For 10T Systems

19. INTERACTION SIMULATION FOR IOT SYSTEMS
DrS. Prof. G.V. Tabunshchyk (ZNTU)

Contents
ADDIEVIATIONS ... e 111
19.1 Interaction in 10T SYSTEMSccvevveviieicicirese e 112
19.1.1 Introduction into infrastructure in the 10T systems 113
19.1.2 Patterns for designing interactions for 10Tcccecevvinnnnee. 116
19.2 Interaction Flow Modelling Languageccccceevevivevieincnenne. 118
19.3. CaSE STUAY ...veveieeiceeeee st 119
19.3.1 Usage of the Remote Laboratory GOLDi for interaction
001070 11 T oo SRS 119
19.3.2 Simulation of the interaction for Smart Campus. 123
19.3.3 Interaction Simulation for e-Health systems.cccccoe... 124
19.3.4 Interaction Simulation for the Remote Laboratories 127
19.3.5 Interaction Simulation for Intelligent transport. 128
19.4 Work related analysiscccooveveiiieeie i 131
Conclusions and QUESLIONS..........cceieierieieisisesie e 131
RETEIENCESveeiee et 132

110

19. Interaction Simulation For 10T Systems

Abbreviations

BLE — Bluetooth Low Energy

BPMN - Business Process Model and Notation
GOLDi — Grid of Online Lab Devices

I0TIM — 10T Integration Middleware

IFML — Flow Modeling Language

ISRT - Interactive platform for Embedded
Software Development

RFID - Radio-frequency identification

SoaML - Service-oriented architecture Modeling Language
SysML - Systems Modeling Language

Ul — User Interface

UML - Unified Modeling Language

111

19. Interaction Simulation For 10T Systems

The “Internet of Things” (IoT) refers to the growing range of
everyday objects acquiring connectivity, sensing abilities, and increased
computing power. In consumer terms, some common categories
currently include [1,2]:

—connected home technology (such as thermostats, lighting, and
energy monitoring);

—wearables medical/wellness devices (such as “smart” watches
and blood pressure monitors);

—artificial intelligent implants;

—connected cars (which may provide access to onboard services,
environment, car maintenance and connection to smart grid);

—urban systems (such as air quality sensors, city rental bikes, and
parking meters/sensors).

Designing these systems raises challenges with the maturity of
the technology you are working, complex use of user expectations of
the system and the complexity of the services, provided by the system.

Implementation of the lIoT technologies gave great impact on the
types and ways of interactions. On the one side it influences greatly on
the way how users interact with everything, on the other sides its
changes the way of interactions inside on loT systems. This chapter
will be devoted to the simulation of the interactions between users and
0T systems.

19.1 Interaction in 10T systems

Approaches for designing of the 10T systems should unite data,
interactions and the physical world. Interaction coupled with data
transcends the laptop and mobile device, and it becomes literally
embedded into any object, infrastructure or interaction.

For example in-store interactions simultaneously generating data
might include entering the store; checking in on a mobile device;
connecting to Wi-Fi or passing by a beacon; scanning an RFID tag,
quick response code or other sensor indicating interest in an object or
promotion; interacting with an employee stylist equipped with a tablet
or other scanning device; trying on an item using a "smart mirror," in
which one could search for various sizes, prints, colors or accessories;
or even digitally overlay products on themselves using augmented
reality. [2].

112

https://internetofthingsagenda.techtarget.com/feature/An-inside-look-at-beacon-technology-manufacturers-and-use-cases
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Air-Canadas-cargo-IoT-initiative-takes-flight
https://searchcrm.techtarget.com/news/4500248994/Death-of-the-mall-could-spell-rise-of-mobile-retail-economy
https://whatis.techtarget.com/definition/augmented-reality-AR
https://whatis.techtarget.com/definition/augmented-reality-AR

19. Interaction Simulation For 10T Systems

Purchases, redemption of coupons and digital receipts, among
other interactions, can now all be integrated with a shopper's online
profile, thereby connecting "brick" (in-store) and "click" (online)
interactions. Such interactions can also signal inventory and supply
chain transactions and even inform store layout, merchandizing, labor
allocation and a host of other operational decisions, many of which are
entirely invisible to the customer [Error! Reference source not
ound.].

19.1.1 Introduction into infrastructure in the 10T systems

In essence, 0T architecture is the system of numerous elements:
sensors, protocols, actuators, cloud services, and layers.

In the simplest way the loT architecture contains only three
layers [3] :

1. The client side (10T Device Layer)

2. Operators on the server side (loT Getaway Layer)

3. A pathway for connecting clients and operators (IoT Platform
Layer)

But the number if to include all elements which are included by
loT architecture [Error! Reference source not found.] the structure
ill be much more difficult.

Let’s consider the basic elements of [oT systems [6,7], which are
main construction blocks of the 10T platforms.

Things. A “thing” is an object equipped with sensors that gather
data which will be transferred over a network and actuators that allow
things to act (for example, to switch on or off the light, to open or close
a door, to increase or decrease engine rotation speed and more). This
concept includes fridges, street lamps, buildings, vehicles, production
machinery, rehabilitation equipment and everything else imaginable.
Sensors are not in all cases physically attached to the things: sensors
may need to monitor, for example, what happens in the closest
environment to a thing.

Gateways. Data goes from things to the cloud and vice versa
through the gateways. A gateway provides connectivity between things
and the cloud part of the 10T solution, enables data preprocessing and
filtering before moving it to the cloud (to reduce the volume of data for
detailed processing and storing) and transmits control commands going

113

19. Interaction Simulation For 10T Systems

from the cloud to things. Things then execute commands using their
actuators.

Cloud gateway facilitates data compression and secure data
transmission between field gateways and cloud loT servers. It also
ensures compatibility with various protocols and communicates with
field gateways using different protocols depending on what protocol is
supported by gateways.

Streaming data processor ensures effective transition of input
data to a data lake and control applications. No data can be occasionally
lost or corrupted.

Data lake. A data lake is used for storing the data generated by
connected devices in its natural format. Big data comes in "batches" or
in “streams”. When the data is needed for meaningful insights it’s
extracted from a data lake and loaded to a big data warehouse.

Big data warehouse. Filtered and preprocessed data needed for
meaningful insights is extracted from a data lake to a big data
warehouse. A big data warehouse contains only cleaned, structured and
matched data (compared to a data lake which contains all sorts of data
generated by sensors). Also, data warehouse stores context information
about things and sensors (for example, where sensors are installed) and
the commands control applications send to things.

Data analytics. Data analysts can use data from the big data
warehouse to find trends and gain actionable insights. When analyzed
(and in many cases — visualized in schemes, diagrams, infographics)
big data show, for example, the performance of devices, help identify
inefficiencies and work out the ways to improve an loT system (make it
more reliable, more customer-oriented). Also, the correlations and
patterns found manually can further contribute to creating algorithms
for control applications.

Machine learning and the models ML generates. With machine
learning, there is an opportunity to create more precise and more
efficient models for control applications. Models are regularly updated
(for example, once in a week or once in a month) based on the
historical data accumulated in a big data warehouse. When the
applicability and efficiency of new models are tested and approved by
data analysts, new models are used by control applications.

Control applications send automatic commands and alerts to
actuators, for example:

114

19. Interaction Simulation For 10T Systems

Windows of a smart home can receive an automatic command to
open or close depending on the forecasts taken from the weather
service.

When sensors show that the soil is dry, watering systems get an
automatic command to water plants.

Sensors help monitor the state of industrial equipment, and in
case of a pre-failure situation, an loT system generates and sends
automatic notifications to field engineers.

The commands sent by control apps to actuators can be also
additionally stored in a big data warehouse. This may help investigate
problematic cases (for example, a control app sends commands, but
they are not performed by actuators — then connectivity, gateways and
actuators need to be checked). On the other side, storing commands
from control apps may contribute to security, as an 10T system can
identify that some commands are too strange or come in too big
amounts which may evidence security breaches (as well as other
problems which need investigation and corrective measures).

Control applications can be either rule-based or machine-learning
based. In the first case, control apps work according to the rules stated
by specialists. In the second case, control apps are using models which
are regularly updated (once in a week, once in a month depending on
the specifics of an 10T system) with the historical data stored in a big
data warehouse.

Although control apps ensure better automation of an loT
system, there should be always an option for users to influence the
behavior of such applications (for example, in cases of emergency or
when it turns out that an 10T system is badly tuned to perform certain
actions).

The 10T Integration Middleware (I0TIM) serves as an integration
layer for different kinds of Sensors, Actuators, Devices, and
Applications. It is responsible for receiving data from the connected
Devices, processing the received data, providing the received data to
connected Applications, and controlling Devices. An example for
processing is to evaluate condition-action rules and sending commands
to Actuators based on this evaluation.

User applications are a software component of an I0T system
which enables the connection of users to an loT system and gives the
options to monitor and control their smart things (while they are

115

19. Interaction Simulation For 10T Systems

connected to a network of similar things, for example, homes or cars
and controlled by a central system). With a mobile or web app, users
can monitor the state of their things, send commands to control
applications, set the options of automatic behavior (automatic
notifications and actions when certain data comes from sensors).

In [4] there is done detailed analysis of the existing as open
source as proprietary platforms such as are FIWARE, OpenMTC,
SiteWhere, Webinos, AWS IoT2, IBM’s Watson IoT Platforml10,
Microsoft’s Azure loT Hub11, and Samsung’s SmartThings5.

And these research shows the great variety of existing solutions
that’s why the main criteria in the selection of the platform should be
the user requirements to the interactions within the final systems.

19.1.2 Patterns for designing interactions for 10T

Design Patterns provide well known ways to solve design
problems commonly encountered in a particular discipline or problem
domain.

Interaction design is closely aligned to user interface (UI) design
in the sense that the two are usually done in tandem and often by the
same people. But interaction design is primarily concerned with
behaviors and actions, whereas Ul/visual design is concerned with
layout and aesthetics. (Just to confuse matters, some people use Ul
design as a shorthand term to include both interaction design and visual
design.) Typical outputs for interaction design might include user
flows, low-medium fidelity interactive prototypes, and for a visual Ul,
screen wireframes.

Fig. 19.1 — Example of inter-usability[2]

116

19. Interaction Simulation For 10T Systems

loT devices come in a wide variety of form factors with varying
input and output capabilities. That’s why it’s important to consider not
just the usability of individual Uls but interusability: distributed user
experience across multiple devices [Error! Reference source not
ound.].

Design patterns for Application Programming describe ways that
software and interfaces are created, managed, deployed, and used in
loT applications [Error! Reference source not found.]:

1. REST Objects: Mapping of REST API resources onto program
objects in the application language, using libraries.

2. Event handler, onEvent: Application code that responds to
asynchronous eventis.

3. Event driven flow: A set of application handlers that operate in
an event driven graph containing series cascade and parallel constructs.

4. State Machine: A logic construct where a next state depends
on a set of inputs and the current state, evaluated by a set of logic rules
associated with each state.

5. State Externalization: The ability to create stateless application
software by mapping application state onto external resources.

6. Rule oriented programming: Using a set of rules or rule
language to program state machine logic.

7. Abstraction of applications: Stateless application software uses
application templates for reusability.

8. Application templates: Abstract application components with
well defined interfaces.

9. Modular applications: Applications consisting of one or more
reusable components.

Applications run anywhere, location independent applications:
Application components can run anywhere, in devices, on local
network servers, in gateways, in edge servers, in cloud, on user devices.

Discovery and Linking: Integrates resources into applications by
resolving resource links, sets attributes in application objects

Object Constructor: Creates application software objects from
metadata models.

117

19. Interaction Simulation For 10T Systems

From the point of view of users we can define interactions
[Error! Reference source not found.]:
—configuration of the access and permissions;
—interaction with devices;
—managing devices;
—managing wait for signal;
—managing notifications;
—searching devices;
—storing information;
—retrieving stored information;
—getting information from devices;
—information visualization;
—sharing information.

So from above the user interface design patterns for the loT
systems can be grouped into three categories: Set Patterns, Get Patterns,
and Event-based Patterns.

In [6] for the smart spaces application there are suggested such
patterns as: greeting pattern, farewell pattern, action reaction pattern,
conversation pattern and exploration pattern.

For the development of user-machine interactions there are
obviously exists such challenges — complexity and manual design. Flow
Modeling Language (IFML) is one of the solutions for the designing
font-end of the 10T applications.

19.2 Interaction Flow Modelling Language

The standard Interaction Flow Modeling Language (IFML) is
designed for expressing the content, user interaction and control
behavior of the front-end of software applications [6]. Its metamodel
uses the basic data types from the UML metamodel, specializes a
number of UML metaclasses as the basis for IFML metaclasses, and
presumes that the IFML Domain Model is represented in UML.

FML is used for expressing (fig.19.2):

- content visualized in the user interfaces

- navigation paths

- user events and interaction

- binding to business logic

- binding to persistence layer.

118

19. Interaction Simulation For 10T Systems

loT Device

loT Device

Intermediary
g\ = = = PushedPata, _ _ I loT Device

P »[] loT Device
o l |—:]_'i°'j"f'f | 10T Device
User Terminal FesponseData
loT System

Fig. 19.2 — Example of IFML [10]

It is strongly integrated with such modelling languages as UML,
BPMN, SysML, SoaML.

There is also possible to use online open source tool for
developing and editing IFML[9].

It allows user to create and edit applications with the IFMF
language, edit database while the application is running, generate and
run and Web as Mobile prototypes.

19.3. Case Study

19.3.1 Usage of the Remote Laboratory GOLDi for interaction
modelling

Cyber-physical systems are the systems that provide the
integration of computing, physical processes and networks, or as
systems where software and physical subsystems are closely bounded,
each of which works in a variety of temporal and spatial dimensions,
demonstrating clear and multiple behavioral patterns, and interacts in a
variety of ways [11]. Modern trends in productivity and complexity of
requirements for systems use require fundamentally new design
approaches in which cybernetic and physical components are integrated
at different stages.

In general, the qualitative properties of cyber-physical systems
can be classified into the following two broad categories:

- reachability or guarantee properties that raise the question of
whether a system can achieve a configuration that satisfies a particular

property;

119

19. Interaction Simulation For 10T Systems

- security properties that raise the question of whether the system
can remain forever in configurations that satisfy a particular property.

The main properties of cyber-physical systems include following
[12]: high degree of automation, reorganization / reconfiguration of the
dynamics, cybernetic capabilities in each physical component, the
ability of networks to work on multiple scales, integration on different
time and spatial scales.

The behavior of cyber-physical systems is described in terms of
sequences of events distributed in time. So-called temporal logics are
often used for the specification of requirements for cyber-physical
systems. Temporal logics are formal languages that allow to define the
interrelationships of events in time: causal relationships, restrictions on
the relative order, the magnitude of delays between events, etc. The
following examples can be cited as temporal properties: the system
always works without freezing; two users cannot simultaneously access
shared data; a request with a higher weight will be processed before
constipation with a lower weight.

Integrated Communication Systems Group at the Illmenau
University of Technology has many years of experience in integrated
hard- and software systems and over 10 years of experience in dealing
with Internet-supported teaching in the field of digital system design
[13]. Grid of Online Lab Devices llmenau (GOLD:I) gives the students
the possibility to work on real physical systems without the need to
stand in line at a lab or the need to take care of opening hours and
offers the students a working environment that is as close as possible to
a real world laboratory. Under real laboratory conditions disturbances
can appear and lead to failures of the control algorithm that cannot be
detected under virtual lab conditions.

Online laboratories offer various features like visualization and
animation, which allows to observe and to test all the properties of the
design. In connection with formal design techniques, simulation and
prototyping are used to establish a foundation for the development of a
reliable system design. To check the functionality of the whole design,
some special simulation and validation features are included as integral
part of the GOLDI system. This offers various possibilities for the
execution of simulations [14], such as:

- usage of simulation models of the physical system for visual

prototyping,

120

19. Interaction Simulation For 10T Systems

- step by step and parallel execution of these prototypes,

- visualization of the simulation process with the tools also used
for specification,

- features for test pattern generation and

- code generation for hardware and software synthesis.

GOLDI offers a Web-based environment supporting the above
mentioned features to generate and execute a design by using
simulation models.

As an example of modeling it was decided to create Kripke
structure of the elevator which is located in the GOLDi [15]. This
elevator has ability to move upwards and downwards from floor to
floor and open or close its door.

The atomic propositions for the Kripke structure representing the
elevator are as follows:

1st — elevator is located at the 1st floor;

2nd — elevator is located at the 2nd floor;

DO — door is open;

MU — elevator is moving in the upward direction;

MD - elevator is moving in the downward direction.

For clarity, each state is labeled with both the atomic
propositions that are true in the state and the negations of the
propositions that are false in the state. The labels on the arcs indicate
the actions that cause transitions and are not part of the Kripke
structure. Kripke structure of the elevator can be seen at Fig.19.3.

This model can be used for further formal verification. For
example one might want to determine that “door of the elevator is
closed and it is moving upwards”.

So, p = = 1stA-2ndA=-DOAMUA-MD. Using Kripke
structure this can be determined.

121

19. Interaction Simulation For 10T Systems

lose

15t true
2nd false
DO true
MU falze
MD false

open

los

open

lose

1st false
2nd false
DO true
MU true
MD falze

15t false
2nd false
DO falsa
MU true
MD falze

open

lose

13t false
2nd frue
DO false
MU false
MD faise

open

Fig. 19.3 — Kripke structure of the elevator in GOLDi

122

19. Interaction Simulation For 10T Systems

19.3.2 Simulation of the interaction for Smart Campus.

The idea of a Smart Campus for universities is that the campus
talks to you. Individual information for students, teachers and visitors is
delivered, depending on their profile and time of day [16-18].

Smart Campus Application consists from three main parts:
Mobile application for different operational systems iOS, Android;
CMS for updating advertisement information, administration system,
which consists from different components aimed to adjust hardware
characteristics.

Smart Campus Mobile Application provides users a variety of
functionality, allowing working both in on-line mode as in off-line
mode detecting buzz from the beacons.

The CMS is providing managing of maps development and
storage it in various ways:

- there is possibility to support diversity of media content
attributed to one beacon;

- the mobile application provides the search option to find the
optimal path to the selected beacon location;

- the mobile application provides an intellectual interface, which
allows selecting information based on user preferences.

After analyzing the applications, the main characteristics that
should have a voice navigator have been highlighted. The voice
navigator, for integration into the Smart-Campus must have the
following features:

- to record a voice sentence to get an audience that the user is
looking for;

- to recognize vocal sentences and convert them to text;

- to formulate a response to the user;

- to issue a voice message about the user's request;

- to determine the location of the user;

- to build a route from the current position of the user to the
required body;

- to display the schedule of occupations of the user;

- to add classes to the schedule;

- to enter the name of the class not only through the virtual
keyboard but also through speech recognition;

- to edit or delete selected classes from the schedule;

123

19. Interaction Simulation For 10T Systems

- to get the route to the chosen lesson;

- to display the schedule for the current day;

- to display the list of recent queries.

The interaction diagram for audio navigation is shown at

fig.19.4.

|SmartCampus
{ | [¥OR]AudioNavigation
Stopped
———————————— I.' II'.
f «Detailse Pl T W pragine |
— P p T | |
alisty - ’{ na:::{:ﬁ:? :: ts /
| " U
Navigation) il ; 'S.:t‘"ll'l"t‘d
- stopped
Playing rd
e wa s
afletailss stopl h‘j-qStop pla:,ring
L PlayerPlaying e \
| [sbatabindings routs I
1 /.-.\ '!J
ps \'\/ p ’
selected L

* [Tstarted
/ L

[thange Reout)
! |

Fig. 19.4 — Interactions in the voice navigator

19.3.3 Interaction Simulation for e-Health systems

The usage of microcontrollers in biomedical applications is an
ongoing process and will only increase in the next few years, where the
added intelligence augments the possibilities for adaptive therapy and
increase knowledge in the healing process or where these systems
actually take over body functions. As technology advances
microcontrollers are becoming increasingly small and low-power, while
their computing power increases rapidly. There are well known

124

19. Interaction Simulation For 10T Systems

implants such as cardiac pacemakers, implantable cardioverter
defibrillators, deep brain stimulation, epidural spinal cord stimulation,
cochlear implants and others.

The advances made in technology, such as advanced and smart
materials innovations, surgical techniques, robotic surgery and methods
of fixations and sterilization facilitated hip implants undergoing
multiple design revolutions to seek the least problematic implants and a
longer survivorship[2]. As a consequences, a large number of hip
endoprosthesis models are available, with different designs, different
materials from which they are made and the needed method of fixation.
Nevertheless, there are still problems that affect prostheses
functionality and longevity.

The average life of the endoprosthesis is 15-20 years, which is
caused with a number of physiological changes in bone tissue
associated with both age-related changes and with features of transfer
of load from the endoprosthesis to the bone.

Implantable medical electronics for hip endoprosthesis are a part
of cyber-physical system aimed for continuous monitoring of health
and implant state. Different physical parameters can be measured with
these systems. Medical staff could receive feedback on the stress and
strain in cables connected to the hipbone, torque in the endoprothesis,
the angle of the knee implant.

According to the common architecture of cyber-physical system
our Smart Hip Endoprothesis System consists of three components:
implant, contained medical electronics, external remote mobile control
system and external cognitive operator [21] .

125

19. Interaction Simulation For 10T Systems

Mobile device Implantable device

Mobile monitor
module TCs 0t Module

)

% Mobile control unit

O—— Cognitive operator module

Monitor System

Fig. 19.5 — Common system architecture

The intelligent implant should be able to measure the physical
parameters envisaged, possibly log them locally and communicate this
data wirelessly. It should also be able to operate autonomously for a
long period, have a battery on board for inductive powering. A very
important property of the endo-microcontroller system is its reliability
over decades as repair is not desirable and often not even possible.

The exo-system is there to receive the data and power the endo-
system. This data is delivered wirelessly. Possibly a battery pack can be
worn by the patient as a continuous power supply.

The last system is to visualize the data in an easy to understand
manner for the paramedics to make their medical analysis on the
internal state of the patient and the implant.

The complete system should be designed in a multidisciplinary
manner, keeping both the properties of the implant and the intelligent
system in mind. The tasks which should be solved are divided into
material sciences, aimed to keep the properties of the hip
endoprosthesis, and bio-engineering, aimed to develop the common
system including hardware and software development.

126

19. Interaction Simulation For 10T Systems

Within development of the hip endoprosthesis requirements to
the biocompatibility with human tissues and sufficient strength
characteristics of the material should be considered. The requirement
for high strength is due to the fact that during the operation the implant
is subjected to extreme external loads of various kinds to fixate the
prosthesis, which can lead to fracture of the stem. Thus, the strength
characteristics of the endoprosthesis material that determine the
strength stocks and the mass of the endoprosthesis play a key role in the
design and choice of the implant material.

In the case of the installation of the intellectual system, it
becomes necessary to form a blind hole in the endoprosthesis femoral
stem. As a consequence, the change in the design of the system and the
introduction of a voltage concentration can lead to a redistribution of
stresses during the operation of the implant and its destruction. On the
other hand, the materials used can have its effect on the possibility of
inductive powering and wireless communication.

19.3.4 Interaction Simulation for the Remote Laboratories

The Interactive platform for Embedded Software Development
(ISRT) [17,22] consists of a number of smaller dedicated experiments
which allow students to study and experiment on different aspects of
embedded systems and communication tools over the internet. The aim
is to prepare students for 1oT. The series of experiments include
experiments on the manipula-tion of components (LED-lights, stepper
motors), on communication (mobile phone ma-nipulation), on security
(face detection through image detection) and programming (in C++,
Python).

The ISRT was built to let students of bachelor and master studies
in software development experiment and self-study the different aspect
of programming and controlling. After the self-study, students get a
project assignment in which they use the different skills they ac-quired
using the ISRT. Evaluation of the learning outcomes was done on the
project re-sults.

Tasks include transformation of data, connecting and using
different sensors for physical parameters (temperature, light intensity,
luminosity, distance), image recognition, detecting time-delays in the
execution of programs, access to remote working systems with different
protocols like Wi-Fi, Bluetooth Low Energy and GSM. The goal of the

127

19. Interaction Simulation For 10T Systems

predefined tasks is that students later on will work on an own-defined
project in which they combine and use the knowledge to make a
physical remote sensing device for some physical status (e.g. ecological
measurements, climate control measurements).

19.3.5 Interaction Simulation for Intelligent transport

There are several technologies which are developing in the field
of connected cars: Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure
(van, Vehicle-to-Device (V2D), Vehicle-to-Pedestrian (V2P),
Vehicle-to-Home (V2H), Vehicle-to-Device (V2D), Vehicle-to-Grid
(V2G) solutions [23,24].

Electric vehicles (EV) can be thought of as being a part of the
global smart grid. As it is known, the term smart grid is defined
primarily by its ability to integrate Information and Communications
Technology with large-scale energy networks aimed to increase
environmental friendliness of generation, transmission and distribution
of electricity and efficiency of the system and has following major
components: mass production, transfer, distribution, consumers, service
providers, operations, markets [11].

For the reducing complexity of the 10T system it is important to
teach students of Software Engineering specialitites to simulate and
model interaction. For this case a prototype has been developed to
mimic an electrical vehical charging station which allows to charge Li-
on batteries with a dedicated charging module as a part of ISRT.

Several tasks need to be fulfilled in the charging station:

- security and identity control of the client who wants to recharge
his vehicle

- checking of charging level of the attached batteries

- payment of charging: upfront for limited amount of charging or
over subscription

- monitoring of charging time

- pricing of charging energy

- communication with the user

- end of charging when charge reached the full level.

Manipulation is possible locally through RFID access as well as
online. The hardware prototype is in fig 2. For physical access a RFID
card (ISO 14443A) is used or a dongle which is distributed to the
subscribed users of the system.

128

19. Interaction Simulation For 10T Systems

Remote charging is organised with the usage of Raspberry Pi3,
connected to the Internet (either Ethernet, or WiFi or 3G). Clients can
use different methods of access and control (laptop, tablet,
smartphone..) (see Fig. 3). Software is developed on Python, and
connected to the remote server of the ISRT by get request. Server send
request to the hardware prototype (charging station) as Start and Stop
commands and request for the time of charging in seconds.

Remote control is only possible for the subscription users of the
ISRT. At the online panel there is also presented the price of the
electricity (Fig.19.6).

Fig.19.6 — Hardware prototype of the simulated charging station.

In this setup, engineering students need to perform all tasks
which will be available in commercial setups, and they can experiments
with different approaches and different human-machine interfaces. The
multitude of addressed communication platforms makes it a real-life
setup.

The ISRT-server is a platform in Zaporizhzhia Polytechnic
National University for remote laboratories, in order to train students in
loT-task [22]. It is ideal for the scalability of the charging station case.
A ready made black-box charging station module is available in the
ISRT so that students can work on the communication and client layer.
Next they can also develop their own charging station hardware and
eventually put in more functionality and hardware is necessary. In
combination they make the complete system. Extra features could be

129

19. Interaction Simulation For 10T Systems

different methods of fast and slow charging, multiple car charging,
payment locally for single users without subscription or dongle,
helpdesk access from the charging station over messages or chat to the
service provider in case of problems, notification of charging clients
that the charging session ended by sms.. Opportunities and extended
possibilities are trivial [25].

i H ‘7\“ HTTP
PC Mobile Laptop Tablet

HEP Internet
2 T

T

HTTP

ISRT Server

LONG POLLING

Charging station

Fig.19.7 — Software system layout

Fig.19.8 — Online Charging Terminal

130

19. Interaction Simulation For 10T Systems

Flexibility of ISRT infrastructure allows to increase existing
prototype into grid what will the next step of the research.

19.4 Work related analysis

Thus, given work has been devoted to the description of the
possibilities for the simulation of the interactions in the 10T systems.
Also we paid attention to the practical examples of the interaction
simulation.

Notation and examples of implementation of the Interaction Flow
Modeling Language are described in [7-10]. Implementation of the
FSM models are described in [13-15,17].

The basic theory on formal methods, model checking and Kripke
models are analysed in [26-31]. Addition material with in-depth
descriptions could be found in the literature given below and based on
analysis of education programs of Newcastle University [32] and other
ALIOT consortium universities.

Conclusions and questions

In order to better understand and assimilate the educational
material that is presented in this section, we invite you to answer the
following questions:

1. Which types of interactions should be designed in the loT
systems?

2. From which layers consists 10T systems architecture?

3. Which layer of loT system architecture serves as an
integration layer.

4. Which patterns could be used for designing different types of
interaction with 10T systems?

5. Which types of interactions from the point of view of the user
could be defined?

6. Which types of interactions could be described with
Interaction Flow Modeling Language?

7. Which types of interactions could be described with UML?

8. Which types of interactions could be simulated with FSM?

131

19. Interaction Simulation For 10T Systems

9. Which types of interactions could be simulated with Kripke
models?

References

1. C. Rowland, "What’s different about user experience design for the
Internet of Things?", O'Reilly Media, 2019. Available:
https://www.oreilly.com/learning/whats-different-about-user-experience-
design-for-the-internet-of-things. [Accessed: 28- Jul- 2019]. What’s different
about user experience design for the Internet of Things? [Online Access]:
https://www.oreilly.com/learning/whats-different-about-user-experience-
design-for-the-internet-of-things

2. "Designing Connected Products", O’Reilly | Safari, 2019. Available:
https://www.oreilly.com/library/view/designing-connected-
products/9781449372682/. [Accessed: 28- Jul- 2019].J. Groopma Product
manufacturers: It's time to rethink the 10T user interface [Online Access]:
https://internetofthingsagenda.techtarget.com/feature/Product-manufacturers-
Its-time-to-rethink-the-l1oT-user-interface

3. M. Brambilla, E. Umuhoza and R. Acerbis, "Model-driven
development of user interfaces for loT systems via domain-specific
components and patterns”, Journal of Internet Services and Applications, vol.
8, no. 1, 2017. Available: 10.1186/s13174-017-0064-1 [Accessed 28 July
2019].P. Strouks, 4 Stages of 10T architecture explained in simple words
[Online Access]: https://medium.com/datadriveninvestor/4-stages-of-iot-
architecture-explained-in-simple-words-b2ea8b4f777f

4. "loT Architecture Explained: Building Blocks and How They Work",
Scnsoft.com, 2019. Awailable: https://www.scnsoft.com/blog/iot-architecture-
in-a-nutshell-and-how-it-works. [Accessed: 28- Jul- 2019].

5. Guth J. et al. (2018) A Detailed Analysis of 10T Platform
Architectures: Concepts, Similarities, and Differences. In: Di Martino B., Li
KC., Yang L., Esposito A. (eds) Internet of Everything. Internet of Things
(Technology, Communications and Computing). Springer, Singapore

6. "Design Patterns for the Internet of Things”, Community.arm.com,
2019. Available: https://community.arm.com/iot/b/blog/posts/design-patterns-
for-an-internet-of-things. [Accessed: 28- Jul- 2019].

7. M. Vega-Barbas, I. Pau, J. C. Augusto and F. Seoane, "Interaction
Patterns for Smart Spaces: A Confident Interaction Design Solution for
Pervasive Sensitive 10T Services," in IEEE Access, vol. 6, P. 1126-1136, 2018.

8. "IFML: The Interaction Flow Modeling Language | The OMG
standard for front-end design”, Ifml.org, 2019. Available:
https://www.ifml.org/. [Accessed: 28- Jul- 2019].

9. “IFML online tool” Available: http://www.ifmledit.org/

132

https://internetofthingsagenda.techtarget.com/feature/Product-manufacturers-Its-time-to-rethink-the-IoT-user-interface
https://internetofthingsagenda.techtarget.com/feature/Product-manufacturers-Its-time-to-rethink-the-IoT-user-interface
https://medium.com/datadriveninvestor/4-stages-of-iot-architecture-explained-in-simple-words-b2ea8b4f777f
https://medium.com/datadriveninvestor/4-stages-of-iot-architecture-explained-in-simple-words-b2ea8b4f777f
http://www.ifmledit.org/

19. Interaction Simulation For 10T Systems

10. M. Bambilo, “Interaction Flow Modeling Language in the IloT
context”. [Online] Available: https://www.omg.org/news/meetings/tc/ma-
15/special-events/iiot-pdf/Brambilla.pdf

11. Korotunov, S., Tabunshchyk, G., Wolff, C.: Cyber-Physical Systems
Architectures and Modeling Methods Analysis for Smart Grids. 2018 IEEE
13th International Scientific and Technical Conference on Computer Sciences
and Information Technologies (CSIT). (2018).

12. Miclea, L., Sanislav, T. “About dependability in cyber-physical
systems”. 2011 9th East-West Design & Test Symposium (EWDTS). (2011).

13. Remote and virtual tools in engineering: student textbook /general
editorship Dr.Ing.Karsten Henke. — Zaporizhzhya: Dike Pole, 2016. — pp. 250.

14. Poliakov M. Hybrid Models of Studied Objects Using Remote
Laboratories for Teaching Design of Control Systems/ M. Poliakov,
T.Larionova, G. Tabunshchyk, A. Parkhomenko and Karsten
Henke//International Journal of Online Engineering (iJOE), Vol.9(2016),
Vienna,lAOE, P. 7-13. http://dx.doi.org/10.3991/ijoe.v12i09.6128.

15. S. Korotunov, G.Tabunshchyk, K. Henke, D. Wuttke, Analysis of the
Verification Approaches for the CyberPhysical Systems. Proceedings of the
Second International Workshop on Computer Modeling and Intelligent
Systems (CMIS-2019), Zaporizhzhia, Ukraine, April 15-19, 2019. —PP. 950-
961 CEUR-WS.org, online http://ceur-ws.org/Vol-2353/paper75.pdf

16. Tabunshchyk G. Flexible Technologies for Smart Campus/ D. Van
Merode, G. Tabunshchyk, K. Patrakhalko, Y. Goncharov // Proceedings of
XIII International Conference on Remote Engineering and Virtual
Instrumentation (REV2016) (24-26 February, 2016, Madrid, Spain) UNED:
P. 58-62.

17. Project Oriented Teaching Approaches for E-learning Environment
/P. Arras, D. Van Merode, G. Tabunshchyk // IEEE 9th International
Conference on Intelligent Data Acquisition and Advanced Computing Systems
(IDAACS), 2017. -P.317-320. DOI: 10.1109/IDAACS.2017.8095097

18. Tabunshchyk G. Intellectual Flexible Platform for Smart Beacons/G.
Tabunshchyk, D. Van Merode// In book: Edit by M. Auer, D. Zhutin Online
Engineering and Internet of Things, Springer International Publishing, P. 895-
900. https://doi.org/10.1007/978-3-319-64352-6_83

19. Tabunshchyk G. Interactive platform for Embedded Software
Development Study / G. Tabunshchyk, D. Van Merode, P. Arras, K. Henke, V.
Okhmak// In book: Edit by M. Auer, D. Zhutin Online Engineering and
Internet of Things, Springer International Publishing, P. 315-321. DOI
10.1009/978-3-319-64352-6_30.

20. G. Tabunshchyk, O. Petrova and P. Arras, "Implementation of Audio
Navigation for Smart Campus." Proceedings of the Second International

133

https://www.omg.org/news/meetings/tc/ma-15/special-events/iiot-pdf/Brambilla.pdf
https://www.omg.org/news/meetings/tc/ma-15/special-events/iiot-pdf/Brambilla.pdf
http://dx.doi.org/10.3991/ijoe.v12i09.6128

19. Interaction Simulation For 10T Systems

Workshop on Computer Modeling and Intelligent Systems (CMIS-2019),
Zaporizhzhia, Ukraine, April 15-19, 2019, P. 267-276.

21. Engineering Education for HealthCare Purposes: A Ukrainian
Perspective // Galyna Tabunshchyk, Anzhelika Parkhomenko, Serhij
Morshchavka, David Luengo / Conf. proc. of the XIVth International
Conference on Perspective Technologies and Methods in MEMS Design
(MEMSTECH), Lviv, Polyana, 18-21 April, -PP. 245 — 249,

22. G. Tabunshchyk, P. Arras, T. Kapliienko, Sustainability of the
Remote Laboratories based on Systems with Limited Resources // In book:
Smart Industry & Smart Education P. 197-224.

23. F. Granda, L. Azpilicueta, C. Vargas-Rosales, R. Lopez-lturri, E.
Aguirre, J. Javier-Astrain, J. Villandangos, F. Falcone, “Spatial
characterization of radio propagation channel in uban vehicle-to-infrastructure
environments to support WSNs deployment”, in Sensors 2017, vol 17, 1313,;
d0i:10.3390/s17061313 ,2017.

24. K. C. Dey, A. Rayamajhi, M. Chowdhury, P. Bhavsar, J. Martin,
“Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V21) communication
in a heterogeneous wireless network — Performance evaluation”, Elsevier,
20186, https://doi.org/10.1016/J.TRC.2016.03.008

25. G. Tabunshchyk, D. Van Merode, P. Arras, K. Henke, V. Okhmak,
“Interactive platform for Embedded Software Development Study”, in: Edit by
M. Auer, D. Zhutin Online Engineering and Internet of Things, Springer
International Publishing, P. 315-321. DOI 10.1009/978-3-319-64352-6_30

26. P. Grant, “Elementary Computability, Formal Languages and
Automata”. Software & Microsystems. 1, 171 (1982).

27. D. Gabbay, Saul A. Kripke, “Semantical considerations for modal
logics”. Proceedings of a Colloquium on Modal and Many-valued Logics,
Helsinki, 23-26 August, 1962, Acta Philosophica Fennica 1963, P. 83-94. The
Journal of Symbolic Logic. 34, 501 (1969).

28. M. Miuller-Olm, D. Schmidt, B. Steffen, “Model-Checking. Static
Analysis”. P. 330-354 (1999).

29. A. Pnueli, The temporal logic of programs. 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). (1977).

30. E. Clarke, E. Emerson, A. Sistla, “Automatic verification of finite-
state concurrent systems using temporal logic specifications”. ACM
Transactions on Programming Languages and Systems. 8, P. 244-263 (1986).

31. S. Tonetta, “Linear-time Temporal Logic with Event Freezing
Functions”. Electronic Proceedings in Theoretical Computer Science. 256,
195-209 (2017).

32. https://www.ncl.ac.uk/postgraduate/courses/degrees/advanced-
computer-science-msc/#profile

134

https://doi.org/10.1016/J.TRC.2016.03.008
https://www.ncl.ac.uk/postgraduate/courses/degrees/advanced-computer-science-msc/#profile
https://www.ncl.ac.uk/postgraduate/courses/degrees/advanced-computer-science-msc/#profile

20. Software Defined Networks Basics

PART VI. SOFTWARE DEFINED NETWORKS AND IOT
20. SOFTWARE DEFINED NETWORKS BASICS
Dr. V. V. Shkarupylo, M.Sc. D. Mazur (ZNTU)

Contents

ADDIEVIATIONSeiiiciic e e 136
20.1 SDN architecture. Fundamental notions, principles and concepts
... 137
20.1.1 The evolution of networks, switches and control planes........ 137
20.1.2 SDN arChiteCtUIEocvvveeieceeie e 138
20.1.3 SDN PredeCESSOIS. .. .ccviiuieieireeiesieeteestesteesresteseesresreeseesreesee e 139
20.1.4 Network virtualizationcccooceeereieiiniinincse e 141

20.2 An in-depth look at the aspects of implementation. Differentiation
between Control and Data Planes...........cccoovvviiiineneneneneiesesiniens 142
20.2.1 Fundamental characteristics of SDN. Plane separation 142

20.2.2 SDIN OPEIAtIONS.cvereeiieiieiisiisie st 143

20.2.3 SDN SWILCNEScvvevveviiiiciecieeeeie e 146
20.2.4 SDN controller. Existing SDN controller implementations and
their COMPANISONoveiiiiiieiiser s 146
20.3 OpenFlow protocol. The basics, peculiarities and limitations... 150
20.3.1 OpenFlow specification OVEIVIEWcccecvevevieceenesieennan, 150
20.3.2 OpenFlow SWItChc.coiiiiiiiccccc e 151

20.3.3 OpenFlow controller ... 153

20.3.4 OpenFIlowW protoCol.........cccoveieieiniii e 154
20.3.5 OpenFlow v1.0 specification..........cccccveveviiiiie v, 155
20.3.6 OpenFlow V1.1 SPecifiCation............cccovrvrereneneieeeeiscine 156
20.3.7 OpenFlow v1.2 SPecifiCation............ccoovvvrereneneneeieiscine 158
20.3.8 OpenFlow v1.3 specification..........cccccvvveviiiiiie v, 158
20.4 Work related analysiscocooerereieiininiiesese e 161
Conclusion and QUESLIONSc.ererierieieieisiese st 162
RETEIBNCES ... e 163

135

20. Software Defined Networks Basics

Abbreviations

ACL — Access Control List

API — Application Programming Interface
ASIC - Application-specific Integrated Circuit
ATM — Asynchronous Transfer Mode

DARPA — Defense Advanced Research Projects Agency
IDS — Intrusion Detection System

IP — Internet Protocol

MAC — Media Access Control

NEMs — Network Equipment Manufacturers
OpenSig — Open Signaling

OVS — Open vSwitch

QoS — Quality of Services

REST — Representational State Transfer

SDN - Software-defined Network

TCAM — Ternary Content Addressable Memory
TCP — Transmission Control Protocol

UDP — User Datagram Protocol

VLAN - Virtual Local Area Network

136

20. Software Defined Networks Basics

20.1 SDN architecture. Fundamental notions, principles and
concepts

20.1.1 The evolution of networks, switches and control planes

Since the first network was created in 1969, almost everything
other than the physical layer (layer one) was implemented in software.
Even the simplest tasks, such as MAC-level decisions, were used by
software inside the devices. This remained true even through the early
days of the commercialized Internet in the early 1990s. But step by step
networks have changed, and practically everything has been
implemented at the physical level through a short time. In the Fig. 20.1
we can see the evolutions of the networks [1].

~1990 ~1995 ~2000 ~2005

Gl » Software
Qo5, ACLs, Control
Routing, QoS, ACLs,

Layer 2 Forwarding, Control

Routing, QaS, ACLs, -
Cantral Qo3, ACLs

| Rauting I I Rauting I

A

Hardware
| Layer 2 Forwanding] | Layer 2 Forwarding] I Layer 2 Farwarding]
Physical | | Physical] | Physical] I Physical]
cusssssasasa [[[[J@ =ssssssssssssnssanssnssnnssnnancasnnsnnad

Fig. 20.1 — Migration of layers into the hardware

The network device evolution we have recounted thus far has
yielded the following current situation:

— bridging (layer two forwarding). Basic layer two MAC
forwarding of packets is handled in the hardware tables;

— routing (layer three forwarding). To keep up with today’s high-
speed links and to route packets at link speeds, layer three forwarding
functionality is also implemented in hardware tables;

137

20. Software Defined Networks Basics

— advanced filtering and prioritization. General traffic management
rules such as ACLs, which filter, forward, and prioritize packets, are
handled via hardware tables located in the hardware (e.g., in TCAMS)
and accessed through low-level software;

— control. The control software used to make broader routing
decisions and to interact with other devices in order to converge on
topologies and routing paths is implemented in software that runs
autonomously inside the devices. Since the current control plane
software in networking devices lacks the ability to distribute policy
information about such things as security, QoS, and ACLs, these
features must still be provisioned through relatively primitive
configuration and management interfaces.

Given this landscape of layer two and layer three hardware
handling most forwarding tasks, software in the device providing
control plane functionality, and policy implemented via configuration
and management interfaces, an opportunity presents itself to simplify
networking devices and move forward to the next generation of
networking [1].

20.1.2 SDN architecture

SDN is about moving that control software off the device and into
a centrally located compute resource that is capable of seeing the entire
network and making decisions that are optimal, given a complete
understanding of the situation. According to this, we can to define 3
layers of SDN architecture (Fig. 20.2):

— forwarding. Forwarding responsibilities, implemented in
hardware tables, remain on the device. In addition, features such as
filtering based on ACLs and traffic prioritization are enforced locally
on the device as well;

— control. All needed control software moved from devices to
centralized controller, which has complete view of the network. That’s
means that controller will manage the network, will provide routes
between devices, will make rules for the network and so on;

— application. Above the controller is where the network
applications run, implementing higher-level functions and, additionally,
participating in decisions about how best to manage and control packet
forwarding and distribution within the network.

138

20. Software Defined Networks Basics

Business applications

Application layer Applications
API
SDN controller
Control layer Control plane
Control and data
planes interfaces
Forwarding layer Data plane

Network devices

Fig. 20.2 — SDN architecture

20.1.3 SDN predecessors

Concept of programmable networks appeared in the mid-90s,
when the Internet was starting experience widespread success. Because
of it networks started to growing, connecting a huge number of devices.
But some time later, appeared a problem of managing the network
infrastructure. Network devices were used as black boxes designed to
support specific protocols essential for the operation of the network,
without even guaranteeing vendor interoperability. Therefore,
modifying the control logic of such devices was not an option, severely
restricting network evolution. To remedy this situation, various efforts
focused on finding novel solutions for creating more open, extensible
and programmable networks [2].

Two of the most significant early ideas proposing ways of
separating the control software from the underlying hardware and
providing open interfaces for management and control were of the
Open Signaling (OpenSig) working group and from the Active
Networking initiative [3, 4].

OpenSig. The Open Signaling working group appeared in 1995
and focused on applying the concept of programmability in ATM
networks. The main idea was the separation of the control and data

139

20. Software Defined Networks Basics

plane of networks, with the signaling between the planes performed
through an open interface. As a result, it would be possible to control and
program ATM switches remotely, essentially turning the whole network
into a distributed platform, greatly simplifying the process of deploying
new services. The ideas advocated by the OpenSig community for open
signaling interfaces acted as motivation for further research. Towards this
direction, the Tempest framework [5], based on the OpenSig philosophy,
allowed multiple switch controllers to manage multiple partitions of the
switch simultaneously and consequently to run multiple control
architectures over the same physical ATM network. This approach gave
more freedom to network operators, as they were no longer forced to
define a single unified control architecture satisfying the control
requirements of all future network services.

Active Networking. The Active Networking initiative appeared in the
mid-90s and was mainly supported by DARPA [6]. Like OpenSig, its main
goal was the creation of programmable networks which would promote
network innovations. The main idea behind active networking is that
resources of network nodes are exposed through a network API, allowing
network operators to actively control the nodes as they desire by executing
arbitrary code. Therefore, contrary to the static functionality offered by
OpenSig networks, active networking allowed the rapid deployment of
customized services and the dynamic configuration of networks at run-
time.

The general architecture of active networks defines a three-layer stack
on active nodes. At the bottom layer sits an operating system (NodeOS)
multiplexing the node’s communication, memory and computational
resources among the packet flows traversing the node. Various projects
proposing different implementations of the NodeOS exist, with some
prominent examples being the NodeOS project and Bowman. At the next
layer exist one or more execution environments providing a model for
writing active networking applications, including ANTS and PLAN.
Finally, at the top layer are the active applications themselves, i.e. the code
developed by network operators.

Two programming models fall within the work of the active
networking community; the capsule model, in which the code to be
executed is included in regular data packets; and the programmable
router/switch model, in which the code to be executed at network nodes is
established through out-of-band mechanisms. Out of the two, the capsule

140

20. Software Defined Networks Basics

model came to be the most innovative and most closely associated with
active networking. The reason is that it offered a radically different
approach to network management, providing a simple method of installing
new data plane functionality across network paths. However, both models
had a significant impact and left an important legacy, since many of the
concepts met in SDN (separation of the control and data plane, network
APIs etc.) come directly from the efforts of the active networking
community [2].

20.1.4 Network virtualization

The urgency for automation, multitenancy, and multipathing has
increased as a result of the scale and fluidity introduced by server and
storage virtualization. The general idea of virtualization is that you create a
higher-level abstraction that runs on top of the actual physical entity you
are abstracting. The growth of compute and storage server virtualization
has created demand for network virtualization. This means having a virtual
abstraction of a network running on top of the actual physical network.
With virtualization, the network administrator should be able to create a
network anytime and anywhere he chooses, as well as expanding and
contracting networks that already exist. Intelligent virtualization software
should be capable of this task without requiring the upper virtualized layer
to be aware of what is occurring at the physical layer [1].

Server virtualization has caused the scale of networks to increase as
well, and this increased scale has put pressure on layer two and layer three
networks as they exist today. Some of these pressures can be alleviated to
some degree by tunnels and other types of technologies, but fundamental
network issues remain, even in those situations. Consequently, the degree
of network virtualization required to keep pace with data center expansion
and innovation is not possible with the network technology that is available
today [1].

To summarize, advances in data center technology have caused
weaknesses in the current networking technology to become more
apparent. This situation has spurred demand for better ways to construct
and manage networks [7], and that demand has driven innovation around
SDN [8].

141

20. Software Defined Networks Basics

20.2 An in-depth look at the aspects of implementation.
Differentiation between Control and Data Planes

20.2.1 Fundamental characteristics of SDN. Plane separation

Software Defined Networking, as it evolved from prior proposals,
standards, and implementations such as ForCES, 4D, and Ethane, is
characterized by five fundamental traits: plane separation, a simplified
device, centralized control, network automation and virtualization, and
openness.

The first fundamental characteristic of SDN is the separation of the
forwarding and control planes. Forwarding functionality, including the
logic and tables for choosing how to deal with incoming packets based on
characteristics such as MAC address, IP address, and VLAN ID, resides in
the forwarding plane. The fundamental actions performed by the
forwarding plane can be described by the way it dispenses with arriving
packets. It may forward, drop, consume, or replicate an incoming packet.
For basic forwarding, the device determines the correct output port by
performing a lookup in the address table in the hardware ASIC. A packet
may be dropped due to buffer overflow conditions or due to specific
filtering resulting from a QoS rate-limiting function, for example. Special-
case packets that require processing by the control or management planes
are consumed and passed to the appropriate plane. Finally, a special case of
forwarding pertains to multicast, where the incoming packet must be
replicated before forwarding the various copies out different output ports.

The protocols, logic, and algorithms that are used to program the
forwarding plane reside in the control plane. Many of these protocols and
algorithms require global knowledge of the network. The control plane
determines how the forwarding tables and logic in the data plane should be
programmed or configured. Since in a traditional network each device has
its own control plane, the primary task of that control plane is to run
routing or switching protocols so that all the distributed forwarding tables
on the devices throughout the network stay synchronized. The most basic
outcome of this synchronization is the prevention of loops.

Although these planes have traditionally been considered logically
separate, they co-reside in legacy Internet switches. In SDN, the control
plane is moved off the switching device and onto a centralized controller

[1].

142

20. Software Defined Networks Basics

20.2.2 SDN operations

At a conceptual level, the behavior and operation of a Software Defined
Network is straightforward. In Fig. 20.3 we provide a graphical depiction of
the operation of the basic components of SDN: the SDN devices, the
controller, and the applications. The easiest way to understand the operation
is to look at it from the bottom up, starting with the SDN device. As shown
in Fig. 20.3, the SDN devices contain forwarding functionality for deciding
what to do with each incoming packet. The devices also contain the data that
drives those forwarding decisions. The data itself is actually represented by
the flows defined by the controller, as depicted in the upper-left portion of
each device.

A flow describes a set of packets transferred from one network
endpoint (or set of endpoints) to another endpoint (or set of endpoints).

The endpoints may be defined as IP address TCP/UDP port pairs,
VLAN endpoints, layer three tunnel endpoints, and input ports, among other
things. One set of rules describes the forwarding actions that the device
should take for all packets belonging to that flow. A flow is unidirectional in
that packets flowing between the same two endpoints in the opposite
direction could each constitute a separate flow. Flows are represented on a
device as a flow entry.

Global Network View

App || App || App || App (e)
High-Performance
Machine
[Northbound API
Controller > E
[Southbound API

=
Forwarding Forwarding Forwarding SDN
Devices
flows flows
Data Data]
Forwarding Forwarding

Fig. 20.3 — SDN operations overview

143

20. Software Defined Networks Basics

A flow table resides on the network device and consists of a series of
flow entries and the actions to perform when a packet matching that flow
arrives at the device. When the SDN device receives a packet, it consults its
flow tables in search of a match. These flow tables had been constructed
previously when the controller downloaded appropriate flow rules to the
device. If the SDN device finds a match, it takes the appropriate configured
action, which usually entails forwarding the packet. If it does not find a
match, the switch can either drop the packet or pass it to the controller,
depending on the version of OpenFlow and the configuration of the switch.

The definition of a flow is a relatively simple programming expression
of what may be a very complex control plane calculation previously
performed by the controller. For the reader who is less familiar with
traditional switching hardware architecture, it is important to understand that
this complexity is such that it simply cannot be performed at line rates and
instead must be digested by the control plane and reduced to simple rules
that can be processed at that speed. In Open SDN, this digested form is the
flow entry.

The SDN controller is responsible for abstracting the network of SDN
devices it controls and presenting an abstraction of these network resources
to the SDN applications running above. The controller allows the SDN
application to define flows on devices and to help the application respond to
packets that are forwarded to the controller by the SDN devices. In Fig. 20.3
we see on the right side of the controller that it maintains a view of the entire
network that it controls. This permits it to calculate optimal forwarding
solutions for the network in a deterministic, predictable manner. Since one
controller can control a large number of network devices, these calculations
are normally performed on a high-performance machine with an order-of-
magnitude performance advantage over the CPU and memory capacity than
is typically afforded to the network devices themselves. For example, a
controller might be implemented on an eight-core, 2-GHz CPU versus the
single-core, 1-GHz CPU that is more typical on a switch.

SDN applications are built on top of the controller. These applications
should not be confused with the application layer defined in the seven-layer
OSI model of computer networking. Since SDN applications are really part
of network layers two and three, this concept is orthogonal to that of
applications in the tight hierarchy of OSI protocol layers. The SDN
application interfaces with the controller, using it to set proactive flows on
the devices and to receive packets that have been forwarded to the controller.

144

20. Software Defined Networks Basics

Proactive flows are established by the application; typically, the application
will set these flows when the application starts up, and the flows will persist
until some configuration change is made. This kind of proactive flow is
known as a static flow. Another kind of proactive flow is where the
controller decides to modify a flow based on the traffic load currently being
driven through a network device.

In addition to flows defined proactively by the application, some flows
are defined in response to a packet forwarded to the controller. Upon receipt
of incoming packets that have been forwarded to the controller, the SDN
application will instruct the controller as to how to respond to the packet and,
if appropriate, will establish new flows on the device in order to allow that
device to respond locally the next time it sees a packet belonging to that
flow. Such flows are called reactive flows. In this way, it is now possible to
write software applications that implement forwarding, routing, overlay,
multipath, and access control functions, among others.

There are also reactive flows that are defined or modified as a result of
stimuli from sources other than packets from the controller. For example, the
controller can insert flows reactively in response to other data sources such
as intrusion detection systems (IDS) or the NetFlow traffic analyzer [9].

An OpenFlow protocol as the mean of communication between the
controller and the device is depicted in Fig. 20.4 [1].

Controller

Forwarding | Forwarding Forwarding
flows i flows
Data ——Dala__ |

Forwarding Forwarding

Fig. 20.4 — Controller-to-device communication

145

20. Software Defined Networks Basics

20.2.3 SDN switches

First of all, to create a SDN, you need special switches. A number
of SDN switches implementations are available today, both commercial
and open source. Software SDN devices are predominantly open
source. Currently, two main alternatives are available: Open vSwitch
(OVS) from Nicira and Indigo from Big Switch [10, 11]. Incumbent
network equipment manufacturers (NEMs), such as Cisco, HP, NEC,
IBM, Juniper, and Extreme, have added OpenFlow support to some of
their legacy switches. Generally, these switches may operate in both
legacy mode as well as OpenFlow mode. There is also a new class of
devices calledwhite-box switches, which are minimalist in that they are
built primarily from merchant silicon switching chips and a commodity
CPU and memory by a low-cost original device manufacturer (ODM)
lacking a well-known brand name. One of the premises of SDN is that
the physical switching infrastructure may be built from OpenFlow-
enabled white-box switches at far less direct cost than switches from
established NEMs. Most legacy control plane software is absent from
these devices, since this functionality is largely expected to be provided
by a centralized controller. Such white-box devices often use the open
source OVS or Indigo switch code for the OpenFlow logic, then map
the packet-processing part of those switch implementations to their
particular hardware [1].

20.2.4 SDN controller. Existing SDN controller implementations
and their comparison

The controller maintains a view of the entire network, implements
policy decisions, controls all the SDN devices that comprise the
network infrastructure, and provides a northbound API for applications.
When we have said that the controller implements policy decisions
regarding routing, forwarding, redirecting, load balancing, and the like,
these statements referred to both the controller and the applications that
make use of that controller. Controllers often come with their own set
of common application modules, such as a learning switch, a router, a
basic firewall, and a simple load balancer. These are really SDN
applications, but they are often bundled with the controller. Here we
focus strictly on the controller.

146

20. Software Defined Networks Basics

The anatomy of an SDN controller is represented in Fig. 20.5. The
modules that provide the controller’s core functionality, both a
northbound and a southbound API, and a few sample applications that
might use the controller are depicted in Fig. 20.5. As we described
earlier, the southbound API is used to interface with the SDN devices.

Learning
GUI Switch Router s ‘ Others
Norihibound REST || Python || Java
API AP API

Modules _—

Disco & D;‘vice Flows
r

Topo ¢

Southbound
API |

OpenFlow |

Fig. 20.5 — SDN controller components

This API is OpenFlow in the case of Open SDN or some
proprietary alternative in other SDN solutions. It is worth noting that in
some product offerings, both OpenFlow and alternatives coexist on the
same controller. Early work on the southbound API has resulted in
more maturity of that interface with respect to its definition and
standardization. [1] OpenFlow itself is the best example of this
maturity, but de facto standards such as the Cisco CLI and SNMP also
represent standardization in the southbound-facing interface.
OpenFlow’s companion protocol, OF-Config [12], and Nicira’s Open
vSwitch Database Management Protocol (OVSDB) [13] are both open
protocols for the southbound interface, though these are limited to
configuration roles.

Unfortunately, there is currently no northbound counterpart to the
southbound OpenFlow standard or even the de facto legacy standards.
This lack of a standard for the controller-to-application interface is
considered a current deficiency in SDN, and some bodies are

147

20. Software Defined Networks Basics

developing proposals to standardize it. The absence of a standard
notwithstanding, northbound interfaces have been implemented in a
number of disparate forms. For example, the Floodlight controller
includes a Java APl and a Representational State Transfer (RESTful)
API [14]. The OpenDaylight controller provides a RESTful API for
applications running on separate machines [15]. The northbound API
represents an outstanding opportunity for innovation and collaboration
among vendors and the open source community.

Requirements to SDN controllers can be divided into 2 main
characteristics:

— performance: throughput (about 10M events per second), delay
(us);

— programmability: functionality (applications and services),
programming Interface.

There are many different controllers existing. All of them have
different characteristics. The main controllers and their general
characteristics are listed in the table 20.1.

Table 20.1 — The main controllers and their general characteristics

POX Ryu Trema FloodLight OpenDaylight
Interfaces SB(OpenFlow) | SB(OpenFlow) | SB(OpenFlow) | SB(OpenFlow) | SB(OpenFlow)
+SB NB (Java & NB (Java &
Management REST) REST)
(OVSDB
JSON)
Virtualization | Mininet&Open | Mininet&Open Buil-in Mininet&Open | Mininet&Open
vSwitch vSwitch Emulation vSwitch vSwitch
Virtual tool
GUIL Yes Yes No WebUI Yes
Rest API No Yes No Yes Yes
Productivity Medium Medium High Medium Medium
Open Source Yes Yes Yes Yes Yes
Documentation Poor Medium Medium Good Medium
Language Python Python- Ruby/C Java + Any Java
support Specific + languages that
Message uses REST
Passing
Reference
Modularity Medium Medium Medium High High
Platform Linux, Mac OS, Most Linux only Linux, Mac Linux
support Windows Supported on 08, Windows
Linux
TLS support Yes Yes Yes Yes Yes
OpenFlow OF v1.0 OF v1.0. OF OF v1.0 OF v1.0 OF v1.0 OF
support v1.2, OF v1.3 v1.3
OpenStack NO Strong Weak Medium Medium
support
(quantum)

148

20. Software Defined Networks Basics

In the Fig. 20.6 the comparison of controllers is provided. The
dependence between flows per second and the number of threads is
shown. The increase of threads number stipulates the increase of flows
per second. More flows per second gives more performance.

8000000
7000000
6000000
—— NOX
5000000 —a— POX
g 4000000 —@— FloodLight
~—%— Beacon
T 3000000 —— MUL
2000000 —H— Maestio
—+—Ryu
1000000

1 2 3 4 5 6 7 8 9 100 11 12

Tiveads Shalimov A.V.

Fig. 20.6 — Comparison of controllers

In addition to the above controllers, there is a controller with very
high performance. It is called In-kernel controller. The comparison
between In-kernel controller and others is given in Fig. 20.7.

35000000
30000000 {
25000000 e [n-kernel
<= NOX
e 20000000 == P OX
§ ‘/{ —&— FloodLight
= 15000000 / == Beacon
10000000 == UL
== aestro
=t Ryu

1 2 3 4 5 6 7 8 9 10 11 12 ShalimovAV

Fig. 20.7 — Comparison between In-kernel controller and others

149

20. Software Defined Networks Basics

As it can be seen in Fig. 20.7, the number of flows per second of
this controller is significantly higher than others.

High performance of this controller is provided by the
implementation in the Linux kernel. In-kernel controller is super
productive, because of less time to work with virtual memory, but it has
limitations as well. First of all, it's very difficult to develop your
applications because of low-level programming language. Also it has
limited number of libraries and debugging tools. To provide high
performance, hardware of controller must be very powerful. Otherwise,
there is a high risk of crashing the whole system.

20.3 OpenFlow protocol. The basics, peculiarities and
limitations

20.3.1 OpenFlow specification overview

The OpenFlow specification has been evolving for a number of
years. The nonprofit Internet organization openflow.org was created in
2008 as a mooring to promote and support OpenFlow. Though
openflow.org existed formally on the Internet, in the early years the
physical organization was really just a group of people that met
informally at Stanford University. From its inception OpenFlow was
intended to “belong” to the research community to serve as a platform
for open network switching experimentation, with an eye on
commercial use through commercial implementations of this public
specification. The first release, Version 1.0.0, appeared on December
31, 2009, though numerous point prereleases existed before then and
were made available for experimental purposes as the specification
evolved. At this point and continuing up through release 1.1.0,
development and management of the specification were performed
under the auspices of openflow.org. On March 21, 2011, the Open
Network Foundation (ONF) was created for the express purpose of
accelerating the delivery and commercialization of SDN. There are a
number of proponents of SDN that offer SDN solutions that are not
based on OpenFlow. For the ONF, however, OpenFlow remains at the
core of its SDN vision for the future. For this reason, the ONF has
become the responsible entity for the evolving OpenFlow specification.

150

20. Software Defined Networks Basics

Starting after the release of V.1.1, revisions to the OpenFlow
specification have been released and managed by the ONF.

One could get the impression from the fanfare surrounding
OpenFlow that the advent of this technology has been accompanied by
concomitant innovation in switching hardware. The reality is a bit more
complicated. The OpenFlow designers realized a number of years ago
that many switches were really built around ASICs controlled by rules
encoded in tables that could be programmed. Over time, fewer
homegrown versions of these switching chips were being developed,
and there was greater consolidation in the semiconductor industry.
More manufacturers’ switches were based on ever-consolidating
switching architecture and programmability, with ever-increasing use
of programmable switching chips from a relatively small number of
merchant silicon vendors. OpenFlow is an attempt to allow the
programming, in a generic way, of the various implementations of
switches that conform to this new paradigm. OpenFlow attempts to
exploit the table-driven design extant in many of the current silicon
solutions. As the number of silicon vendors consolidates, there should
be a greater possibility for alignment with future OpenFlow versions.

It is worth pausing here to remark on the fact that we are talking a
lot about ASICs for a technology called Software Defined Networking.
Yet hardware must be part of the discussion, since it is necessary to use
this specialized silicon in order to switch packets at high line rates.
What is really meant by the word software in the name SDN, then, is
that the SDN devices are fully programmable, not that everything is
done using software running on a traditional CPU [1].

20.3.2 OpenFlow switch

The basic functions on an OpenFlow V.1.0 switch and its
relationship to a controller are depicted in Fig. 20.8. As would be
expected in a packet switch, we see that the core function is to take
packets that arrive on one port (path X on port 2 in Fig. 20.8) and
forward it through another port (port N in Fig. 20.8), making any
necessary packet modifications along the way. A unique aspect of the
OpenFlow switch is embodied in the packet-matching function shown
in Fig. 20.8. The wide, gray, double arrow in Fig. 20.8 starts in the
decision logic, shows a match with a particular entry in that table, and

151

20. Software Defined Networks Basics

directs the now-matched packet to an action box on the right. This
action box has three fundamental options for the disposition of this
arriving packet:

— forward the packet out a local port, possibly modifying certain
header fields first;

— drop the packet;

— pass the packet to the controller.

These three fundamental packet paths are illustrated in Fig. 20.8.

OpenFlow Caontroller

OpenFlow Protocol

Y
Pkt Qut
Secure Channel ®

1 [(Y) Pkiout A Pkiin
L

Local In IE‘ @
Packet- ! [Action |
s H o @
@ Pkt
Local Out
Port 1| |Port2| (Port3| |Portd amm Part K mm Fort N

Fig. 20.8 — OpenFlow v1.0 compatible switch

In Fig. 20.8, in the case of path C, the packet is passed to the
controller over the secure channel shown in Fig. 20.8. If the controller
has either a control message or a data packet to give to the switch, the
controller uses this same secure channel in the reverse direction. When

152

20. Software Defined Networks Basics

the controller has a data packet to forward out through the switch, it
uses the OpenFlow PACKET_OUT message. We see in Fig. 20.8 that
such a data packet coming from the controller may take two different
paths through the OpenFlow logic, both denoted with Y.

In the rightmost case, the controller directly specifies the output
port and the packet is passed to that port N in the example. In the
leftmost path Y case, the controller indicates that it wants to defer the
forwarding decision to the packet-matching logic. A given OpenFlow
switch implementation is either OpenFlow-only or OpenFlow-hybrid.
An OpenFlow-only switch is one that forwards packet sonly according
to the OpenFlow logic described above. An OpenFlow hybrid is a
switch that can also switch packets in its legacy mode as an Ethernet
switch or IP router. One can view the hybrid case as an OpenFlow
switch residing next to a completely independent traditional switch.
Such a hybrid switch requires a preprocessing classification mechanism
that directs packets to either OpenFlow processing or the traditional
packet processing. It is probable that hybrid switches will be the norm
during the migration to pure OpenFlow implementations. Note that we
use the term OpenFlow switch in this chapter instead of the term
OpenFlow device we customarily use. This is because switch is the
term used in the OpenFlow specification. In general, though, we opt to
use the term device, since there are already non switch devices being
controlled by OpenFlow controllers, such as wireless access points [1].

20.3.3 OpenFlow controller

Modern Internet switches make millions of decisions per second
about whether or not to forward an incoming packet, to what set of
output ports it should be forwarded, and what header fields in the
packet may need to be modified, added, or removed. This is a very
complex task. The fact that this can be carried out at line rates on
multigigabit media is a technological wonder. The switching industry
has long understood that not all functions on the switching data path
can be carried out at line rates, so there has long been the notion of
splitting the pure data plane from the control plane. The data plane
matches headers, modifies packets, and forwards them based on a set of
forwarding tables and associated logic, and it does this very, very fast.
The rate of decisions being made as packets stream into a switch

153

20. Software Defined Networks Basics

through a 100 Gbps interface is astoundingly high. The control plane
runs routing and switching protocols and other logic to determine what
the forwarding tables and logic in the data plane should be. This
process is very complex and cannot be done at line rates as the packets
are being processed, and it is for this reason we have seen the control
plane separated from the data plane, even in legacy network switches.

The OpenFlow control plane differs from the legacy control plane
in three key ways. First, it can program different data plane elements
with a common, standard language, OpenFlow. Second, it exists on a
separate hardware device than the forwarding plane, unlike traditional
switches, where the control plane and data plane are instantiated in the
same physical box. This separation is made possible because the
controller can program the data plane elements remotely over the
Internet. Third, the controller can program multiple data plane elements
from a single control plane instance.

The OpenFlow controller is responsible for programming all the
packet-matching and forwarding rules in the switch. Whereas a
traditional router would run routing algorithms to determine how to
program its forwarding table, that function oran equivalent replacement
to it is now performed by the controller. Any changes that result in
recomputing routes will be programmed onto the switch by the
controller [1].

20.3.4 OpenFlow Protocol

As shown in Fig. 20.8, the OpenFlow protocol defines the
communication between an OpenFlow controller and an OpenFlow
switch. This protocol is what most uniquely identifies OpenFlow
technology. At its essence, the protocol consists of a set of messages
that are sent from the controller to the switch and a corresponding set of
messages that are sent in the opposite direction. Collectively the
messages allow the controller to program the switch so as to allow fine-
grained control over the switching of user traffic. The most basic
programming defines, modifies, and deletes flows. The endpoints may
be defined as IP address-TCP/UDP port pairs, VLAN endpoints, layer
three tunnel endpoints, or input ports, among other things. One set of
rules describes the forwarding actions that the device should take for all
packets belonging to that flow. When the controller defines a flow, it is

154

20. Software Defined Networks Basics

providing the switch with the information it needs to know how to treat
incoming packets that match that flow. The possibilities for treatment
have grown more complex as the OpenFlow protocol has evolved, but
the most basic prescriptions for treatment of an incoming packet are
denoted by paths A, B, and C in Fig. 20.8. These three options are to
forward the packet out one or more output ports, drop the packet, or
pass the packet to the controller for exception handling.

The OpenFlow protocol has evolved significantly with each
version of OpenFlow, so we cover the detailed messages of the protocol
in the version-specific sections that follow. The specification has
evolved from development point release 0.2.0 on March 28, 2008,
through release V.1.3.0, released in 2012. Numerous point releases over
the intervening years have addressed problems with earlier releases and
added incremental functionality. OpenFlow was viewed primarily as an
experimental platform in its early years. For that reason, there was little
concern on the part of the development community in advancing this
standard to provide for interoperability between releases. As OpenFlow
began to see more widespread commercial deployment, backward
compatibility has become an increasingly important issue. Many
features, however, were introduced in earlier versions of OpenFlow that
are no longer present in the current version [16].

20.3.5 OpenFlow v1.0 specification

OpenFlow v1.0 was released in December 2009 [17]. This version
supports multiple queues per output port. Queues support the ability to
provide minimum bandwidth guarantees; the bandwidth allocated to
each queue is configurable. The name slicing is derived from the ability
to provide a slice of the available network bandwidth to each queue.

Flows have been extended to include an opaque identifier, referred
to as a cookie. The cookie is specified by the controller when the flow
is installed; the cookie will be returned as part of each flow stats and
flow expired message.

The OFPST DESC (switch description) reply in v1.0 includes a
datapath description field. This is a user specifiable field that allows a
switch to return a string specified by the switch owner to describe the
switch.

155

20. Software Defined Networks Basics

The reference implementation in this version can match on IP
fields inside ARP packets. The source and destination protocol address
are mapped to the nw_src and nw_dst fields respecitively, and the
opcode is mapped to the nw_proto field.

Flow durations in stats and expiry messages in v1.0 expresses with
nanosecond resolution. Note that the accuracy of flow durations in the
reference implementation is on the order of milliseconds. The actual
accuracy particularly depends on kernel parameters.

20.3.6 OpenFlow v1.1 specification

OpenFlow v1.1 was released in February 2011 [18].

Prior versions of the OpenFlow specification did expose to the
controller the abstraction of a single table. The OpenFlow pipeline
could internally be mapped to multiple tables, such as having a separate
wildcard and exact match table, but those tables would always act
logically as a single table.

OpenFlow 1.1 introduces a more flexible pipeline with multiple
tables. Exposing multiple tables has many advantages. The first
advantage is that many hardware have multiple tables internally (for
example L2 table, L3 table, multiple TCAM lookups), and the multiple
table support of OpenFlow may enable to expose this hardware with
greater efficiency and flexibility. The second advantage is that many
network deployments combine orthogonal processing of packets (for
example ACL, QoS and routing), forcing all those processing in a
single table creates huge ruleset due to the cross product of individual
rules, multiple tables may decouple properly those processing.

The new OpenFlow pipeline with multiple tables is quite different
from the simple pipeline of prior OpenFlow versions. The new
OpenFlow pipeline expose a set of completely generic tables,
supporting the full match and full set of actions. It’s difficult to build a
pipeline abstraction that represent accurately all possible hardware,
therefore OpenFlow 1.1 is based on a generic and flexible pipeline that
may be mapped to the hardware. Some limited table capabilities are
available to denote what each table is capable of supporting.

Packets are processed through the pipeline, they are matched and
processed in the first table, and may be matched and processed in other
tables. As it goes through the pipeline, a packet is associated with an

156

20. Software Defined Networks Basics

action set, accumulating action, and a generic metadata register. The
action set is resolved at the end of the pipeline and applied to the
packet. The metadata can be matched and written at each table and
enables to carry state between tables.

OpenFlow introduces a new protocol object called instruction to
control pipeline processing. Actions which were directly attached to
flows in previous versions are now encapsulated in instructions.
Instructions may apply those actions between tables or accumulate
them in the packet action set. Instructions can also change the metadata,
or direct packet to another table.

The new group abstraction enables OpenFlow to represent a set of
ports as a single entity for forwarding packets. Different types of
groups are provided, to represent different abstractions such as
multicasting or multipathing. Each group is composed of a set group
buckets, each group bucket contains the set of actions to be applied
before forwarding to the port. Groups buckets can also forward to other
groups, enabling to chain groups together.

Prior versions of the OpenFlow specification had limited VLAN
support, it only supported a single level of VLAN tagging with
ambiguous semantic. The new tagging support has explicit actions to
add, modify and remove VLAN tags, and can support multiple level of
VLAN tagging. It also adds similar support the MPLS shim headers.

Prior versions of the OpenFlow specification assumed that all the
ports of the OpenFlow switch were physical ports. Version 1.1 adds
support for virtual ports, which can represent complex forwarding
abstractions such as LAGs or tunnels.

Prior versions of the OpenFlow specification introduced the
emergency flow cache as a way to deal with the loss of connectivity
with the controller. The emergency flow cache feature was removed in
this version of the specification, due to the lack of adoption, the
complexity to implement it and other issues with the feature semantic.

This version of the specification adds two simpler modes to deal
with the loss of connectivity with the controller. In fail secure mode,
the switch continues operating in OpenFlow mode, until it reconnects to
a controller. In fail standalone mode, the switch reverts to using normal
processing (Ethernet switching).

157

20. Software Defined Networks Basics

20.3.7 OpenFlow v1.2 specification

This version of OpenFlow was released in December 2011 [19].

Prior versions of the OpenFlow specification used a static fixed
length structure to specify ofp_match, which prevents flexible
expression of matches and prevents inclusion of new match fields. The
ofp_match has been changed to a TLV structure, called OpenFlow
Extensible Match (OXM), which dramatically increases flexibility. The
match fields themselves have been reorganised. In the previous static
structure, many fields were overloaded; for instance, tcp.src_port,
udp.src_port, and icmp.code were using the same field entry. Now,
every logical field has its own unique type.

Prior versions of the OpenFlow specification were using hand-
crafted actions to rewrite header fields. The Extensible set_field action
reuses the OXM encoding defined for matches, and enables to rewrite
any header field in a single action (EXT-13). This allows any new
match field, including experimenter fields, to be available for rewrite.
This makes the specification cleaner and eases cost of introducing new
fields.

OpenFlow v1.2 supports IPv6. Added support for matching on
IPv6 source address, destination address, protocol number, traffic class,
ICMPV6 type, ICMPV6 code and IPv6 neighbor discovery header fields
(EXT-1). Added support for matching on IPv6 flow label (EXT-36).

Since version 1.2, OpenFlow started to support multiple
controllers for failover (EXT-39). This scheme is entirely driven by the
controllers, so switches only need to remember the role of each
controller to help the controller election mechanism.

20.3.8 OpenFlow v1.3 specification

OpenFlow v1.3 was released in 2012 [20].

Prior versions of the OpenFlow specification included limited
expression of the capabilities of an OpenFlow switch. OpenFlow 1.3
include a more flexible framework to express capabilities (EXT-123).
The main change is the improved description of table capabilities.
Those capabilities have been moved out of the table statistics structure
in its own request/reply message, and encoded using a flexible TLV
format. This enables the additions of next-table capabilities, table-miss

158

20. Software Defined Networks Basics

flow entry capabilities and experimenter capabilities. Other changes
include renaming the ’stats’ framework into the *multipart’ framework
to reflect the fact that it is now used for both statistics and capabilities,
and the move of port descriptions into its own multipart message to
enable support of a greater number of ports.

Prior versions of the OpenFlow specification included table
configuration flags to select one of three 3 behaviour for handling table-
misses (packet not matching any flows in the table). OpenFlow 1.3
replace those limited flags with the table-miss flow entry, a special flow
entry describing the behaviour on table miss (EXT-108). The table-miss
flow entry uses standard OpenFlow instructions and actions to process
table-miss packets, this enables to use the full flexibility of OpenFlow
in processing those packets. All previous behaviour expressed by the
table-miss config flags can be expressed using the table-miss flow
entry. Many new way of handling table-miss, such as processing table-
miss with normal, can now trivially be described by the OpenFlow
protocol.

Add support for per-flow meters (EXT-14). Per-flow meters can
be attached to flow entries and can measure and control the rate of
packets. One of the main applications of per-flow meters is to rate limit
packets sent to the controller. The per-flow meter feature is based on a
new flexible meter framework, which includes the ability to describe
complex meters through the use of multiple metering bands, metering
statistics and capabilities. Currently, only simple rate-limiter meters are
defined over this framework. Support for color-aware meters, which
support Diff-Serv style operation and are tightly integrated in the
pipeline, was postponed to a later release.

Previous version of the specification introduced the ability for a
switch to connect to multiple controllers for fault tolerance and load
balancing. Per connection event filtering improves the multi-controller
support by enabling each controller to filter events from the switch it
does not want (EXT-120).

A new set of OpenFlow messages enables a controller to configure
an event filter on its own connection to the switch. Asynchronous
messages can be filtered by type and reason. This event filter comes in
addition to other existing mechanisms that enable or disable
asynchronous messages, for example the generation of flow-removed

159

20. Software Defined Networks Basics

events can be configured per flow. Each controller can have a separate
filter for the slave role and the master/equal role.

In previous version of the specification, the channel between the
switch and the controller is exclusively made of a single TCP
connection, which does not allow exploiting the parallelism available in
most switch implementations. OpenFlow 1.3 enables a switch to create
auxiliary connections to supplement the main connection between the
switch and the controller (EXT-114). Auxiliary connections are mostly
useful to carry packet-in and packet-out messages.

In previous version of the specification, the final order of tags in a
packet was statically specified. For example, a MPLS shim header was
always inserted after all VLAN tags in the packet. OpenFlow 1.3
removes this restriction, the final order of tags in a packet is dictated by
the order of the tagging operations, and each tagging operation adds its
tag in the outermost position (EXT-121).

The logical port abstraction enables OpenFlow to support a wide
variety of encapsulations. The tunnel-id metadata
OXM_OF_TUNNEL_ID is a new OXM field that expose to the
OpenFlow pipeline metadata associated with the logical port, most
commonly the demultiplexing field from the encapsulation header
(EXT-107). For example, if the logical port performs GRE
encapsulation, the tunnel-id field would map to the GRE key field from
the GRE header. After decapsulation, OpenFlow would be able to
match the GRE key in the tunnel-id match field. Similarly, by setting
the tunnel-id, OpenFlow would be able to set the GRE key in an
encapsulated packet.

A cookie field was added to the packet-in message (EXT-7). This
field takes its value from the flow the sends the packet to the controller.
If the packet was not sent by a flow, this field is set to Oxfffffffffffffff.
Having the cookie in the packet-in enables the controller to more
efficiently classify packet-in, rather than having to match the packet
against the full flow table.

In September 2012, an OpenFlow v1.3.1 was released. Prior
versions of the OpenFlow specification included a simple scheme for
version negotiation, picking the lowest of the highest version supported
by each side. Unfortunately this scheme does not work properly in all
cases, if both implementations don’t implement all versions up to their

160

20. Software Defined Networks Basics

highest version, the scheme can fail to negotiate a version they have in
common (EXT-157).

The main change is adding a bitmap of version numbers in the
Hello messages using during negotiation. By having the full list of
version numbers, negotiation can always negotiate the appropriate
version if one is available. This version bitmap is encoded in a flexible
TLV format to retain future extensibility of the Hello message.

OpenFlow v1.3.2 was released in April 2013. Changes,
implemented in this version [16]:

— mandate in OXM that 0-bits in mask must be 0-bits in value
(EXT-238);

— allow connection initiated from one of the controllers (EXT-
252);

—add clause on frame misordering to spec (EXT-259);

— set table features doesn’t generate flow removed messages
(EXT-266);

— fix description of set table features error response (EXT-267);

— define use of generation_id in role reply messages (EXT-272);

— switch with only one flow table are not mandated to implement
goto (EXT-280).

20.4 Work related analysis

The section is based on the analysis of work and publications of
specialists from both industrial and scientific fields, e.g. Cisco [1], The
University of Edinburgh (Scotland) [2]. These publications are aimed
particularly at bringing in the idea of programmable network
(University of Cambridge [5]), describing its architecture, building
blocks, defining features, evolutional aspects (Georgia Institute of
Technology, Princeton University [6]) etc.

An insight about the predecessors of Software-defined Networking
and enabling technologies has been build, in particular, on the basis of
publications of The University of Toronto (Canada) [3], Massachusetts
Institute of Technology (MIT, Cambridge) [4].

The publications by the fellows of the aforementioned institutions
and organizations helped to build up the comprehensive picture on the
topic of Software defined Networking basics.

161

20. Software Defined Networks Basics

Conclusion and questions

Thus, the following topics have been covered in given section:

— the architectural part of SDN — its predecessors and network
virtualization aspects;

— an in-depth look at the peculiarities of SDN implementation has
been taken — an accent on the differentiation between the control and
data planes has been put — its defining role has been demonstrated;

— the versions of OpenFlow protocol specification have been
considered.

1. Describe the trend that appeared during the evolution of
networking.

2. Describe the layered structure of SDN architecture.

3. What is the reason for the emergence of programmable
networks?

4. What are the main predecessors of SDN technology?

5. What is the general idea of virtualization? What are the benefits
of a virtual network?

6. Name the fundamental characteristic of SDN.

7. Give the definition of the flow table.

8. How do the SDN-devices interact with each other using the
flow table?

9. List existing software and hardware SDN devices.

10.Describe the concept of SDN controller. Characterize the
structure of SDN controller.

11.List general characteristics of SDN controller.

12.Name some SDN controllers that you are aware of. Give a list
of existing controllers.

13.What are the basic requirements for SDN controllers?

14.Why in-kernel controller provides better performance than
analogues?

15.When did the first version of OpenFlow protocol appear?

16.List three fundamental packet paths inside the OpenFlow v1.0
switch.

17.Describe the difference between the OpenFlow control plane
and the legacy control plane.

18.What does OpenFlow protocol consist of?

162

20. Software Defined Networks Basics

19.List and describe the characteristics of OpenFlow versions.
20.Name the first version of OpenFlow protocol specification with
IPv6 protocol support.

References

1. P. Goransson and C. Black, Software defined networks: A
Comprehensive Approach. Waltham, MA: Elsevier, 2014.

2. X. Foukas, M. K. Marina, and K. Kontovasilis, “Software Defined
Networking Concepts,” P.1-33, 2014, Available:
https://homepages.inf.ed.ac.uk/mmarina/papers/sdn-chapter.pdf. [Accessed:
Nov. 22, 2018].

3. A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, “Open Signaling
for ATM, INTERNET and Mobile Networks (OPENSIG'98),” ACM SIGOPS
Operating Systems Review, vol. 33, no. 2, P. 15-28, 1999.

4. D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall,
and G. J. Minden, “A survey of active network research,” I|EEE
Communications, vol. 35, no. 1, P. 80-86, 1997.

5. J.E. van der Merwe, S. Rooney, I. Leslie, and S. Crosby, “The
tempest-a practical framework for network programmability,” IEEE Network,
vol. 12, no. 3, P. 20-28, 1998.

6. N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an
intellectual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 2, P. 87-98, 2014.

7. Problem Statement: Overlays for Network Virtualization, RFC 7364,
2014. Available: https://tools.ietf.org/html/rfc7364. [Accessed: Nov. 22,
2018].

8. J. Brodkin, “Data Center Startups Emerging to Solve Virtualization
and Cloud Problems,” Network World, 2011. Available:
https://www.pcworld.com/article/230297/Data_Center_Startups_Emerging_to
_Solve_Virtualization_and_Cloud_Problems.html. [Accessed: Nov. 22, 2018].

9. “NetFlow Traffic Analyzer: NetFlow analyzer and bandwidth
monitoring software,” 2018. Available: https://www.solarwinds.com/netflow-
traffic-analyzer. [Accessed: Nov. 22, 2018].

10. “Production Quality, Multilayer Open Virtual Switch,” 2018.
Available: https://www.openvswitch.org/. [Accessed: Nov. 22, 2018].

11. “Open thin switching, open for business,” June 27, 2013. Available:
https://www.bigswitch.com/topics/introduction-of-indigo-virtual-switch-and-
switch-light-beta. [Accessed: Nov. 22, 2018].

12.OpenFlow Management and Configuration Protocol (OF-Config
1.1.1), Version 1.1.1, March 23, 2013. Available:

163

20. Software Defined Networks Basics

https://www.opennetworking.org/wp-content/uploads/2013/02/of-config-1-1-
1.pdf. [Accessed: Nov. 22, 2018].

13.The Open vSwitch Database Management Protocol, RFC 7047,
December 2013. Available: https://tools.ietf.org/html/rfc7047. [Accessed:
Nov. 22, 2018].

14.“Learn REST: a RESTful tutorial,” 2018. Available:
https://www.restapitutorial.com/. [Accessed: Nov. 22, 2018].
15.“Open Daylight: technical overview,” 2015. Available:

http://archivel5.opendaylight.org/project/technical-overview. [Accessed: Nov.
22,2018].

16. OpenFlow Switch Specification, Version 1.3.2, April 25, 2013.
Available: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf. [Accessed:
Nov. 22, 2018].

17. OpenFlow Switch Specification, Version 1.0.0, December 31, 2009.

Available: https://www.opennetworking.org/wp-
content/uploads/2013/04/openflow-spec-v1.0.0.pdf. [Accessed: Nov. 22,
2018].

18.OpenFlow Switch Specification, Version 1.1.0 Implemented,
February 28, 2011. Available: https://3vf60mmveqlg8vzn48qg2071la-
wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-spec-
v1.1.0.pdf. [Accessed: Nov. 22, 2018].

19. OpenFlow Switch Specification, Version 1.2, December 5, 2011.
Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-spec-v1.2.pdf. [Accessed: Nov. 22, 2018].

20. OpenFlow Switch Specification, Version 1.3.0, June 25, 2012.
Available: http://www.cs.yale.edu/homes/yu-minlan/teach/csci599-
fall12/papers/openflow-spec-v1.3.0.pdf. [Accessed: Nov. 22, 2018].

164

21. SDN programming and simulation of SDN composing, configuring and scaling

21. SDN PROGRAMMING AND SIMULATION OF SDN
COMPOSING, CONFIGURING AND SCALING

Dr. V. V. Shkarupylo (ZNTU)

Contents
ADDIEVIALIONS ... s 166
21.1 On the peculiarities of SDN switches and controllers functioning
and IMPIEMENTALIONooviieiiie e 167
20.1.1 Considering SDN as a system. Key components: controllers,
SWIECNIES, NOSES ...ttt ettt e ettt e e ettt e e st e e e st e e s st e e e s rarreeeeans 167
21.1.2 SDN infrastructure simulation and emulation. Network
configuration and SCaliNg.........cccccveviiiiiiicic i 170
21.1.3 Network orchestration and virtualization. Simulation of data
FLOWS ..o 170
21.2 Network programming and teStingccooevvrererereiininninniens 172
21.2.1 Setting up the configuration of SDN network in Mininet
ENVIFONIMENT ..ottt ene s 172
21.2.2 Testing the soundness and consistency of SDN infrastructure
... 174
21.2.3 Dataflow orchestration. SDN reconfiguration and scaling.....178
21.3 SDN programming and Python Scriptingcc.cceeeveveiinnnnnne 178
21.4 Work related analysiscocooerereiiiiiiniienese e 186
Conclusion and QUESLIONSc.coeieeieie e 187
RETEIENCESveeiee et 189

165

21. SDN programming and simulation of SDN composing, configuring and scaling

Abbreviations

AHP — Analytic Hierarchy Process

API — Application Programming Interface
CLI — Command-line Interface

CPU — Central Processing Unit

DISCO - Distributed SDN Control plane
HTML — HyperText Markup Language
MDSE — Model-Driven Software Engineering
NFV — Network Functions Virtualization
ODL — OpenDayL.ight

ONF — Open Networking Foundation
SDN - Software-defined Networking

WG — Working Group

166

21. SDN programming and simulation of SDN composing, configuring and scaling

21.1 On the peculiarities of SDN switches and controllers
functioning and implementation

These days the state of global networking can be characterized as
being on the verge of global refinement [1]. Considering the number of
nodes involved (billions), the questions of the convenience of network
management, monitoring, control, scaling and reconfiguring are
becoming more and more topical. In this context the paradigm of
Software Defined Networking (SDN) can be considered as a plausible
solution.

20.1.1 Considering SDN as a System. Key components:
controllers, switches, hosts

Prior considering the SDN as a system, the fundamental principles
of the SDN should be encompassed [2]:

— separation between the control and data planes — a single
software control program manages multiple data planes;

— usage of lightweight switches;

— utilization of the concept of controller — to coordinate the
lightweight switches in a centralized manner.

One of the main purposes of utilizing the SDN technology is the
potential opportunity to foster the effectiveness of available network
resources utilization to meet the rapidly changing requirements of the
environment, e.g., the ad-hoc requirements taking place within business
processes. This is achievable through software-oriented configuration
and management of the network.

Classical switches are based on proprietary software, which fosters
the interoperability problem, which is potentially resolvable by way of
standardization [2]. Moreover, the cost and complexity of network
management and support increase significantly. To this end, the
industry has also embraced the SDN as the strategy to increase the
functionality of the network while reducing the costs and hardware
complexity [4].

Conventional network solutions utilize dedicated devices to
control and monitor the data flow, e.g., Application Specific Integrated

167

21. SDN programming and simulation of SDN composing, configuring and scaling

Circuits (ASICs), designed for performing specific tasks [5]. The wider
the range of rules the packages can be treated, the more expensive these
devices become. The questions about scalability, security and reliability
are still open though. It has been stated that current networks lack the
flexibility to deal with different types of packets with various content
[5]. Promising solution is in programmable manner of network
configuration and control. Such approach allows create the agile
solutions meeting permanently changing requirements in a sufficient
manner. The available computing resources then getting more
effectively allocated and distributed. This prompts the increase of the
economic effect from the utilization of available resources. Thus, the
company, which has adopted the SDN technology, is expected to be
more relevant in modern highly competitive business-environment.

Nevertheless, the concept of programmable network is not the
novelty of SDN — the experimentations have started with Active
Networking in 1990s, and the concept of control plane has been
introduced in 2000s by the IETF ForCES Working Group (WG) [7].
Those concepts haven’t been implemented widely though.

It is stated that SDN concepts are grounded upon the ideas of
telephony networks, where the differentiation between the data and
control planes has also been applied.

Previous attempts to bring in the concepts of programmable
networks are generalized in table 21.1 [10].

168

21. SDN programming and simulation of SDN composing, configuring and scaling

Table 21.1 — Previous technologies encapsulating the concepts of
programmable networks

No. | Technology | Year Key features

1 | DCAN 1990s | Scalable control and management of
(Devolved ATM networks. The idea — to decouple
Control of control and management functions from
ATM the devices (ATM switches) and assign
Networks) them to a dedicated devices.

2 | Active 1990s | Is supposed to be a programmable
Networking infrastructure to provide customizable

services, e.g., the concept of user
programmable switches etc.

3 | OPENSIG 1995 | The idea — to make ATM, Internet and
(Open mobile networks more open, extensible,
Signaling) and programmable. It is proposed to

achieve that through the open
programmable interfaces.

4 | 4D Project | 2004 | Four planes have been distinguished: a
“decision” plane preserving the global
perception of network, “dissemination”
plane and “discovery” plane devoted to
manage the “data” plane. The later one is
devoted to data transfer.

5 | NETCONF | 2006 | The technology has been proposed by
IETF Network Configuration Working
Group as a protocol for network devices
configuring through corresponding API
(Application Programming Interface).

6 | Ethane 2006

A predecessor of OpenFlow protocol.
The concept of controller to manage
network security and policies in a
centralized manner has been utilized.
Like in SDN, the concepts of controller
and lightweight switch have been
distinguished.

169

21. SDN programming and simulation of SDN composing, configuring and scaling

To sum up, grounding on the content of table 21.1, it can be stated
that building blocks of SDN technology have been created previously,
and the predecessors of OpenFlow protocol, centralized controller and
lightweight switch can be seen in NETCONF and Ethane technologies.

21.1.2 SDN infrastructure simulation and emulation.
Network configuration and scaling

Taking into consideration the scale and the complexity of SDN
solutions, to be confident that certain SDN-devoted application is going
to be functioning as supposed, the preliminary simulation needs to be
conducted. It can be done with corresponding tools. One of such tools
is “fs-sdn”, devoted to do the prototyping and evaluation of SDN-
applications at a large scale [23].

Because of the fact that SDN technology is relatively new, it is
commonly relatively difficult to work with such network directly. The
solution can be found in different emulators usage. The emulator
typically is a set of software and hardware means to represent SDN
network within virtual environment. SDN software is based on Linux
platform. Here are some examples of such emulators: Mininet [28],
EstiNet [29], OpenNet [30], ns-3 [31]. Each of these solutions has its
advantages and drawbacks. The Mininet emulator though is being
frequently considered to be an exemplar to be compared to.

Mininet environment is devoted to be the mean for SDN-network
emulation, particularly by creating virtual hosts, switches, controllers
and connections between these components. Named components and
connections between them form the topology of network.

21.1.3 Network orchestration and virtualization. Simulation of
data flows

Certain controller of SDN is typically considered with respect to
corresponding domain of applicability. Thus, to leverage the
advantages of programmable networking on inter-domain level, the
need for a more global concept arises. Here comes the concept

170

21. SDN programming and simulation of SDN composing, configuring and scaling

orchestrator, encompassing the topology of SDN network on inter-
domain level.

It has been stated that there are plenty of different challenges to
provide an orchestration (centralized control) of SDN networks over
multiple domains, e.g., heterogeneous control planes, diverse transport
technologies and communication protocols inside the domain [27]. The
orchestrator is supposed to be supplied with an abstract view of inter-
domain SDN-network, and each domain-specific controller is assumed
to operate with the services of the following types [27]: provisioning
(e.g., connections modification), topology discovery (export topology
information), monitoring of the created connections, path computation.
The controller is supposed to calculate the paths within the
corresponding domain. On contrary, the orchestrator perceives the
global inter-domain view, obtaining the required data from the
aforementioned services of domain-related controllers.

The concept of orchestration is tightly bound with a concept of
virtualization. Network virtualization is devoted to leverage the
opportunity for the bodies to use the own controller and manage the
available virtual resources [25].

To cope with a constant increase of data traffic and the number of
different intercommunicating applications generating this traffic, the
concept of Network Functions Virtualization (NFV) has arisen [9]. Named
concept is devoted to foster the easiness of network management, granting
the required level of QoS-parameters to all the bodies involved in an ad-
hoc manner. To implement such an approach, the Cloud infrastructure is
supposed to be utilized. Moreover, the NFV technology is considered to be
not a replacement, but a complementary one to the SDN technology [9].

To increase network flexibility and programmability, the concepts of
NFV and SDN are expected to be used in conjunction. To leverage the
advantages of both NFV and SDN technologies, the HyperFlex
architecture has been proposed: it provides the virtualization of control
plane, by adding a control-plane isolation function [24]. Moreover, an
SDN/NFV-enabled edge node for 10T services has been proposed [26].

171

21. SDN programming and simulation of SDN composing, configuring and scaling

21.2 Network programming and testing

A widespread and open implementation of SDN controller is known
as ODL (OpenDayLight) built on MDSE (Model-Driven Software
Engineering) principles [11], [12]. It is stated that ODL has already widely
been deployed (over one hundred deployments) around the world, e.g., by
Orange, China Mobile, AT&T, T-Mobile companies etc. [13].

Another well-known solution is known as Beacon [15]. The key
features of this controller implementation are the following: cross-
platform, open source. The advanced study on SDN controllers has been
conducted in [16]. There are plenty of different other SDN/OpenFlow
controllers, e.g., Floodlight [17], Maestro [19], Ryu [22] etc. The
Floodlight controller has been used as the basis for open distributed SDN
operating system — ONOS (Open Network Operating System) [18].
Moreover, Floodlight is stated to be the first implementation of SDN
controller gaining the attention of both research and industry [18].

Nevertheless, the centralized nature of SDN provokes the scalability
and reliability issues. To this end, the distributed SDN controllers have
been proposed [14]. It is stated that centralized SDN controller provokes
SDN network to be vulnerable to disruptions and attacks [20]. Todiminish
this drawback, an open Distributed SDN Control plane (DISCO) for multi-
domain SDN networks has been proposed [20]. The multi-criteria
decision making method — AHP (Analytic Hierarchy Process) — has
been proposed to choose the best suitable SDN controller [21]. It has
been stated that, on the basis of the research conducted, the best
suitable SDN controller has been found to be Ryu [22].

21.2.1 Setting up the configuration of SDN network in Mininet
environment

The Mininet as an emulator provides the means for controller testing.

Mininet environment provides the means to conduct the development,
investigation, testing and software configuring of SDN systems, etc.

Mininet provides in particular the following abilities:

— can be used as testbed for SDN applications development;

— brings to the table the ability of different developers to jointly work
on network topology;

—includes the means of complex topology testing;

172

21. SDN programming and simulation of SDN composing, configuring and scaling

— provides specialized Application Programming Interface (API),
oriented on Python programming language usage;

Comparing to typical approaches to virtualization, Mininet provides
the following advantages:

— easiness of installation;

— quick boot time;

— easiness of system reconfiguration.

As a drawback the difficulties during the work with graphical
environment of Mininet on Windows platform and also the limitation of
network configuration by hardware resources available for virtual machine
can be pointed out [28].

The tasks to be accomplished during the laboratory work:

— Mininet Linux-environment installation on Windows platform by
way of VirtualBox usage;

— virtual machine network interfaces configuration;

— get in touch with basic console commands of Mininet emulator,
particularly to create the networks with different topologies.

The presentation of accomplished tasks has to be conducted by one of
two ways:

— one-by-one;

— after all the tasks have been accomplished.

Obtained results have to be properly represented in the report to be
defended.

To set up SDN network configuration in Mininet environment, the
following commands can be used:

> sudo mn --test pingall --topo single,3

> sudo mn --test pingall --topo linear,4

> sudo mn --topo tree,depth=1,fanout=2 --test pingall

First command creates the network with three hosts. Second
command creates the liner topology network with four hosts. The final one
creates the tree-like topology.

The --topo tree parameter sets tree topology itself. The depth attribute
sets the amount of switches layers (one in our case, represented with single
element (top) of switches tree): on the potential second layer there will be a
pair of switches, on the third — four, and so on. The fanout attribute defines
the number of connections to each switch. In our case fanout=2. This
means that, taking into consideration that depth=1 (there are no other

173

21. SDN programming and simulation of SDN composing, configuring and scaling

layers with switches and there are no other switches at all), both
connections are the direct connections to hosts.

For instance, if we had depth=2, there would be one switch from the
first layer connected to a pair of switches from the second layer, and those
switches from the second layer would be directly connected to a pair of
hosts each. That means that there would be three switches and four hosts in
total.

The --test pingall parameter means that, after the creation of network
with specified topology, each host should ping all other hosts to test
network consistency.

The procedure of such network creation and testing is a pretty time
consuming process, which will take place about 5 sec and will be shown in
console log.

21.2.2 Testing the soundness and consistency of SDN
infrastructure

To conduct the testing of SDN infrastructure, or a controller in
particular, the Mininet environment is typically used.

Mininet network consists of the following components [47]:

— isolated hosts — each host is emulated as a group of user-level
processes; each emulated host has its virtual Ethernet interface;

— emulated links — as each emulated host has its virtual Ethernet
interface, the link is the representation of connection between the Ethernet
interfaces of two hosts;

—emulated switches — can run in the kernel or in user space.

Mininet environment provides plenty of tools to test the soundness
and consistency of SDN infrastructure. To this end, the concepts of
controller switches and nodes are used. Some of named tools are given in
Table 21.2.

As a result of last command execution, the HTML-code of web-
page, obtained by client, will be shown on the console.

174

21. SDN programming and simulation of SDN composing, configuring and scaling

Table 21.2 — The tools (commands) to test the
configuration of SDN network

Command

Description

> nodes

See information about all network nodes
(there are should be four nodes in total —
controller (c0), switch (s1) and pair of
hosts (hl, h2)) the nodes command
should be used.

> net

See the information about nodes'

interfaces.

> dump

See the information about nodes

configuration.

> hl ifconfig -a

See information about network interfaces
of specified node. For instance, for hl
node the given command should be
executed.

>slps-a

Check the information about processes
executed on nodes. For instance, for sl
node the following command should be
executed.

> hl ping -c 1 h2

Check the connections between two given
hosts.

> pingall

Check the connections between all pairs
of hosts.

> hl python -m
SimpleHTTPServer
80 &

> h2 wget -O - hl

Launch web server and appropriate client
on hosts. Web server will be launched on
h1 node, client — on h2 node.

To expand the demonstrativeness of resulting solutions and to
simplify the process of network creation, configuration and testing, the
corresponding MiniEdit graphical interface can be used [47].

The snapshot of MiniEdit workspace is given in Fig. 21.1.

175

21. SDN programming and simulation of SDN composing, configuring and scaling

E@|

M MiniEdit
File Edit Run Help

\0‘@ .,

]

L

|41

[

Ed
Fig. 21.1 — MiniEdit workspace
The representation of SDN network created in MiniEdi

environment is given in Fig. 21.2.

c0 "w,
- C

sl !
m~ O m
h1 h2
Fig. 21.2 — SDN network
In Fig. 21.2 the network with one controller (c0), one switch (s1)

and pair of hosts (h1 and h2) is represented.
The configuration details of cO are given in Fig. 21.3.

176

21. SDN programming and simulation of SDN composing, configuring and scaling

X Controller Details fo) s]

Name: [co |
Controller Port: 6633

Controller Type: OpenFlow Reference ~|

Protocol: TCP —
Remote/In-Band Controller
’V IP Address: |127.0.0.1

OK ‘ Cancel ‘

Fig. 21.3 — Controller configuration

The version of OpenFlow protocol to be used is assigned in
network preferences (Fig. 21.4).

<>(Preferences =\
IP Base: |10.0.0.0/8| | rsFlow Profile for Open vSwitch
Default Terminal: xterm — Target: |
Start CLI: [Samphng:ﬂqg,
. = Header: 128
Default Switch: Open vSwitch Kernel Mode — | St
Polling: 30
Open vSwitch
~NetFlow Profile for Open vSwitch
OpenFlow 1.0: v
OpenFlow 1.1: | ' Target:|
OpenFlow 1.2: I Active Timeout: ‘6:0
OpenFlow 1.3: Add ID to Interface:
dpctl port:

OK | Cancel ‘

Fig. 21.4 — Network preferences

In Fig. 21.4, it is assigned that OpenFlow 1.0 is used.

177

21. SDN programming and simulation of SDN composing, configuring and scaling

21.2.3 Dataflow orchestration. SDN reconfiguration and scaling

Modern data centers usage scenarios are commonly based on
virtual machines and virtual resources utilization in cloud environment.
To improve the resources utilization and data exchange in cloud
environment, different strategies for dynamic balancing of dataflow are
applied. The need for a dataflow orchestration arises here. Diverse
approaches have been proposed to date. One of those is all about the
architectural design of SDN-based orchestrator for dynamic
communication and computing resources chaining [33]. It provides a
coordinated chaining of network and computing data centers’ services,
fostering the increase of allocated resources utilization. Moreover, SDN
and NFV technologies are considered to be the enabling mechanisms to
bring into life the integration of cloud and network resources. With
respect to 5G services usage domain, the ADRENALINE testbed
(placed in Barcelona, Spain) has been utilized to demonstrate the
soundness of SDN orchestration as feasible and scalable solution for
providing the end-to-end connectivity between heterogeneous networks
and cloud systems [34].

With respect to heterogeneous wireless networks (DenseNets), the
requirement to scale and reconfigure the existing network infrastructure
to fulfill the dynamically changing traffic requirements arises, as
energy consumption and signaling overhead increase. In order to
maximize the number of devices involved to be served simultaneously
and, at the same time, to minimize the total energy consumption while
reducing the costs for service providers, the CROWD architecture has
been proposed [35].

21.3 SDN programming and Python scripting

Covering the aspects of SDN programming, the underlying API
needs to be taken into consideration. Nowadays, this API is represented
with OpenFlow specification, based on Ethernet switch with an internal
flow table, has been proposed [3]. To this end, it is essential to discuss
the aspects of OpenFlow protocol first. Not to mention that OpenFlow
protocol has been originally devoted to allow the researchers run the
experiments on heterogeneous switches in a uniform way. An
OpenFlow switch includes one or more tables of packet-handling rules.

178

21. SDN programming and simulation of SDN composing, configuring and scaling

Each particular rule is aimed at certain portion of traffic. Depending on
traffic properties, the package-related actions can either be dropping,
forwarding or flooding. Depending on the rule, imposed by controller
software, the switches can act in a different manner — as a router,
switch, firewall etc. [2].

21.3.1 An in-depth look at SDN-related programming
approaches, principles and concepts

Prior covering the programming peculiarities, to bring to the table
the possibility of OpenFlow-based communication of controller with
switches, the following idea has to be previously exploited: the majority
of modern Ethernet switches and routers utilize the flow tables. The
OpenFlow protocol is intended to provide an interface to program the
heterogeneous switches and routers [3].

An OpenFlow protocol describes the rules of SDN-compatible
switches intercommunication. The protocol is described within an
OpenFlow specification hosted by an Open Networking Foundation
(ONF) [6].

An OpenFlow switch is built from the following constituents [3]:

— Flow Table, coupled with the actions associated with each flow
entry telling the switch the mechanism of flow processing;

— Secure Channel connecting the switch with a remote control
process — the controller;

— OpenFlow Protocol — an open standard for switch-controller
interaction.

Controller-related applications are devoted to run on a network
operating system. The fundamental idea of SDN is to shift the
computations consuming routing tasks from the hardware layer to a
software-based controller [4].

Utilization of the OpenFlow gives the following opportunities [4]:

— ability to manage multiple switches from a single controller;

— capability to analize traffic statistics;

— forwarding information can be updated dynamically.

A Dbrief list of OpenFlow-complient switches is given in table 21.3.

179

21. SDN programming and simulation of SDN composing, configuring and scaling

Table 21.3 — OpenFlow-compliant switches
Company Switch series
HP FlexFabric 12900, FlexFabric 11900, 8200 zl, 5920,
HP FlexFabric 5700, 5500 El, 5400 zI, 3800, 2920,
12500, 10500, HP FlexFabric 5930, 5900, 5500 HI,
HP 5400R zI2, HP 5130 EI, HP 3500 and 3500 yl;

Cisco Cisco Catalyst 2960X/XR, Nexus 3000, Nexus 9000
etc.;

Dell S4810, S4820T, S5000, S6000, Z9000, 29500, MXL;

NEC PF5240, PF5820, PF6800, PF5248, PF5340, QX-

55200, QX-54100.

Despite of representatives, given in Table 21.3, there are plenty of
other proprietary solutions though.

Since its debut in 2009, an OpenFlow specification has changed
significantly. The latest OpenFlow version is 1.5.1 [6]. The evolution of

OpenFlow releases is given in table 21.4 [8].

Table 21.4 — Evolution of OpenFlow protocol

No | Version Distinctive Goal
Feature
1 | 1.0-1.1 | Multiple table Avoid flow entry explosion.
Group table Enable actions applying to the
groups of flows.
2 | 1.1-1.2 | Multiple Load balancing, scalability.
controller
OXM Match Extend matching flexibility.
3 | 1.2-1.3 | Table missentry | Provide flexibility.
Meter table Add QoS and DiffServ
capability.
4 | 1.3-1.4 | Bundle Enhance switch synchronization.
Synchronized Enhance table scalability.
table
5 | 1.4-1.5 | Scheduled bundle | Enhance switch synchronization.
Egress Table Enabling processing to be done
in output port.

21. SDN programming and simulation of SDN composing, configuring and scaling

The timeline of OpenFlow evolution is given in Fig. 21.5.

OpenFlow 1.2
OpenFlow 1.4
Fist ONF. r_e.lease +fixt.1 Synchronized Table
More flexibility
Flexible match Bundles
F‘e}” Ie m c.t Optical ports OpenFlow 2.0
OpenFlow 1.0 lexible rewrite Flow monitering no more fixed fields?
Single table IPvG Eviction programmable switches?
Fixed 12 tuple match field Role change Default Port to 8653
Dec2009 Feb2011 Dec2011 Apr2012 Aug2013 Jan 2015 ? I
OpenFlow 1.3 OpenFlow 1.5
:zﬁ:;::”j Long term release: 1.3.1,1.3.2, 1.3.3 Egress Table
Group table :Ale:(\b\e capabilities Packet Type Aware Pipeline
Full VLAN and MPLS Support P;;"

Event filters

Fig. 21.5 — A timeline of OpenFlow evolution

In Fig. 21.5, in the initial OpenFlow 1.0 version (back in 2009)
there has been only a single flow table. This fact stipulated the lack of
flexibility due to the limited matching capabilities. Corresponding
OpenFlow 1.0-compliant switches was able to perform only a single
operation during the packet forwarding. This caused the flow entry
explosion problem [8]. To this end, in the OpenFlow 1.1 version, the
multiple tables and a group table have been introduced, and so forth.

The logical structure of OpenFlow-compliant switch:

—one or more flow tables;

— group table;

— OpenFlow channels to an external controller.

Flow tables and a group table are devoted to lookup and forward
the packets.

Group table consists of the group entries, which can be grouped as
follows [8]:

— general — execute all action buckets in the group;

— selecting — execute one action bucket in the group;

— indirect — execute only the defined action bucket in the group;

— failover — execute first live action bucket.

181

21. SDN programming and simulation of SDN composing, configuring and scaling

The structure of an OpenFlow-compliant switch with respect to
specification is given in Fig. 21.6.

Controller Controller
o
7 OpenFlow Protocol
OpenFlow Switch
! Datapath
OpenFlow | | OpenFlow |
Channel Channel : Group | | Meter
Control Channel | Table Table
Port Port
Flow Flow Flow
T | Table | | Table [| Table | E
Port Poakine Port
| —p=

Fig. 21.6 — The structure of OpenFlow-compliant switch

The “general” group provides multicasting — packets are
forwarded to multiple ports.

The “selecting” group is characterized as allowing the load
balancing and link aggregation.

The “indirect” group fosters the scalability aspects by categorizing
the flows into froups to increase the efficiency of default routing in
particular [8].

The “failover” group detects thelive action bucket to execute,
aiming the aspect of high availability.

With respect to an OpenFlow protocol, the adding, updating and
deleting of flow entries is conducted by a controller.

Each flow table in the switch contains a set of flow entries; each
flow entry consists of match fields, counters, and a set of instructions to
apply to matching packets [6]. Matching starts at first flow table and
may proceed to additional flow tables, as shown in Fig. 21.7 [6].

182

21. SDN programming and simulation of SDN composing, configuring and scaling

Packet Ingress processing Packel +
In Sat pipeline fields
Ingress (ingress port,
Inaress Port | Flow Flow matadata_) | Flow Execute Grou
"gon | Table |—»| Table —>++= —> Table |—»| Action [P» TabI:
Action 0 1 Action n Set
Set={} Set
Egress processing Packst + Packet
Set pipeline fields Out
Output (output port,
Port | Flow Flow matadata_.) | Flow Execute Output
P Table [Table —>===— Table —=| Action f=fe—jm Port
Action e e+l Action | ©+m Set
Sat = Sat
foutput) @ = first egress table-id

Fig. 21.7 — Packet processing pipeline

The OpenFlow switch protocol is grounded upon a set of
structures and implemented on the basis of messages transferred
through an OpenFlow channels. All OpenFlow messages are sent in
big-endian format [6].

All OpenFlow-messages begin with a header, given in Table 21.5.

Table 21.5 — The structure of OpenFlow message header

No. Code line
1 | struct ofp_header {
2 | uint8_t version; /* OFP_VERSION. */
3 | uint8_t type; /* One of the OFPT_ constants. */
4 | uintl6_t length; /* Length including this ofp_header. */
5 | uint32_t xid; /* Transaction id associated with this packet. Replies
use the same id as was in the request to facilitate pairing. */
6 |}
7 | OFP_ASSERT (sizeof(struct ofp_header) == 8);

183

21. SDN programming and simulation of SDN composing, configuring and scaling

In Table 21.5 the length field contains the length of message.

Covering the approaches to SDN-programming, it is essential to
point out first that existing SDN controllers offer programmers low-
level programming interfaces [36]. Taking into consideration the
complexity of such networks, there is a need for highly abstract and
modular solutions, simplifying the programming of complex systems.
To this end, modular approach to SDN programming on the basis of
Pyretic language has been proposed [36]. This language allows write
highly abstract policies for packets routing.

Another approach is to conduct the programming in an algorithmic
manner. To this end, the Maple system has been proposed [37]. It
allows the programmer to manipulate with the behaviors of entire
network in an algorithmic manner. Maple also includes efficient multi-
core scheduler, scaling efficiently to the controllers with multiple cores.

The evolutional aspects of OpenFlow protocol are covered in P4
language [38]. Developers define the following goals to be reached:

— programmers should be able to change the way switches process
the packets once deployed;

— programmers should be able to describe packets processing
functionality independently of underlying hardware;

— switches shouldn’t be bound with any specific network protocol.

There are plenty of different other SDN programming languages,
e.g., Flog (logic programming approach) [39], Procera (a language for
high-level reactive network control) [40] etc.

Moreover, an exhaustive survey on SDN programming languages
has already been conducted [41].

A bit different story is the programming of SDN controllers. A
comparative analysis of open-source OpenFlow-compliant controllers
has been conducted in [16]:

— NOX — multi-threaded C++ based controller [42];

— POX - single-threade Python based controller [43];

— OpenDaylight — written in Java [11];

— Beacon — multi-threaded Java-based controller [44];

— etc.

When considering the aspects of SDN configuration, with
automation in mind, the Python scripting is applicable.

184

21. SDN programming and simulation of SDN composing, configuring and scaling

21.3.2 Setting up SDN configuration by way of python scripting

The forthcoming text corresponds to Python programming in

Mininet environment. To this end, corresponding Mininet Python API
has been created [45]. The interface is based on “topo” namespace,
providing the means to set up or reconfigure network topology.

Moreover, Python scripting can be successfully used to expand the

existing CLI (Command-line Interface) of Mininet. Corresponding
script is given in Table 21.6 [46].

Table 21.6 — Python script

No. Python code
1 | def mycmd(self, line):
2 "mycmd is an example command to extend the Mininet CLI"
3 net = self.mn
4 output('mycmd invoked for', net, 'with line’, line, \n")
5 | CLLdo_mycmd = mycmd

The commands, adding created mycmd command to Mininet CLI,

are given in Table 21.7.

Table 21.7 — Adding of created command to Mininet CLI

P
o

Command line code

sudo mn --custom mycmd.py -v output

mininet> help mycmd

output: mycmd is an example command to extend the Mininet CLI

mininet> mycmd bar

QP |WIN|F-

output: mycmd invoked for <mininet.net.Mininet object at
0x7fd7235fb9d8> with line bar

More sophisticated tips on Python scripting are given below.

21.3.3 Sophisticating the Python scripting. Bringing in the

automation

A fragment of Python-script, setting up the performance

parameters of SDN network, is given in Table 21.8.

185

21. SDN programming and simulation of SDN composing, configuring and scaling

Table 21.8 — A sample of configurational Python script

No. Python code

1 | #!usr/bin/python

2 | from mininet.topo import Topo

3 | from mininet.net import Mininet

4 | from mininet.node import CPULimitedHost

5 | from mininet.link import TCLink

6 | from mininet.util import dumpNodeConnections

7 | from mininet.log import setLogLevel

8 | class SingleSwitchTopo(Topo):

9 | "Single switch connected to n hosts."

10 | def build(self, n=2):

11 | switch = self.addSwitch('s1')

12 | for hin range(n):

13 | # Each host gets 50%/n of system CPU
host = self.addHost('h%s' % (h + 1), cpu=.5/n)

14 | # 10 Mbps, 5ms delay, 2% loss, 1000 packet queue
self.addLink(host, switch, bw=10, delay="5ms', loss=2,
max_queue_size=1000, use_htb=True)

15

In Table 21.8, the method addHost is used to allocate available
CPU resource to the virtual host. The addLink method is used to set up
a bidirectional link with a specified bandwidth, delay, packets loss and
max queue size characteristics.

21.4 Work related analysis

The section is based on the analysis of work and publications of
fellows from Georgia Institute of Technology and Princeton University
to provide the background on network programmability [2].

To characterize SDN controllers, the work of the fellows from
Stanford University [15], Moscow State University [16] etc., has been
analyzed. To differentiate between the controllers, the results of the
comparative analysis, conducted by the fellows from the Fraunhofer

186

21. SDN programming and simulation of SDN composing, configuring and scaling

Institute for Secure Information Technology (Darmstadt, Germany),
have been utilized [21].

An information on open distributed SDN operating system has
been provided on the basis of work of the fellows from Open
Networking Laboratory [18].

Conclusion and questions

Thus, in given lecture material, the following topics have been
covered:

— peculiarities of SDN switches and controllers functioning and
implementation — the aspects of SDN infrastructure simulation and
emulation; the aspects of network orchestration and virtualization;

— SDN controller programming and testing, e.g., setting up the
configuration of SDN network in Mininet environment;

— SDN programming and Python scripting. The aspects of
automation have been described.

1. Briefly describe current state of the global network.

2. Characterize existing drawbacks of regular network — in terms
of management, reconfiguration and interoperability.

3. Characterize the concept of interoperability. What are the
solutions to achieve the latter?

4. Describe the fundamental principles of Software Defined

Networking.
5. What is the use of differentiation between the control and data
planes.

6. The purpose of OpenFlow protocol usage.

7. The constituents of OpenFlow-enabled switch.

8. Describe the outcomes of OpenFlow utilization.

9. Name a couple of OpenFlow-compliant switches.

10. Characterize the evolution of OpenFlow specification. Point
out the distinctive features of releases.

11. Provide a brief overview of SDN predecessors.

12. Name the key concepts of DCAN technology.

13. Name the key concepts of Active Networking technology.

14. Name the key concepts of OPENSIG technology.

187

21. SDN programming and simulation of SDN composing, configuring and scaling

15. Name the key concepts of 4D Project.

16. The purpose of NETCONF protocol usage.

17. Describe the main idea of Ethane protocol.

18. Describe the peculiarities of OpenDaylight protocol.

19. Give a brief review of popular SDN controllers.

20. Explain the advantages of distributed SDN controllers usage.

21. Explain the drawbacks of the centralized SDN controllers.

22. Describe the concept of Network Function Virtualization
(NFV).

23. Describe the idea of HyperFlex architecture.

24. Describe the advantages the virtualization brings in.

25. Characterize the challenges to providing the orchestration in
SDN environment.

26. Differentiate between the concepts of controller and
orchestrator — in terms of domains.

27. Substantiate the use of “depth” and “fanout” parameters
during the creation of network with tree topology. Characterize the
impact of these parameters values on total number of network nodes.

28. Provide a brief list of SDN emulators.

29. Characterize the use of Mininet emulator.

30. Describe the use of “--topo tree” parameter during network
configuration.

31. Describe the use of “--test pingall” parameter during network
configuration.

32. Describe the use of “depth=1" parameter during network
configuration.

33. Name and briefly characterize the commands for checking the
soundness and consistency of SDN infrastructure.

34. Substantiate the wuse of “nodes”, “net
commands.

35. Describe the expediency of dataflow orchestration.

36. Name the spheres of dataflow orchestration applicability.

37. Substantiate the expediency of SDN networks reconfiguration
and scaling.

38. Briefly characterize the approaches to SDN programming.

39. Describe the use of Pyretic programming language.

40. Give the idea of Maple system.

L3

and “dump”

188

21. SDN programming and simulation of SDN composing, configuring and scaling

41. Name the evolutional perspectives of SDN-compliant
switches programming.

42. Provide a brief review of the approaches to SDN
programming.

43. Name and briefly characterize a couple of languages for SDN
programming.

44. Briefly characterize open-source OpenFlow-compliant
controllers.

45. Describe the scenarios of Python scripting language
applicability in Mininet environment.

46. Describe the use of MiniEdit graphical interface.

47. Name the components of Mininet network.

References

1. V. Shkarupylo, S. Skrupsky, A. Oliinyk, and T. Kolpakova,
“Development of stratified approach to software defined networks simulation,”
Eastern-European Journal of Enterprise Technologies. Information and
controlling systems, vol. 5 no. 9, P. 67-73, 2017.

2. N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an
intellectual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44 no. 2, P. 87-98, 2014.

3. N. McKeown et al., “OpenFlow: enabling innovation in campus
networks,” ACM SIGCOMM Computer Communications Review, vol. 38, no.
2, P.69-74, 2008.

4. A. Lara, A. Kolasani, and B. Ramamurthy, ‘“Network innovation using
OpenFlow: a survey,” IEEE Communications Surveys & Tutorials, vol. 16, no.
1, 493-512, 2014

5. F. Hu, Q. Hao, and K. Bao, “A survey on Software-Defined Network
and OpenFlow: from concept to implementation,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 4, 2181-2206, 2014.

6. Open Networking Foundation. OpenFlow Switch Specification,
Version 1.5.1, 2015. Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf. [Accessed: 11 Nov.
2018].

7. J. Tourrilhes, P. Sharma, S. Banerjee, and J. Pettit, “SDN and openflow
evolution: A standards perspective,” Computer, vol. 47, no. 11, P. 22-29, Nov.
2014.

8. C. Ching-Hao and Y. Lin, OpenFlow Version Roadmap, 2015.
Available: http://speed.cis.nctu.edu.tw/~ydlin/miscpub/indep_frank.pdf.
[Accessed: 11 Nov. 2018].

189

21. SDN programming and simulation of SDN composing, configuring and scaling

9. J. Costa-Requena et al., “SDN and NFV integration in generalized
mobile network architecture,” in 2015 European Conference on Networks and
Communications (EUCNC), Paris, France, 29 June—2 July 2015, P. 154-158.

10.M. Bindhu and G. Ramesh, “The journey to SDN: a peek into the
history of programmable networks,” International Journal of Computer
Science and Engineering Communications, vol. 2, no. 5, P. 500-506, 2014.

11.J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards
a Model-Driven SDN Controller architecture,” in 2014 IEEE 15th
International Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM) (WOWMOM), Sydney, Australia, 19 June 2014, P. 1—
6.

12.7Z. K. Khattak, M. Awais, and A. Igbal, “Performance evaluation of
OpenDaylight SDN controller,” in 2014 20th IEEE International Conference
on Parallel and Distributed Systems (ICPADS), Hsinchu, Taiwan, 16—19 Dec.
2014, P. 671-676.

13.J. H. Cox et al., “Advancing Software-Defined Networks: a survey,”
IEEE Access, vol. 5, P. 25487-25526, 2017.

14. A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,
“Towards an elastic distributed SDN controller,” in Second ACM SIGCOMM
workshop on Hot topics in software defined networking (HotSDN '13), Hong
Kong, China, 16 August 2013, P. 7-12.

15.D. Erickson, “What is Beacon?,” 2013. Available:
https://openflow.stanford.edu/display/Beacon/Home. [Accessed: 11 Nov.
2018].

16. A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
“Advanced study of SDN/OpenFlow controllers,” in 9th Central & Eastern
European Software Engineering Conference in Russia, Moscow, Russia, 24—-25
October 2013, P. 1-6.

17.Projest Floodlight: Open Source Software for Building Software-
Defined Networks, 2018. Available: http://www.projectfloodlight.org/.
[Accessed: 11 Nov. 2018].

18.P. Berde et al., “ONOS: towards an open, distributed SDN OS,” in
Third workshop on Hot topics in software defined networking (HotSDN
2014), Chicago, Illinois, USA, 22 August 2014, P. 1-6.

19.C. Zheng, “Maestro: Achieving scalability and coordination in
centralizaed network control plane,” 2012. Available:
https://scholarship.rice.edu/handle/1911/70214. [Accessed: 11 Nov. 2018].

20.K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed multi-
domain SDN controllers,” in 2014 IEEE Network Operations and Management
Symposium (NOMS 2014), Krakow, Poland, 5-9 May 2014, P. 1-4.

21.R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-based
comparison and selection of Software Defined Networking (SDN) controllers,”

190

21. SDN programming and simulation of SDN composing, configuring and scaling

in 2014 World Congress on Computer Applications and Information Systems
(WCCAIS 2014), Hammamet, Tunisia, 17-19 Jan. 2014, P. 1-7.

22.M. Monaco, O. Michel, and E. Keller, “Applying operating system
principles to SDN controller design,” in Twelfth ACM Workshop on Hot
Topics in Networks, College Park, Maryland, 21-22 November 2013, P. 1-7.

23.M. Gupta, J. Sommers, and P. Barford, “Fast, accurate simulation for
SDN prototyping,” in The second ACM SIGCOMM workshop on Hot topics
in software defined networking, Hong Kong, China, 16 August 2013, P. 31—
36.

24. A. Blenk, A. Basta, and W. Kellerer, “Hyperflex: an SDN virtualization
architecture with flexible hypervisor function allocation,” in IFIP/IEEE
International Symposium on Integrated Network Management (IM), Ottawa,
ON, Canada, 11-15 May 2015, P. 397-405.

25.A. Basta, A. Blenk, H. B. Hassine, and W. Kellerer, “Towards a
dynamic SDN virtualization layer: control path migration protocol,” in 2015
11th InternationalConference on Network and Service Management (CNSM),
Barcelona, Spain, 9-13 Nov. 2015, P. 354-359.

26.R. Vilalta et al., “End-to-end SDN orchestration of 10T services using
an SDN/NFV-enabled edge node,” in 2016 Optical Fiber Communications
Conference and Exhibition (OFC), Anaheim, CA, USA, 20-24 March 2016, P.
1-3.

27.V. Lopez et al., “Demonstration of SDN orchestration in optical multi-
vendor scenarios,” in 2015 Optical Fiber Communications Conference and
Exhibition (OFC), Los Angeles, CA, USA, 22-26 March 2015, P. 1-3.

28.F. Keti and S. Askar, “Emulation of Software Defined Networks using
Mininet in different simulation environments,” in 2015 6th International
Conference on Intelligent Systems, Modelling and Simulation, Kuala Lumpur,
Malaysia, 9—12 February 2015, P. 205-210.

29.S-Y. Wang, “Comparison of SDN OpenFlow network simulator and
emulators: EstiNet vs. Mininet,” in 2014 IEEE Symposium on Computers and
Communication (ISCC), Funchal, Portugal, 23-26 June 2014, P. 1-6.

30. M-C. Chan et al., “OpenNet: A simulator for software-defined wireless
local area network,” in 2014 IEEE Wireless Communications and Networking
Conference, Istanbul, Turkey, 6-9 April 2014, P. 3332-3336.

31.J. Ivey, H. Yang, C. Zhang, and G. Riley, “Comparing a Scalable SDN
simulation framework built on ns-3 and DCE with existing SDN simulators
and emulators,” in 2016 annual ACM Conference on SIGSIM Principles of
Advanced Discrete Simulation, Banff, Alberta, Canada, 15-18 May 2016,
P. 153-164.

32.A. Wang, Y. Guo, F. Hao, T. V. Lakshman, and S. Chen, “Scotch:
Elastically Scaling up SDN Control-Plane using vSwitch based Overlay,” in
10th ACM International on Conference on emerging Networking Experiments
and Technologies, Sydney, Australia, 2-5 Dec. 2014, P. 403-414.

191

21. SDN programming and simulation of SDN composing, configuring and scaling

33. B. Martini et al., “An SDN orchestrator for resources chaining in Cloud
data centers,” in 2014 European Conference on Networks and
Communications (EUCNC), Bologna, Italy, 23-26 June. 2014, P. 1-5.

34.R. Vilalta, A. Mayoral, R. Casellas, R. Martnez, and R. Muoz,
“Experimental demonstration of distributed multi-tenant cloud/fog and
heterogeneous sdn/nfv orchestration for 5g services,” in 2016 European
Conference on Networks and Communications (EUCNC), Athens, Greece, 27—
30 June 2016, P. 52-56.

35.S. Auroux, M. Draxler, A. Morelli, and V. Mancuso, “Dynamic
network reconfiguration in wireless densenets with the crowd sdn
architecture,” in 2015 FEuropean Conference on Networks and
Communications (EUCNC), Paris, France, 29 June—2 July 2015, P. 144-148.

36.J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN programming with Pyretic,” Programming, vol. 38, no. 5, P. 40-47,
2013.

37.A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple:
simplifying SDN programming using algorithmic policies,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, P. 87-98, 2013.

38.P. Bosshart et al., “P4: programming protocol-independent packet
processors,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, P. 87-95, 2014.

39.N. P. Katta, J. Rexford, and D. Walker, “Logic Programming for
Software-Defined Networks,” in First International Workshop on Cross-model
Language Design and Implementation, Copenhagen, Denmark, 9 September
2012, P. 1-3.

40. A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-
level reactive network control,” in The first workshop on Hot topics in
software defined networks (HotSDN '12), ACM, New York, NY, USA, 13
August 2012, P. 43-48.

41.C. Trois, M. D. Del Fabro, L. C. E. de Bona, and M. Martinello, “A
survey on SDN programming languages: toward a taxonomy,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 4, 2687-2712, 2016.

42.N. Gude et al. “NOX: towards an operating system for networks,”
SIGCOMM Computer Communication Review, vol. 38, no. 3, P. 105-110,
2008.

43.L. R. Prete, A. A. Shinoda, C. M. Schweitzer, and R. L. S. de Oliveira,
“Simulation in an SDN network scenario using the POX controller,” in 2014
IEEE Colombian Conference on Communications and Computing
(COLCOM), Bogota, Colombia, 4-6 June 2014, P. 1-6.

44.D. Erickson, “The beacon openflow controller,” in Second ACM
SIGCOMM workshop on Hot topics in software defined networking (HotSDN
'13), ACM, New York, NY, USA, Hong Kong, China, 16 August 2013, P. 13—
18.

192

21. SDN programming and simulation of SDN composing, configuring and scaling

45. Mininet Python API reference manual, 27 Aug. 2018. Available:
http://mininet.org/api/index.html. [Accessed: 11 Nov. 2018].

46.Introduction to Mininet, 26 Sep. 2018. Available:
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#custom.
[Accessed: 11 Nov. 2018].

47.How to use MiniEdit, Mininet’s graphical user interface, 2 April 2015.
Available: http://www.brianlinkletter.com/how-to-use-miniedit-mininets-
graphical-user-interface/. [Accessed: 11 Nov. 2018].

193

22. Algorithms and applications for the utilization of SDN technologies to 10T

22. ALGORITHMS AND APPLICATIONS FOR UTILIZATION
OF SDN TECHNOLOGY TO IOT

DrS., Prof. I. S. Skarga-Bandurova, Ph.D. student M. V. Nesterov,
PhD student A. Y. Velykzhanin (V. Dahl EUNU)

Contents
ADDIEVIATIONSeiiiciic e e 195
22.1 Managing the 10T With SDN ..o, 196
22.1.1 SLA MANAGEMENTcviiiieiiirieie e 197
A L oSS 197
22.2 Smart routing and schedulingccccovviveieiiiie s 198
22.2.1 Data streaming oVer SDN..........ccociveieiiciccese e 201
22.2.2 Metrics for evaluation performance of QoS routing algorithms
... 202
22.2.3 QoS routing algorithms applicable to large-scale SDN.......... 203
22.2.4 Traffic scheduling algorithms.............ccocooviiininciciise 205
22.3 Optimization of SDN Traffic Flow for 10Tccccoeviiiiiiinnne 206
22.3.1 Algorithms for calculating the optimal position of the SDN-
(ot] 0110 |1 TSR 206
22.3.2 Balancing algorithms in loT-based software defined networks
... 210
22.3.3 Algorithms for finding the optimal path in SDN networks218
22.4 SDN Performance prediCtion............coceovvviereneneneseeeseiens 219
22.4.1 Algorithms performance mMetrics........ccoovevvviiievececce e, 219
22.4.2 An overall approach to detect and diagnose failures in SDN.220
22.4.3 CASE STUAYc.eeuieiiriiiiisiesie et 223
22.5 Work related analysiscccooerereieiiiniienee e 234
Conclusions and QUESLIONS..........cc.ecveieieeeeieie e 235
RETEIENCESveeiee et 237

194

22. Algorithms and applications for the utilization of SDN technologies to 10T

Abbreviations

BWP — Band Width Proportion

DORA — Dynamic Online Routing Algorithm
FIBs — Forwarding Information Base

10T — Internet of things

I/0 — input / output

ISP — Internet Service Provider

ML — machine learning

MHA — Minimum Hop Algorithm

MIRA — Minimum Interference Routing Algorithm
NFV — Network Function Virtualization

PPV — Path Potential Values

QoE — Quality of Experience

QoS — Quality of Service

OSPF — Open Shortest Path First

RIP — Routing Information Protocol

ROADM - Reconfigurable Optical Add Drop Multiplexer
SDN — Software Defined Networks

SD — source-destination

SLA — Service Level Agreements

SLO - Service Level Objectives

SPF — Shortest path first

SWP — Shortest Widest Path algorithm

TE — Traffic Engineering

VM - virtual machine

WAN — Wide Area Network

WSP — Widest Shortest Path algorithm

195

22. Algorithms and applications for the utilization of SDN technologies to 10T

SDN technology play a vital role in configuration, reconfiguration,
resource allocation and even the pattern of inter communication in loT
ecosystem. In [1] Lin L. et al. discussed three properties of SDN:

The service guarantee property that means the system
performance bounds (e.g. delay bound, backlog bound, etc.) are derived
under the given traffic model and server model.

The concatenation property means that a series of servers can be
considered as one single server and represented using the same server
model.

End-to-end property is a parameter that describes the network
performance. High end-to-end latency adversely affects the
performance of time-sensitive applications, such as SDN recovering.

Talking about the algorithms applicable in SDN, they can be used
mainly for the following tasks:

— SLA (Service Level Agreements) management;

— smart routing and optimal virtual machine (VM) placement;
— solving controller placement problem;

— load balancing;

— performance prediction;

— intrusion detection and prevention.

In this chapter, we briefly review the existent algorithms and
approaches to utilizing SDN technology in IoT and take a look at
perspectives on SDN performance prediction using data fusion
technique.

22.1 Managing the 1oT with SDN

As can be seen from the previous chapters, SDN can cost-
effectively virtualize 1oT networks providing automatic device
reconfiguration and bandwidth allocation to boost performance and
conserve bandwidth. This technology simplifies network management
for even the most complex networks by offering plug-and-play device
setup and deployment, ensures security and improved access control
with the benefit of greater traffic transparency at the network’s edge.

According to major service and network providers, 70% of
deployed networks will rely on cloud infrastructures and multi-domain

196

22. Algorithms and applications for the utilization of SDN technologies to 10T

SDN controllers as far back as in 2020 [2]. This is provided by the
following features:

(1) much faster deployment (from months down to minutes);

(2) continuous provisioning in line with up and downscaling;

(3) end-to-end orchestration;

(4) service assurance for fault and performance management.

22.1.1 SLA management

SLA agreement generally comprises parameters describing the
service functional and non-functional properties such as the minimum
acceptable QoS values (referred to as SLOs). In this context, SLO can
be seen as a range of values (i.e. lower or upper thresholds) that
guarantee a certain level of quality with respect to a specific service and
to a specific set of variables (or aggregates, i.e. mean value or
percentiles).

SLA management can be classified into three broad categories,

(1) resource monitoring;

(2) SLA management including SLA violation prediction;

(3) mapping from low level monitored metrics to SLA;

(4) mapping of SLA between SaaS, PaasS, laaS cloud layers.

22.1.2 Metrics

As it mentioned in [3], SLA management for efficient joint use of
SDN and clouds has not been developed yet and new approaches to
meet these new SLA and SLO management are in demand. To do it the
following metrics could be used:

— Service Availability ratio;

— Response time ratio;

— Capacity, downlink bandwidth ratio.

In [3], each SLO is defined as a multi-step function expressed as a
combination of at least two metrics and thresholds, for example,
response time with respect to the workload. In this connection, metrics
are defined as average over a certain period of time (see Fig. 22.1).

197

22. Algorithms and applications for the utilization of SDN technologies to 10T

101520253035404550556065 707580
Response Time, ms

Fig. 22.1 — Example of an SLO

As shown in Fig. 22.1, for each workload interval, a specific
threshold for the response time is set up. When the workload is between
0 and 20% the minimum response time is 20 ms; if the workload is
between 20% and 70% then the threshold is 40 ms, etc.

22.2 Smart routing and scheduling

Distributed cloud systems typically consist of distributed,
interconnected data centers that use virtualization technology to provide
computing and storage services for each request on demand. As soon as
the request arrives, several virtual machines (VMs) are created in one
or more server nodes (which can be located in the same or different
data centers) to satisfy the request. However, server-side crashes caused
by hardware crashes, such as hard disk or memory module crashes, as
well as program problems, such as program errors or configuration
errors, may result in the loss of virtual machines hosted on it, and thus
the entire service can not be guaranteed. An effective way to overcome
this problem is to create and place more replicas of virtual machines,
but this approach must also take into account the availability of nodes.
For example, if all virtual machines, along with their replicas, are

198

22. Algorithms and applications for the utilization of SDN technologies to 10T

hosted at sites with a high probability of failure, then proper servicing
can not be guaranteed. Therefore, the availability of a virtual machine
placement, a value from 0 to 1, is important and relates to the
probability that at least one set of all requested virtual machine clients
is in working order throughout the requested service life. Additionally,
if two or more virtual machines are hosted on different hosts, we must
also ensure a reliable connection between these virtual machines. In
fact, one unprotected path fails if one of its related links fails. To
improve the reliability of data transfer from the source to your
destination, you need to protect the path (or survivability).

Figure 22.2 shows the different levels of routing in the network. IP
channels are routed through the ROADM level, while Multi-Protocol
Label Switching - Traffic Engineering (MPLS-TE) tunnels that carry
end-to-end traffic are routed through the IP layer.

Ag————— MPLS-TE
— | Tunnels

/"N A= _‘;:;0
O =¥ ==— ;"’
Pl T
| @
| .
0
W ;oaom Sean |
m

Fig. 22.2 — Different Layers of Routing (adapted from [4])
If there are N finite points of traffic and K classes of QoS, then in

the traffic matrix there are T elements
T = KN (N-1).

199

22. Algorithms and applications for the utilization of SDN technologies to 10T

For example, when K = 2 and N = 100, then T = 19800. It is
assumed also that each element of the traffic matrix is routed over the
packet network as a TE tunnel. As a rule, the traffic to the TE-tunnel in
a large ISP network has complex nonlinear fluctuations and the
seasonal frequency at different time scales that reflect the use of the
network by users. Traffic in most active tunnels contains strong
daytime hesitations, less noticeable weekly fluctuations (reflecting
different patterns of use on weekends), as well as sharp jumps that
correspond to dynamically moving network traffic between tunnels
after changing IP topology (sharp jumps can not be directly predicted
by the prediction model, but the model is configurable to a new level of
data immediately at a later point in time after observing the jump. As
far as the changes in the long-term topology of the IP and the links
routing changes are known then we can pass this information to the
forecasting model. An example of the total volume of traffic and
volume of traffic in a particular TE-tunnel is shown in units of the
overall bandwidth in Fig. 22.3.

Network tunnel traffic

6000

&
8

g
(=]

Throughput

8
8

2000 +

0 10 20 30 40
300
250
5 200
=%
£
2 150
2
£ 100
50
04
0 10 20 30 40
Days

Fig. 22.3 — The tunnel traffic volume across the entire network (top)
and an individual TE tunnel (bottom) using generic bandwidth units [4].

This knowledge enables to utilize different regression models to
optimize many different failure scenarios and joint global optimization

200

22. Algorithms and applications for the utilization of SDN technologies to 10T

of IP layers and perform capacity planning. The knowledge of near-
term traffic pattern can significantly improve the feasibility and
efficiency of offering SDN service.

22.2.1 Data streaming over SDN

The current trend of introducing complex software is the division
of the system into several independent components or micro-services.
Because components communicate through well-defined APlIs, each of
them can be developed separately and reused between services. Parts of
the programs can be scaled separately. In 10T, software often takes the
form of a circuit, where each component processes the sensor data and
transfers it to processing by the next component of the circuit.
Movement can be moved in both directions of the chain.

The amount of data produced by an loT device is significantly
different: some types of sensor devices wake up periodically (for
example, once per hour) to report the measurement value, while other
types of devices, such as video devices or complex machines,
constantly generate significant amounts of data. Typically, there is a
high degree of redundancy in the sensor data, for example, a multiple
measurement value with low variation. Therefore, it makes sense to
filter and compress data at the source before transmitting it on the
uplink from the gateway to the cloud. This can be implemented as a
separate data reduction component, the implementation of which is
very specific to the specific use case. Moreover, many loT applications
include control loops: data produced by sensors is analyzed or supplied
to a control process that runs commands about the commands sent to
the device. For this type of closed loop control, low and estimated
latency is crucial.

There are several proposals for implementing new routing
algorithms for video streaming applications running over SDN. The
purpose of developing new routing algorithms is to increase the quality
of experience (QOE), a measure of client experience with a video
streaming application. Commonly used QoE metrics are the received
bitrate, percentage of lost packets, outage duration, number of quality
changes and startup delay.

Another important component of networks is the overall
performance of the connection, which is called Quality of Service

201

22. Algorithms and applications for the utilization of SDN technologies to 10T

(QoS). QoS contains requirements for all major aspects of data
transmission, such as response time, shudder, interrupts, etc.

22.2.2 Metrics for evaluation performance of QoS routing
algorithms

To date, there are two basic QoS architectures available, they are
IntServ and DiffServ [5]. However, none of them is implemented
globally due to their inherent weaknesses. IntServ provides end-to-end
QoS guarantees at connection level using resource backup methods.
QoS requests are sent in the shortest path that is defined by traditional
routing protocols. If this path is overloaded, the request will be rejected,
even if some other way to the same destination has sufficient
bandwidth. Architecture DiffServ uses a different approach. Instead of
reserving resources for each traffic stream, DiffServ indicates the
packets on the network entry and classifies them for the finite number
of traffic classes. Although this solution is more scalable than IntServ,
it provides only relative performance assurances. DiffServ also does not
include new routing mechanisms. Multiprotocol Switching Labels
(MPLS) provides a partial solution with the possibility of TE. However,
TE mechanisms are not implemented in the networks of modern service
providers because of the inflexibility of basic protocols that do not
allow reconfiguring the network in real-time [6].

QoS routing algorithms can be analyzed in terms of their
suitability for establishing traffic tunnels in large-scale backbone SDN /
OpenFlow networks [7]. Besides providing the required QoS level to
service providers who rent resources of the backbone network, it is
desirable that algorithm maximizes utilization of the network resources,
since that is the main interest of the infrastructure provider. Regarding
this, there are several metrics to evaluate algorithms performance:

(1) Bandwidth Rejection Ratio (BRR);

(2) Average Route Length (ARL);

(3) Delay;

(4) Loss Ratio.

Most algorithms proposed in literature are dominantly focused on
the first metrics and is a bandwidth guarantees. Second metrics is
applicable because in WAN (Wide Area Networks) longer paths
usually entail higher delay.

202

22. Algorithms and applications for the utilization of SDN technologies to 10T

Routing problem definition. Let us assume that there is a network
topology with n nodes and m links. Each link has its own capacity and
residual bandwidth at a given time.

The routing task, which requires a path with a certain bandwidth
from the input node to the output node, is processed by the routing
algorithm. The algorithm consistently handles requirements with the
assumption that the network conditions are available, such as topology,
channel bandwidth, and input / output (I/O) pair. However, routing
requirements are not known in prior.

The task of the TE routing algorithm is to send as many requests as
possible, provided that each set route stores several bandwidth
resources for a certain period of time (i.e. the bandwidth for each route
is guaranteed). Since the I/O pair has integral commodity flows, the TE
routing problem is NP-hard.

In general, there are two categories of routing algorithms, namely
proactive algorithms and reactive algorithms. Most of reactive routing
algorithms first calculate the weight of the channels based on the
network states, and then utilize the shortest path algorithms (e.g.,
Dijkstra, SPF, Bellman-Ford, etc.) to select the least weighed route. As
a side note, Dijkstra algorithm is used to compute a weight optimized
feasible path for QoS request.

22.2.3 QoS routing algorithms applicable to large-scale SDN

The most widely used bandwidth-constrained routing algorithm is
Minimum Hop Algorithm (MHA) [8]. MHA grounded on static
selection scheme that maintains information about available bandwidth
on each of the links, and only those that have enough resources to
satisfy user's requirement are taken into account for routing. This
means that for each 1/O pair, one and the same shortest path is selected,
until at least one of its channels can not meet the requirements of the
bandwidth. Although MHA is very simple, it could quickly create a
bottleneck for future requests, leading to poor utilization of network
resources.

Widest Shortest Path (WSP) algorithm is a modified version of
MHA, as it attempts to load-balance the network traffic. In this way the
algorithm tries to make tradeoff between two conflicting requirements:
load balancing and resource consumption. WSP has the same

203

22. Algorithms and applications for the utilization of SDN technologies to 10T

drawbacks as MHA since the path selection is performed among the
shortest feasible paths which are used until saturation before switching
to other feasible paths.

Shortest Widest Path (SWP) algorithm is a further improvement of
the previous ones. In this algorithm, the first criterion is taken to be the
path with the maximum residual bandwidth and if more than one path is
selected then the one with the smallest number of hops is chosen.

These three algorithms use information about network topology
and available bandwidth, but do not use information about source-
destination (SD) node pairs to find a feasible route. To minimize
"interference” on routes that may be critical to future demands in SDN,
the following algorithms that do not use a priori knowledge of traffic
scheme can be useful.

Minimum Interference Routing (MIRA) algorithm uses knowledge
of the 1/O label switching router, which are potential source-destination
pairs of traffic. MIRA makes an on-demand routing decision based on
the level of “interference” it will have upon a future request from
another receiving source. This level of interference is used as the line
weight to calculate the shortest path for new demand. The novelty of
this algorithm leads to less selected critical references to other source-
destination pairs. However, it has two major drawbacks. First, it is the
difficulty to calculate the maximum flow between any source-
destination pairs and the weight of all links.

Dynamic Online Routing (DORA) algorithm works offline and
online. In an offline phase, an array of Path Potential Values (PPV) is
calculated for each SD pair. The elements of the PPV array correspond
to the network connection and reflect their importance for other SD
pairs. First, all PPV values are set to zero. Then, for the corresponding
SD pair, the set of shortest non-overlapping paths is calculated. The
values of PPV links included in these paths are reduced by 1. Finally,
each link is checked for the non-overlapping paths of other SD pairs. If
it is found there, its PPV value is increased by 1. PPV values are
determined for each SD pair individually, but these calculations are
performed only when the network is initialized or with some change in
the topology. At the PPV stage, the bandwidth of each channel is
combined to form the weight of the channel. The effect of the residual
bandwidth is controlled by the BWP parameter (Band Width
Proportion):

204

22. Algorithms and applications for the utilization of SDN technologies to 10T

Weight:(l—BWP)-PPV+BWP- - L —, 0<BWP<1
residual _bandwidth

22.2.4 Traffic scheduling algorithms

Traffic scheduling in traditional network is generally based on IP
and MPLS-TE network, using the SPF algorithm (such as OSPF,
ECMP) to finish the route calculation. In physical networks routing
problem can be solved by using several algorithms such as Open
Shortest Path First (OSPF), or Routing Information Protocol (RIP) and
nowadays, it is not an actual challenge. However, when SDN appeared,
the way of understanding the network operation radically changed.

As the traditional traffic engineering can not adjust the traffic
allocation dynamically, the traffic scheduling has the difficulty to
maximize the network traffic while the balance over paths is achieved.

Most of the traffic engineering equilibrium models can be
classified into two categories [9]:

(1) Minimize the maximum link utilization;

(2) Minimize the link cost.

The first category is introduced by Kennington et al. [10] where
the following objective function is used to minimize the maximum link
utilization:

max(BU,), (22.1)

eck
where BU denotes a bandwidth utilization of link e.

The model that minimizes the link cost is described in [11] and can
be denoted by the cost function ¢ :

ming=>¢(BU,), (22.2)

ecE

205

22. Algorithms and applications for the utilization of SDN technologies to 10T

where ¢ is a function of the link utilization. The objective
function is defined as a piecewise linear convex function ¢ .

The literature [12] indicated that traffic scheduling based on SDN
has three main directions, they are the traffic scheduling of data layer,
the traffic scheduling of control layer and the traffic scheduling
virtualization. Currently, the issue of routing in SDN should be again
considered in order to know who these networks work.

22.3 Optimization of SDN Traffic Flow for 10T

22.3.1 Algorithms for calculating the optimal position of the
SDN-controller

In general case it is assumed that for a good controller placement it
is necessary to minimize the latencies between nodes and controllers in
the network. However, looking only at delays is not sufficient. A
controller placement should also fulfill certain resilience constraints
[13].

The Controller Placement Problem formulation. Suppose there are
M SDN-compliant switches connected to form a network representing
one or more logical / physical domains. For simplicity of presentation,
we assume homogeneity among switches. Controllers are transmitted
by switches when they receive new threads so that they can update their
forwarding rules or the Forwarding Information Base (FIB). Controllers
should regularly update FIB switches and provide QoS on networks.

Let M switches receive new streams, randomly generating an
uneven network load scenario at any time T. Assuming that the switch i
receives the I; number of new flows and the average load that can be
processed by one controller is equal to C, the minimum number of
required controllers is [14]:

_Zi’\illi
[k == (22.3)

The above argument is justified if the load on the
network/switches is known a priori, which in practice is not possible. In
addition, with dynamic load changes, the value of k also changes

206

22. Algorithms and applications for the utilization of SDN technologies to 10T

dynamically. The goal is to get the optimal value k for dynamically and
optimally displaying k controllers (location) on the M switchers SDN.

To solve this problem, we assume that each controller can operate
in masterl mode, in slave mode or in both modes (master for one set of
switches and/or slave for another set of switches). In subordinate mode,
the controller is able to listen to the switching of switches without any
action. Both the master and subordinate controllers can communicate
with each other using the communication protocol between the SDN.
As the network load increases, one or more new controllers can be
added to handle the load, which leads to a change in the placement of
existing controllers and the change of the base state to the subordinate
or vice versa. However, if the network load decreases, one active
(master/subordinate) controller can be deleted, which leads to a change
in the placement of the remaining controllers and the change of state
from the main to the subordinate and vice versa. This process of
adding/removing a controller is fixed by the following optimization
problem:

min f (k,c), (22.4)
st,A <A,V el,
U <U <U,.V el

where f denotes a nonlinear function of the number of controllers k
and cost c associated with each controller. Note that k and c are
interrelated, and ¢ may be a k function. U; is the usage index (CPU,
memory, or stream), A; is the delay (processing combination and delay
in the path) associated with the i-th controller at time T, and 1 is the set
of all active controllers who work online. Limitations of delay and use
are such that the delay associated with the controller should be less than
the predefined limit value (to support QoS), and use must be within the
minimum and maximum thresholds (U, and Uw); the minimum
threshold for cost reduction and the maximum threshold to meet the
sudden increase in network traffic, respectively.

Equation (22.4) represents a global optimization problem in which
the purpose and the constraints contradict each other.

207

22. Algorithms and applications for the utilization of SDN technologies to 10T

The solution of equation (22.4) should be such that the number of
controllers used (k) is unique and optimal. In addition, the display of
switches on controllers should provide requirements for delay and use.
However, when changing the load, obtaining a unique k is impossible,
which can be used for all load conditions. Moreover, a centralized
solution is not recommended due to problems of scalability,
controllability and fault-tolerance. Therefore, it is necessary to solve
following equation using distributed individual optimization as follows

minc,, (22.5)
St A <A,
U, <U, <U,

where c; is the value associated with the i-th controller.
Placement metrics

The following metrics can be used to evaluate the position of the
SDN-controller [14]:

(1) Average-case Latency.

For a network graph G(V, E) where edge weights represent
propagation latencies, where d(v, s) is the shortest path from node v e V
to s €V, and the number of nodes n = |V|, the average propagation
latency for a placement of controllers S"is

Loy (Zmln d(v,s) (22.6)

SeS

In the corresponding optimization problem, the goal is to find the
placement S’ from the set of all possible controller placements S,
such that |S'| = k and L, (S") is minimum. For an overview of the
approaches to solving this problem, along with extensions, refer to [15].

(2) Worst-case latency.

An alternative metric is worst-case latency, defined as the
maximum node-to-controller propagation delay:

208

22. Algorithms and applications for the utilization of SDN technologies to 10T

L. (S")=maxmind(v,s) (22.7)

(veV) (ses)

where again we seek the minimum S’ < S. The related
optimization problem here is finding minimum k-center [16].

(3) Latency bound.

Instead of minimizing the average or worst case, we could place
controllers to maximize the number of nodes within a delay.

The general version of this problem of arbitrary overlapping sets is
called maximal coverage [17]. An instance of this problem includes the

number k and set of sets S = Sy, S, ..., Sm, Where S, < V,,V,,...,V, .

The objective is to find a subset S’ S of sets, such that ‘USES,Si‘

is maximized and |S'| =K. Each set S, comprises all nodes within a
latency bound from a single node.

SDN-controller placement algorithms

K-medoids algorithm. This is a clustering algorithm which chose
the center first and take an approach of minimizing the sum of
dissimilarity between the points and marked to be in a cluster and a data
point chosen to be the center of that cluster.

Steps:

initial gauss for center C,...C,
Repeat:

1. Minimize over C: for each i=1...n find the cluster center CK
closestto P,

2. Minimize over C,...C, : for each k=1...K

3. Stop until inter-cluster variation doesn’t change.

K-center algorithm. This is another clustering algorithm. The goal
of this algorithm is to select K points from the given data points which
minimizes the maximum distance from the controller to the switches.

1. Require: (NxN) Shortest Path Matrix. and Required delay (r)

209

22. Algorithms and applications for the utilization of SDN technologies to 10T

2. k « Select randomly a node
3. While there are nodes not belonging to the cluster do

4. Cluster, < Find the nodes v that satisfy d(k;v)<r, where v
¢ Cluster
5. Foreachnodev e cluster, do:

6. Evaluate max(min(d(v, cluster,)))

7. End for

8. Choose the node as controller s which minimizes the d(v,s)

9. Find the furthest node k from Cluster

10.End while

Pareto-Optimal Controller Placement (POCQO) algorithm. POCO
is proposed in [13] and is a failure tolerant controller placement
approach. POCO does not provide recommendations for a specific SDN
controller placement, but returns a set of placements that are optimal
for Pareto, which allows network operators to choose the location that
best suits their needs. In particular, they can also decide how much
controller failure should be covered by an elastic placement.

22.3.2 Balancing algorithms in loT-based software defined
networks

As the topology SDN grows, it is necessary to manage an
increasing number of switches and handle more and more threads. As
stated in the OpenFlow standard, current solutions are based on the
message packet header (or first packet) of each new flow of revenue to
a centralized controller that reactively sets forwarding rules on
switches. If there is only one controller in the control plane, it can
become a bottleneck for the SDN, which will significantly degrade user
interaction. To reduce the load on the controller, some researchers
suggest using the default paths for all threads. When the thread enters
the switch, the switch can find the appropriate rule for this thread and
direct the stream directly.

However, in many practical applications, network operators must
specify detailed (or for each thread) policies that determine how base
switches send, reject, and measure traffic. Because substitution rules
provide only rough flow management, deploying the default path for all

210

22. Algorithms and applications for the utilization of SDN technologies to 10T

threads is not attractive. Therefore, in order to avoid such overload /
failure of one controller, the control plane is usually implemented as a
distributed system with a cluster of controllers, also called a distributed
control plane.

One of the key issues in the distributed control plane is the
potential load imbalance of the controller caused by the traffic
dynamics. In particular, the controller may be overloaded if a large
number of threads are fed to switches that are connected to this
controller while another controller may not be used sufficiently. In
practical networks, the traffic dynamics will occur if some applications
generate streams from certain parts of the network, or some switches
serve a large number of threads compared to other switches. To do this,
eliminate the load imbalance of the controller is necessary.

To overcome this problem, one way is to allow each switch to
dynamically change its connected controller from the source to the
target, also called switching migration.

Formulation of the balancing problem

As SDNs provide the centralized control capability with the global
view of network status, we address the load-balancing of control traffic
to minimize the link transmission delay via an optimization approach.

Specifically, the traffic assignment matrix X = [xij] , where X;

eV, jel
denotes the amount of control traffic that the ith switch contributes to
the jth link, is obtained with respect to minimizing the average network
delay over the network.

To achieve load balancing, multi-path routing is adopted, where

given P as a set of available paths for the ith switch and i €V, this

1
switch can forward the control messages to the controller via |P,|

available paths. To characterize possible multi-path routings of control
flows, for the flow from the ith switch, we define a topology matrix T,

of size |J| X |P,| as follows:

211

22. Algorithms and applications for the utilization of SDN technologies to 10T

if the j,, link lies on the p,, path; (22.8)
otherwise.

T [, DH;

The matrix T. maps the traffic from paths to links and should

always be full column-rank to avoid redundant paths. Its left-inverse
matrix T, " = [til,tiz,...,tipdexists and has the size [P| x |J|, where
t; is the column vector that maps the jth link to all possible paths of the
ith switch’s flow. t; is obtained by multiplying 'I'i’l with the jth
standard basis e;, i.e. {; =Ti‘1ej . While each switch i brings a control

flow with the mean value o, the switch i , where the controller is

directly attached, can send its flow to controller without going through
the network (i.e., e, = 0, V j € J). We set up the equalities for the

control flow conservation of switches as
T’l[xil,...,xi‘JJTl =c,VieV =V \{i*}, where ||||T and ||-||1denote

the transpose and 1-norm of vector, respectively. Letd; =T e j1» such
equalities can be further simplified as

Ydyx =0, VieV, (22.9)

jed

which is the flow conservation constraint, implying that the control
flow initiated by each switch is split into multiple outgoing flows on the
selected transmission links. Furthermore, with the aid of Little’s law
[7], the average network delay D over the network for the control
messages is obtained as

i +A
! . (22.10)

1
D=
Zie\idi+ZJeJ Jguj (Z X”—i-?»)

212

22. Algorithms and applications for the utilization of SDN technologies to 10T

In particular, for link jeJ, new packets arrive with rate

[inﬁkjj and stay an average time of 1/@]—(2&]%”.
ieV ievV

Summing queue backlogs over all links, the average network delay is
thus yielded, as the total external arrivals of control and data traffic into

the network are(Zai +ij J In addition, to balance the traffic loads
ieV jed

among all links, every link should have finite transmission delay. From

the formulation in (3), such finite link delay conditions are equivalent

to

DX <uy-A; Vijel, (22.11)
ieV
which ensure the incoming traffic rates are less than the link
service rates and link delays remain nonnegative. Therefore, with the
above accomplishments, we define the Control Traffic Load-Balancing
Problem as follows.
Given a SDN modeled by G = (V, J) with the controller location

i” eV, control traffic arrival rates o; , a set of topology matrices T, , ¥
i eV, data traffic rates Xj, and link serving rates M Vi e J the
load-balancing optimization problem to be solved by the controller is

vieV =V {i’} o
D| x; — min subject to (22.9) and (22.11).
Vijeld

Load balance strategies and algorithms

Many researches have been proposed on load balance in traditional
multipath network. There are two load balance strategies have been
widely used in multipath network at present: (1) Equal-Cost MultiPath
(ECMP) and (2) Valiant Load Balance (VLB). The core idea of ECMP
is to evenly distribute data-flow to next-hop switches, and VLB

213

22. Algorithms and applications for the utilization of SDN technologies to 10T

distributes traffic among all available paths and randomly picks the
next-hop switch. ECMP is a simple routing scheme with load
balancing. Instead of having one "better" way (measured in some
metric, for example, by the number of hops) to a specific destination,
ECMP enables to use several "best" paths where possible. This
provides some form of load distribution, since we can, if necessary,
distribute traffic in all ways.

These two strategies both use fixed methods and cannot pick
transmission path adaptively to the path load condition.

A dynamic load balance algorithm, known as DLB, has been
proposed in [18]. The DLB algorithm simply applies greedy selection
strategy to pick next-hop link which transmits least data load. Although
these algorithm implements load balance on multipath SDN, this
routing strategy is only decided by link load of every next-hop without
combining the superiority of global network view in SDN. Hence, this
routing strategy may not find the best transmission path in global view
so that may not achieve the best load balance effect.

Hash-Based ECMP Flow Forwarding [19]: a hash-based Equal-
Cost Multi-Path (ECMP) [20] is a load balancing scheme for
distributing flows to the available paths using stream hashing methods.
The main limitation of ECMP is that two or more large long-lived
streams can collide in their hash and share the same output port, thereby
creating a bottleneck in the network. This static mapping of flows in the
path is not associated with the current use of the network, nor with the
size of the flow, which leads to collisions that can overload the switch
buffers and degrade the overall use of the network. To avoid the
constraints of ECMP, a significant number of large (ivory) streams can
be detected on edge switches or end hosts [21] and then the central
controller can calculate the appropriate paths for them, while small
(mouse) streams are forwarded using ECMP routing on the switches.
However, such a solution can cause high bandwidth and processing
overhead on switches or hosts.

Wildcard Rule Flow Forwarding: OF switches use flowmatch
wildcards to aggregate traffic flows [20]. OF is a great concept that
simplifies network and traffic management by providing switch level
control at the switch level and providing a global view of the network.
However, centralized management and a global view of all flows
require the controller to configure all flows for a critical path

214

22. Algorithms and applications for the utilization of SDN technologies to 10T

throughout the network, which is not scalable enough and leads to both
bottlenecks and delays. To reduce the number of interactions between
the controller and the switches, the SDN TE approaches implement OF
substitution rules on the switches, and the switches can make local
routing decisions that process mouse flows to avoid controller
involvement, while the controller maintains control over only elephant
target streams, especially for flows important to quality of service
(QoS). In another approach, authoritative switches are used to process
all data packets without involving a controller in order to reduce the
control costs on the control plane.

VLB algorithm is a randomized load distribution or two-phase
routing algorithm. This is decentralized, so each node makes local
decisions. It also makes the scheme scalable. VLB does not depend on
the traffic matrix, because randomness erases the traffic pattern, and
different traffic matrices can lead to the same load on the channels.

Consider a network of N nodes, each with capacity r, i.e., a hode
can initiate traffic at the maximum rate of r, and can receive traffic at
the same maximum rate. We assume that the network traffic satisfies
such node aggregate constraint, because otherwise there is no way to
avoid congestion. A logical link of capacity 2r/N is established between
every pair of nodes over the physical links, as shown in Figure 22.4.

Fig.22.4 — VLB in a network of N identical nodes each having
capacity r.

215

22. Algorithms and applications for the utilization of SDN technologies to 10T

We use the convention that a flow in the network is defined by the
source node and the destination node, unless further specified.

Every flow entering the network is equally split across N two-hop
paths between input and output nodes, i.e., a packet is forwarded twice
in the network: In the first hop, an input node uniformly distributes
each of its incoming flows to all the N nodes, regardless of a full mesh
of logical links of capacity 2r/N connect the nodes the destinations. In
the second hop, all packets are sent to the final destinations by the
intermediate nodes. Load-balancing can be done packet-by-packet, or
flow-byflow at the application flow level. The splitting of traffic can be
random (e.g., to a randomly picked intermediate node) or deterministic
(e.g., round-robin).

Assume we can achieve perfect load-balancing, i.e., can split
traffic at the exact proportions we desire, then each node receives
exactly 1/N of every flow after first-hop routing. This means, all the N
nodes equally share the burden of forwarding traffic as the intermediate
node. When the intermediate node happens to be the input or output
node, the flow actually traverses one hop (the direct link between input
and output) in the network. Hence, 2/N of every flow traverses the
corresponding one-hop path.

Such uniform load-balancing can guarantee to support all traffic
matrices in this network. Since the incoming traffic rate to each node is
at most r, and the traffic is evenly load-balanced to N nodes, the actual
traffic on each link due to the first-hop routing is at most r/N. The
second-hop routing is the dual of the first-hop routing. Since each node
can receive traffic at a maximum rate of r and receives 1/N of the
traffic from every node, the actual traffic on each link due to the
second-hop routing is also at most r/N. Therefore, a full-mesh network
where each link has capacity 2r/N is sufficient to support all traffic
matrices in a network of N nodes of capacity r.

This is perhaps a surprising result — a network where any two
nodes are connected with a link of capacity 2r/N can support traffic
matrices where a node can send traffic to another node at rate r. It
shows the power of load-balancing. In VLB, each flow is carried by N
paths, and each link carries a fraction of many flows; therefore any
large flow is averaged out by other small flows. In a static full-mesh
network, if all the traffic were to be sent through direct paths, we would

216

22. Algorithms and applications for the utilization of SDN technologies to 10T

need a full-mesh network of link capacity r to support all possible
traffic matrices; therefore, load-balancing is N/2 times more efficient
than direct routing.

Rounding-Based Multi-Area Routing (RDMAR) algorithm is used
for link/controller load balancing is an SDN. To solve LBR-C problem,
the algorithm constructs a linear program as its relaxation. More
specifically, LBR-LC assumes that the traffic of each flow should be
forwarded through only one path. By relaxing this assumption, the
traffic of each flow f is permitted to be forwarded through a set of

feasible paths P;. We formulate the following program LP :

2o, 2cepper, YTS(F) 4, veeE,

Y Dpen s 2OV S0y TeA

D et Dopers o DYE <4 1) leA (22.12)
Zpep, yi =1 viel

yr 0] viel,peP,

The main difference of variable y{ with Eq. (22.12) is fractional

instead of integral. Since LP, is a linear program, it can be solved in

polynomial time with a linear program solver. We assume that the

optimal solution is denoted by /Tj. Using randomized rounding

method, we obtain an integral solution y . More specifically, §! is set

as 1 with the probability § while satisfying ny =1V fel By
pePy

this way, we have determined the path for flow f.
The RDMAR algorithm is formally described as follows.

Algorithm RDMAR on Controller u;

1: Step 1: Solving the relaxed LBR-C Problem
2: Construct a linear program in Eq. (22.12) as relaxed LBR-LC

217

22. Algorithms and applications for the utilization of SDN technologies to 10T

3: Obtain the optimal solution §
4: Step 2: Flow route Selection for Load Balancing
5: Drive an integer solution ! for each flow by randomized

rounding
6: for each flow f € T" do

7. for each feasible pathp € P; do
8: if 7 =1 then
9: Appoint a feasible path p for flow f

22.3.3 Algorithms for finding the optimal path in SDN networks

In networking systems, data can be disseminated (from source to
destination) either through a single or multi path(s). In single path, data
should be routed from origin to destination through a unique path,
which has to meet some of predefined constraints. While the other
solution for traffic distribution is by routing the traffic through a
number of existing paths between the origin and destination. According
to the literature, for each of these routing strategies there are some
different methods with common principles such as using the well-
known shortest path algorithms like Dijkstra, Bellman-Ford, etc. The
major routing schemes are usually focusing on how to select the most
optimal path (single path) in order to disseminate the data packets,
while various of single-path algorithms have been reported and
classified based on their QoS metrics. For all of the proposed
algorithms there is a set of common metrics such as bandwidth, delay,
jitter, packet loss and hop count. The concept of disjoint path, when

Pathl Path2 = ,

can be utilized in both data transmission scenarios, for instance it
can be employed as a backup for the single path methods or a
primary/backup for the multi ones. Disjoint paths have a significant
benefit over many aspects and it always more preferable to be used in
the context of enhancing the network performance like link/node
failure, loud balance improvement and for better network resource
utilization.

218

22. Algorithms and applications for the utilization of SDN technologies to 10T

The path computation is the core work for the controller after it
learns the network topology. Dijkstra’s and Floyd-Warshall algorithms
are commonly used for the shortest path computation. Dijkstra’s
algorithm computes all the shortest paths between a single-source to all
possible destinations; while Floyd-Warshall algorithm computes the
shortest paths for all possible source/destination pairs. In a legacy
network, each network node computes the shortest path from the node
to all destinations, so the Dijkstra’s algorithm is the best option. In
SDN networks, the controller knows the complete network topology
and is in charge of setting up paths for all possible source/destination
pairs, thus Floyd-Warshall algorithm is the good choice.

22.4 SDN Performance prediction

Regarding to the performance of the SDN and OpenFlow, there are
not much research focused on this topic, yet. The most common
approach to evaluate the performance of SDN is benchmark tools,
namely OFLOPS [22], OFCBenchmark [23], etc. OFLOPS is used to
measure the performance of OpenFlow-enabled hardware and software
switches on the controller side. OFCBenchmark is a benchmark tool
designed to create a set of message-generating virtual switches. Each
switch can be configured independently from each other to simulate a
specific scenario, at the same time keeping its own statistics. From
other hand, there are a lot of papers devoted do machine learning (ML)
algorithms that have been successfully applied to a wide variety of
problem. The application of ML to SDN communication and
networking is still in its infancy

22.4.1 Algorithms performance metrics

The comprehensive overview of Metrics for Analyzing,
Developing and Managing Telecommunication Networks is given in
[24]. In this paragraph, we will address to the metrics applicable to ML.
When applying ML to a classification problem, a common approach to
evaluate the ML-algorithm performance is to show its classification
accuracy and performance to overcome complexity.

219

22. Algorithms and applications for the utilization of SDN technologies to 10T

Comparison of ML algorithms and some performance metrics is
shown in Table 22.1.

Table 22.1 — Different use cases at network layers, metrics and
algorithms (adopted from [25])

Use Case Metrics Adopted Ref.
algorithms
QoT estimation | Accuracy, false | Naive Bayes, | [26]
(BER positives Decision tree, RF,
classification) J4.8 tree, CBR
Accuracy, AUC, | KNN, RF [27]
running time
Accuracy, Confusion | KNN, RF, SVM [28]
Matrix, ROC curves
MF recognition | Running time, minimum | K-means, EM, | [29]
in Stokes space | OSNR to achieve 95% | DBSCAN,
accuracy OPTICS, spectral
clustering,
Maximum-
likelihood
Failure Confusion Matrix Bayesian [30]
Management Inference, EM
Accuracy versus model | NN, RF, SVM [31]
parameters (BER
sampling time, amount
of BER data etc.)
Flow / Loss | Misclassification HMM, EM [32]

Classification

probability (similar to
FPR)

22.4.2 An overall approach to detect and diagnose failures in SDN

A framework to identification performance problems and failure
detector based on troubleshooting and performance tuning methodology
for multi-database was proposed in [33], [34]. In this paper, we will
show the capability of our data fusion technique to ensure early
detection of SDN performance issues that arise as a result of cumulative

220

22. Algorithms and applications for the utilization of SDN technologies to 10T

effects (overloading requests, exceeding execution time, etc.) under
competing hypotheses. It is suggested that the SDN is in a critical state
when there is slow processing or some resource is heavily loaded to
respond in the normal state.

The methodology involves the use of data monitoring parameters
and metrics, obtained in real time and includes the following six stages,
(1) data preprocessing and normalization, (2) time-series forecasting,
(3) computing residuals for every node, (4) computing BPA for every
node, (5) fusion BPA, (6) decision making regarding future
performance issues.

At the first stage, the preliminary processing of the received data
and their normalization is carried out. This stage is necessary for
correct fusion since the parameters that are used to assess the state of
the database are measured in unequal units. At the next stage, data is
predicted using the ARIMA (Autoregressive Integrated Moving
Average) model. At the third stage, the obtained predicted values of
each parameter are used to calculate the prediction error residues, as,

the forecast errors. These values will be used for fusion and assess
deviations.

=Y.~ Y (22.13)

where y, - real value, vy, - predicted value.

At the fourth stage, the basic probability assessments (BPA) m(X)
of the normal m;({N}) and critical state m({C}) of the database system
are performed. For computing the BPA residuals obtained on the
previous stage are used. The main probability distribution function of
the normal state of the database system can be defined as follows.

m({N})=P(x)=— exrf%(%)z, (22.14)

oN2r

where x denotes the remainder of the parameter at a given time
stamp; u is the average value of the balance of the state of the database
system; o is the standard deviation of the residual of the state parameter
of the database system.

221

22. Algorithms and applications for the utilization of SDN technologies to 10T

In compliance with DS theory of evidence for full SDN set states

Q = {N = “normal”, C =critical”}, NNC = Q, the probability of the
critical state m ({C}) can be determined using (22.14):

m({C}) =1-m({N}) . (22.15)

At the fifth stage, the fusion of the BPA for normal m{({N}) and
critical state m;({C}) is performed.

Since the number of evaluated parameters is more than two, the
hybrid model is used as the base model within the concept of
combining Dezert-Smarandache (DSmT) [35], which is an extension of
the Dempster-Shafer theory [36] with the following combination rule
mPR(X), proposed by Martin and Osswald in [37] as a PCR®:

MR (X) =my, (X)+

m; (X;)-m, (X,) ..o my(X,) (22.16)
il,xz,...xsee\{z}nh(xl)+mz(Xz)+~-+ms(s)’

1NXoN.nX =D

+

where m,, ((X)nm(X)corresponds to the conjunction of
consensus on X between s > 2 parameters, my,, _(X) is the conjunctive
rule given by the equation

m(x)= ¥ [Im(Y,) (22.17)

YiN...nYp=X j=1

At the last stage, a model correction is carried out, a report is
generated for the ISP , and a decision is made to create an additional
report on the critical state of the database.

For two consecutive-time combined estimates of m™"* and m
containing n mutually exclusive and exhaustive hypotheses, the
distance d between mP“® and m”“"? is calculated as (22.18):

d (mpcm' mPeR2) _ %{"mPCRl”Z + ||mPCR2 ||2 _}. (22.18)

PCR1 PCR2

_2<mPCR1 mPer2 >

222

22. Algorithms and applications for the utilization of SDN technologies to 10T

The resulting value is used as the source of the decision about the
similarity of the indicators and, as the degree of belief for the predicted
state. Thus, a conflict of hypotheses regarding the existing problems
associated with the performance of the SDN can be determined the
probability of a critical overload of the system. The next section
contains an example of the implementation of technology for obtaining
predictions about the performance of the SDN.

22.4.3 Case study

The study uses the time series of 2006 observations of the
following parameters CPUW, ASES, and IOPS. Table 22.2 provides
guantitative metrics for different pieces of data.

Table 22.2 — A Fragment of the Initial Data, Sample #1
SDN metrics
CPUW IOPS | LoadProc
403 | 12,636 57,6812 1583
404 | 14,569 57,6812 1559
405 | 18,345 57,6812 1585
406 | 45,604 | 44,87961 1604
407 | 34,266 | 44,87961 1591
408 | 25,791 | 44,87961 1579
409 | 15,362 | 47,92667 1481

ID

Figures 22.5, 22.6, and 22.7 show the different time series of
observations of CPUW, ASES, and IOPS with a time step of
observations equal to 5 minutes.

223

22. Algorithms and applications for the utilization of SDN technologies to 10T

70
50 CPU e |IOPS ASES

50
40

30
20
10 =

0

S H S R 838 N L X9 N YR]
o SR =R s B B s s B]
T T T T TS ST F T F T S

Fig. 22.5 — Sample #1

100

80

40 /
S — N —

856 857 858 859 860 861 862 863 864 865 866 867 868

Fig. 22.6 — Sample #2

100

80 A~ _______,f"""--

60

-—-x/—

a0

20
e (PU e |OPS ASES

1366
1367
1368
1369
1370
1373
1374
1375
1376
1377
1378
1379
1380
1381

1371
1372

Fig. 22.7 — Sample #3

Data normalization. Data normalization was carried out using the
calculation of the percentage of approximation of the current values of
monitored parameters to their preset limits.

The maximum values of selected metrics are taken as 100%, and
the values of real data are estimated, relative to their approximation to
the limit values.

The examples of normalized data are presented in Tables 22.3-
22.5.

224

22. Algorithms and applications for the utilization of SDN technologies to 10T

Table 22.3 — A fragment of the normalized data, sample #1

ID Metrics
CPUW’ 10PS’ ASES’

403 12,636 57,6812 14
404 14,569 57,6812 12
405 18,345 57,6812 14
406 45,604 | 44,87961 15
407 34,266 | 44,87961 14
408 25,791 | 44,87961 13
409 15,362 | 47,92667 9

Let us assume that CPUW, IOPS parameters are obtained as a
percentage of the available system resources and do not require
additional normalization (100% CPUW or IOPS corresponds the worst
state of the SDN). LoadProc is taken from the host operation system
(OS) and requires normalization since the maximum number of
processes that can be started may vary depending on the system.

Table 22.4 — A fragment of the normalized data, sample #2

Table 22.

D SDN metrics
CPUW’ 10PS’ ASES’
857 | 6,796 71,59825 | 21
858 | 5,966 71,59825 | 10
859 | 4,940 71,59825 | 12
860 | 8,807 76,54575 | 10
861 | 13,563 76,54575 | 33
862 | 13,725 73,60774 | 26
863 | 11,178 73,60774 | 34
5 —A fragment of the normalized data, samp
D SDN metrics
CPUW’ | I0OPS’ ASES’
1366 | 75,083 51,83118 | 30
1367 | 80,318 51,83118 | 22

225

le #3

22. Algorithms and applications for the utilization of SDN technologies to 10T

1368 | 75,815 53,57843 | 21
1369 | 70,036 53,57843 | 22
1370 | 69,131 53,57843 | 20
1371 | 71,127 48,31402 | 20
13721 71,340 48,31402 | 19

Next, we determine the minimum indicator of the system operating
in which there are no external connections to the database, only the
processes of the OS system and the database. In our case, it corresponds
to 66%. This number is taken as the initial or zero state. So, for a
system with an established maximum of 2,000 processes, 1,583
processes account for 80%.

Performance prediction

Prediction of the parameter values was performed using the
Autoregressive Integrated Moving Average (ARIMA) model.

Vo=m+BY, ot By, —O8, —..—O8 (22.19)

where Y, denotes the predicted value, x, ¢,, 6, are the parameters
of the model, p is the order of autoregression, g is the order of the
moving average, e, denotes the random noise at the time.

The prediction of state of the database was performed for three
metrics (CPU, ASES, IOPS) for 1373 time steps.

To assess the quality of the forecasting model, the Bayes
Information Criterion (BIC) was used.

BIC =—2In(L) +k In(n). (22.20)
As a result, the ARIMA (1,1,1) model with the minimum value of
BIC was chosen.

The predicted and actual values for CPU, ASES and IOPS are
plotted in Fig. 22.8, 22.9 and 22.10 respectively.

226

22. Algorithms and applications for the utilization of SDN technologies to 10T

Fig. 22.8 — Predicted and actual CPU values

Fig. 22.9 — Predicted and actual ASES values

Fig. 22.10 — Predicted and actual IOPS values

As can be seen from the figures, the predicted values closely
correlate with the actual data values. However, as mentioned above,
there is a set of competing hypotheses argued for CPU, IOPS and ASES
parameters in different time steps that complicate the detection of
database performance issues.

227

22. Algorithms and applications for the utilization of SDN technologies to 10T

Residuals of the ARIMA model

The residuals for three fragments of normalized data metrics of the

database are presented in Tables 22.6-22.8 respectively.

Table 22.6 — Residuals fragment of the sample #1

ID Residuals
Rcpuw Riops Rasks
403 | 0,51302 -0,29273 | 0,12161
404 | -0,46444 | 0,10807 | 0,305274
405 | -0,10301 | -0,09519 | 0,00709
Table 22.7 — Residuals fragment of the sample #2
ID Residuals
Rcpuw Riops Rasks
860 | -0,43145 -0,10342 1,29507
861 | -0,10942 0,03312 3,06829
862 | -0,21710 0,20911 1,20827

Table 22.8 — Residuals fragment of the sample #3

ID Residuals

Rcpuw Riops Rasks
1366 | 1,36751 | 0,39218 | -0,85509
1367 | 0,05604 | -0,19447 | 0,30656
1368 | -1,4567 | -0,20819 | -0,57332

In the absence of noise, these residues usually show smooth
fluctuations, which can be observed in the residuals plots. Then the
residuals of the three sensitivity parameters are used as sources of
evidence for using the DSmT fusion method and the results of fusion is
the probability of a critical state of the database system.

Basic probability assignment

BPA is calculated by the equation (22.14) for each parameter of the
database state for each epoch. The fragments of the results of the
calculation of BPA for the normal (N) and critical (C) state of the

228

22. Algorithms and applications for the utilization of SDN technologies to 10T

database is presented in Tables 22.9-22.11. As it can be seen from the
tables, there are six partial conflicts between data.

Table 22.9 —A Fragment of the Calculation of BPA for the Sample
#1

Basic probability assessment
ID Mcpu Mcpu Miops Miops Mases Mases

(N) (©) (N) (©) (N) (©)
403 | 0,40605 | 0,59395 | 0,66328 | 0,33671 | 0,39207 | 0,60793
404 | 0,45162 | 0,54837 | 0,77489 | 0,22511 | 0,36874 | 0,63126
405 | 0,52881 | 0,47119 | 0,77490 | 0,22510 | 0,40030 | 0,59970

Table 22.10 — A Fragment of the Calculation of BPA for the
Sample #2

Basic probability assessment

ID Mcpu Mcpu Miops Miops MAases Mases
(N) ©) (N) ©) (N) ©)
860 | 0,46259 | 0,53741 | 0,77225 | 0,22775 | 0,14637 | 0,85363
861 | 0,52839 | 0,47161 | 0,78967 | 0,21033 | 0,00229 | 0,99771
862] 0,51584 | 0,48416 | 0,72947 | 0,27053 | 0,16521 | 0,83479

Table 22.11 — A Fragment of the Calculation of BPA for the
Sample #3

Basic probability assessment

ID Mcpu Mcpu Miors Miors Mases MasEs
(N) ©) (N) ©) (N) ©)
1366 | 0,09254 | 0,90746 | 0,59034 | 0,40966 | 0,30445 | 0,69555
1367 | 0,52677 | 0,47323 | 0,73050 | 0,26950 | 0,36854 | 0,63146
1368 | 0,08917 | 0,91083 | 0,72236 | 0,27764 | 0,36195 | 0,63805

Data fusion
In such manner we get all BPA and apply DSmT combination rule

for each partial conflict using formula (22.16), as demonstrated below:

229

22. Algorithms and applications for the utilization of SDN technologies to 10T

Mgy (N)migs (C)mides (C) =0,09254-0,69555-
-0,40966 ~ 0,0264.

PCR PCR
XPCR x2S X5 0.0264

= = = z0,022-
0.09254 0,69555 0.40966 1,1977

X% =0,09254-0,0220 ~ 0,002,
xES = 0,69555-0,0220 ~ 0,0153,
XE%R = 0,40966 - 0,0220 ~ 0,009,

and therefore with m"°R(X), the following redistributions to N and
C states are obtained:

XECR % 0,002,
XER = XER + XS =0,0153+ 0,009 = 0,0243.

A fragment of the results of the calculation partial conflicts for the
normal and critical state of the database is presented in Table 22.12 and
Table 22.13.

Table 22.12 — The partial conflicts Xj(N) for the sample #3
Partial conflicts Xi(N)

X1(N) | Xao(N) | X3(N) | Xa(N) | Xs(N) | Xe(N)

1366| 0,0020 | 0,0212 | 0,1003 | 0,0810 | 0,0188 | 0,0057

1367 0,0331 | 0,0156 | 0,0869 | 0,0891 | 0,1618 | 0,0402

1368| 0,0014 | 0,0214 | 0,1335 | 0,1294 | 0,0230 | 0,0055

ID

Table 22.13 — The partial conflicts Xj(C) for the sample #3
Partial conflicts Xi(C)

X1(C) | Xo(C) | X3(C) | Xa(C) | Xs5(C) | Xe(C)

13661 0,0243 | 0,0919 | 0,2723 | 0,0821 | 0,0192 | 0,0059

1367 0,0566 | 0,0314 | 0,1314 | 0,0383 | 0,0812 | 0,0121

13681 0,0144 | 0,0702 | 0,2863 | 0,1087 | 0,0181 | 0,0034

ID

230

22. Algorithms and applications for the utilization of SDN technologies to 10T

Therefore, with PCR one finally gets
6
Mémg ases ors (N) = 0,016632+ > x, (N) ~ 0,2456.
i=1

6
Mést ases iops (C) = 0,258571+ > x,(C) ~ 0,7544.

i=1

A fragment of the results of the calculation mZ5] .zs ops fOr normal

and critical state of the database is presented in Table 22.14.
Table 22.14 — The Results of Data Fusion for sample #3

I D mEES,ASES,IOPS (N) mzgS,ASES,IOPS (C)
1366 0,0243 0,0919
1367 0,0566 0,0314
1368 0,0144 0,0702

Figure 22.11 summarizes the experimental results for fusion CPU,
IOPS and ASES on time steps 1366-1381 as a two lines for normal
(green dash line) and critical states (red dash line).

100
80 /\A/~—4//\
60 % P ;‘Sh .‘H\"".q P = % A —
T s S . - ", i
S S g p
40 g o
CPU IOPS ASES
0]
W M~ 0 © — NN s o W~ 0 o S
WD W D P~ P s P s P s P P~ I~ 00 o0
M M M M oM oM MM MM M M M M
e e e e B T B O R B T B R B T B

Fig. 22.11 — Data fusion results for Sample#3

As can be seen from Fig. 22.8, the calculated values at the time-
steps #1367, 1369, 1370, 1371, 1378 show that SDN state is normal, but

231

22. Algorithms and applications for the utilization of SDN technologies to 10T

the real values of CPUW and ASES are not normal, that could mean
failure propagation. In this situation, the correction of the model is
needed.

Applying equation (22.18) and calculating the distance between
two BPA enables to correct values between two time periods and
allows making a decision concerning the state of SDN.

The results of the distance calculation for Saple#3 are presented in
Table 22.15.

As is seen from Fig. 22.11, on time-step #1366 the values point on
the critical state, at #1367 they are normal, so we calculate the distance,
at #1368 a second assumption about critical state appears.

Table 22.15 — A fragment of the calculation of BPA for the sample
#3

Mcpu Mcpu | Mases | Mases | Obpa Jbpa
ID | (N) € |(N) | (©C) | (mymg) | (my
mz)

13661 0,093 | 0,907 | 0,304 | 0,696
13671 0,091 | 0,473 | 0,369 | 0,631 | 0,307 -
1368| 0,089 | 0,911 | 0,362 | 0,638 | 0,722 0,002
13691 0,092 | 0,908 | 0,380 | 0,620 | 0,207 0,205
1370§ 0,178 | 0,822 | 0,401 | 0,599 | 0,306 0,308
1371} 0,0923 | 0,908 | 0,367 | 0,633 | 0,002 0,311
13721 0,134 | 0,866 | 0,370 | 0,630
1373] 0,092 | 0,908 | 0,114 | 0,886

Distance between previous critical state is equal to 0,024 so critical
state are similar that correcting the value #1367 to 0,091. The system
alert from 3 critical state has passed, at #1369 there are two critical
signals from CPU and ASES that are above 0,5. After this step we
correct value to 0,092. Steps #1370, 1371 are passed as normal. At step
#1372 two BPA(C) of CPU and ASES are above 0,5 than correcting the
values #1370, 1371, 1372 to 0,178; 0,0923; 0,134. Final step #1373 has
two BPA(C) of CPU and ASES are above 0,5 than correcting the value
to 0,0923.

232

22. Algorithms and applications for the utilization of SDN technologies to 10T

The corrected results are shown in Fig. 22.12 by two additional
lines for probabilities of normal (green bold line) and critical states (red
bold line) that most closely approximate the real state of the system.

The prediction models can be used to increase the ability of the
ISP to respond on different performance issues. Grounded on history
monitoring data, Network 1/O, query complexity etc. for various data
sizes the performance prediction models evaluate the query execution
time and inform ISP about upcoming trouble event. This makes it
possible to identify risks and prepare mitigating plan.

Thus, using the proposed methodology, in conditions of conflict of
probabilities of values and analysis of time series, system is able to
compute the probability of occurrence of performance issues and
critical state.

100
80
60
40
20
CPU |OPS ASES
PCRG[N) =====-- PCR6(C) PCRG(N) K
0 PCRB(C)K
OO~ 0 Oy O N M s W WD~ 0y
W W oW oW M~ M s M P M~ P~ M~ M~ M~ 00 00
Lo T o T T T 0 2 e e T o T o T o N o R o B e 0 I S I 5
Lo DI o I e I I B B I o R I o R I o B o I o B s I |

Fig. 22.12 — Correcting the model values for Sample#3

When troubleshooting forecast or alarm is triggered, the ISP will
obtain automatic notify (via e-mail, web-page, etc.) about the recent
developments to take appropriate action. This approach allows users to
maintain a stable yet optimal performance of their business-critical
systems.

233

22. Algorithms and applications for the utilization of SDN technologies to 10T

22.5 Work related analysis

There are different approaches to enforce service level agreements
in SDN and virtualized network functions. Bendriss et al. [3] proposed
a technique to prediction of service level objectives breaches for
streaming services deploying on NFV and SDN. An analytical model to
measure performance of SDN deployment based on stochastic network
calculus is presented in [1]. Research on Load Balance Method in SDN
is presented in [38]. Hani et al. [39] raise the issue of predicting
violations of SLA. They define SLA violation as deviations from the
conditions agreed on in the SLA. They use a Support Vector Machine
(SVM) adapted for regression, termed SVR, for time series forecasting.
They identify two SLOs, namely, bandwidth and response time in cloud
database. The final evaluation shows a minimum accuracy of more than
80% for 10 days look ahead.

Another interesting issue not discussed in this chapter is Intrusion
detection in SDN. It has a big potential to further research and
deployment in SDN. Thus, Kokila et al. [40] proposed a method for
detection of DDoS attacks on the SDN controller.

Our colleagues from University of Leeds [41] developed a Deep
Neural Network (DNN) model for an intrusion detection system and
trained it with the NSL-KDD Dataset. In this work, they used six basic
features (that can be easily obtained in an SDN environment) taken
from the fortyone features of NSL-KDD Dataset. Through experiments,
they confirmed that the deep learning approach shows strong potential
to be used for flow-based anomaly detection in SDN environments. The
key difference between their work and other papers is that they uses
simplex preprocessing and features extraction in the SDN context. A
comprehensive survey of recent works that apply SDN to security, and
identify promising future directions that can be addressed by such
research is prepared by multinational research team from Newcastle
University (UK), university of New South Wales (Australia) and Cisco
Systems (Australia) [42].

The course 1K3619 Software Defined Networking (SDN) and
Network Functions Virtualization from KTH Royal Institute of
Technology [43] is targeted on a deep understanding of two important,
emerging network technologies: Software Defined Networking (SDN)

234

22. Algorithms and applications for the utilization of SDN technologies to 10T

and Network Functions Virtualization (NFV). This course consists of 4
hours of lectures and 16 hours of discussion of research papers. The
teachers present the basic material and then assign selected research
papers to be presented by the students in class. Each student will be
required to read and write a paper summary (evaluation) of each of the
assigned papers before presenting the paper and participating in a
discussion of the paper during class. The course will also include
assignments in the form of small projects.

Conclusions and questions

In this section, the materials for module PC2 of PhD course
“Software Defined Networks and IoT” are presented. They can be used
for preparation to lectures and self-learning. The materials were
developed by Prof. I.S. Skarga-Bandurova, Ph.D. student M.V.
Nesterov and Ph.D. student A.Y. Velykzhanin.

Due to SDN is a recently emerging paradigm, there are only a
limited number of studies on implementing specific QoS models over
SDN. In this chapter, we review the existent algorithms and approaches
to utilizing SDN technology in lIoT and take a look at perspectives on
SDN performance prediction using data fusion technique. Traditional
and novel algorithms applicable in SDN can be used for the following
tasks: SLA management; smart routing and optimal VM placement;
solving controller placement problem; load balancing; performance
prediction; intrusion detection and prevention. Some of them are tested
and implemented well; others need to be improved that gives a wide
corridor for new research and innovations.

In order to better understand and assimilate the course content that
is presented in this section, we encourage you to answer the following
questions.

1. What categories of algorithms are used applicable to SDN and
10T?

What parameters SLA agreement generally comprises?
Categories of SLA management.

SLA metrics.

How to overcome problems with server-side crashes caused by
hardware crashes, such as hard disk or memory module crashes
and program problems, such as program errors or configuration
errors?

aprwn

235

22. Algorithms and applications for the utilization of SDN technologies to 10T

How QoS routing algorithms can be analyzed?

What metrics can be used to evaluate algorithms performance?

What is the tasks of the TE routing algorithm?

What QoS routing algorithms can be used for large-scale SDN?

10 Traffic scheduling algorithms.

11. What tasks are solved in traffic engineering for SDN?

12. What means good controller placement?

13. What metrics can be used to evaluate the position of the SDN-
controller?

14. SDN-controller placement algorithms.

15. How reduce the load on the controller?

16. Load balance strategies.

17.What algorithms can be used to finding the optimal path in

SDN networks?

References

1. C. Lin, C. Wu, M. Huang, Z. Wen, Q. Zheng, "Performance
Evaluation for SDN Deployment: an Approach based on Stochastic Network
Calculus”, Wireless Communication over ZigBee for Automotive Inclination
Measurement. China Communications, vol. 13(1), pp. 98-106, 2016. DOI:
10.1109/CC.0.7560881.

2. S. Dixit, "Future of IMT Systems: Wireless World Vision 2020"
Reseatch Forum, 2013. [Online]. Awvailable: https://www.itu.int/en/ITU-
D/Technology/Documents/Events2013/RegionalForumIMT_ARB_Tunis_May
2013/Presentations/RegForumIMT_2013 ARB_Tunis_May13 Presentation_S
Dixit_2.pdf [Accessed: 25 December 2017].

3. J. Bendriss, 1.G. Ben Yahia, D. Zeghlache, "Forecasting and
anticipating SLO breaches in programmable networks™, 20th Conference on
Innovations in Clouds, Internet and Networks (ICIN), March 2017.
d0i:10.1109/icin.2017.7899402.

4. G. Choudhury, D. Lynch, G. Thakur, S. Tse "Two Use Cases of
Machine Learning for SDN-Enabled IP/Optical Networks: Traffic Matrix
Prediction and Optical Path Performance Prediction”, Arxiv.org, 2019.
[Online]. Awvailable: https://arxiv.org/abs/1804.07433 [Accessed: 23- Feb-
2019].

5. S. Tomovic, I. Radusinovic, N. Prasad, "Performance comparison of
QoS routing algorithms applicable to large-scale SDN networks", IEEE
EUROCON 2015 - International Conference on Computer as a Tool
(EUROCON), September 2017, DOI: 10.1109/EUROCON.2015.7313698.

© o ~N®

236

https://arxiv.org/search/cs?searchtype=author&query=Choudhury%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Lynch%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Thakur%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Tse%2C+S
https://doi.org/10.1109/EUROCON.2015.7313698

22. Algorithms and applications for the utilization of SDN technologies to 10T

6. S. Das, Y. Yiakoumis, G. Parulkar, N. McKeown, P. Singh, D.
Getachew, P.D. Desai, "Application-aware aggregation and traffic engineering
in a converged packet-circuit network", Optical Fiber Communication
Conference and Exposition and the National Fiber Optic Engineers
Conference (OFC/NFOEC), March 2011, pp.1-3.

7. R. Yanggratoke et al., "Predicting service metrics for cluster-based
services using real-time analytics", 11th International Conference on Network
and Service Management (CNSM), November 2015, pp. 135-143.
DOI: 10.1109/CNSM.2015.7367349

8. D.O. Awduche, L. Berger, D. Gain, T. Li, G. Swallow, and V.
Srinivasan. "Extensions to RSVP for LSP Tunnels", Internet Draft draftietf-
mpls-rsvp-Isp-tunnel-04.txt, September 1999.

9. Ren, H., Li, X,, Geng, J., & Yan, J. (2016). A SDN-Based Dynamic
Traffic Scheduling Algorithm. 2016 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery
(CyberC).d0i:10.1109/cyberc.2016.103

10. Kennington, J. and A. Madhavan. "Optimization Models and
Algorithms for Minimizing the Maximum Link Utilization in Ospf Data
Networks." ‘Technical report, http:/lyle.smu.edu/ jIk/. 2007.

11. Resende M and Pardalos P. Handbook of Optimization in
Telecommunications[M]. New York, Springer Science +Business Media,
2006: 679-700.

12. Fortz B and Thorup M. Internet traffic engineering by optimizing
ospf weights[C]. IEEE Infocom Proceedings, Tel Aviv, Israel, Aug, 2000, 2:
518-528.

13. Hock, D., Hartmann, M., Gebert, S., Jarschel, M., Zinner, T., &
Tran-Gia, P. (2013). Pareto-optimal resilient controller placement in SDN-
based core networks. Proceedings of the 2013 25th International Teletraffic
Congress (ITC).doi:10.1109/itc.2013.6662939

14. B. Heller, R. Sherwood, and N. McKeown, “The Controller
Placement Problem,” in Proc. of ACM HotSDN’12, pp. 7-12, August 2012.

15. M. Shindler. Approximation algorithms for the metric k-median
problem. Written Qualifying Exam Paper, University of California, Los
Angeles. Cited on, page 44.

16. V. Vazirani. Approximation algorithms. Springer Verlag, 2001.

17. D. Hochba. Approximation algorithms for np-hard problems. ACM
SIGACT News, 28(2):40-52, 1997.

18. Y. Li, D. Pan, "OpenFlow based load balancing for Fat-Tree
networks with multipath support”, 12th IEEE International Conference on
Communications (ICC’13), 2013, pp. 1-5.

237

22. Algorithms and applications for the utilization of SDN technologies to 10T

19. LF. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, "Research
Challenges for Traffic Engineering in Software Defined Networks", [Online].
Available: https://bwn.ece.gatech.edu/papers/2016/TrEnggSDN.pdf
[Accessed: 25 December 2017].

20. LF. Akyildiz et al., "A Roadmap for Traffic Engineering in
Software Defined Networks", Computer Networks, vol. 71, Oct. 2014, pp. 1-
30.

21. M. Al-Fares et al., "Hedera: Dynamic Flow Scheduling for Data
Center Networks" Symposium on Networked Systems Design and
Implementation, vol. 10, April 2010, p. 19.

22. C.Rotsos, N. Sarrar, S. Uhlig, et al. "OFLOPS: An open framework
for OpenFlow switch evaluation”, Passive and Active Measurement. Springer
Berlin Heidelberg, 2012, pp. 85-95.

23. M. Jarschel, F. Lehrieder, Z. Magyari, et al. "A flexible OpenFlow
controller benchmark”, IEEE European Workshop on Software Defined
Networking (EWSDN), 2012, pp. 48-53.

24. S.M. Al-Shehri, P. Loskot, and M. Mert, "Common Metrics for
Analyzing, Developing and Managing Telecommunication Networks",

Arxiv.org, 2019. [Online]. Available:
https://arxiv.org/ftp/arxiv/papers/1707/1707.03290.pdf ~ [Accessed: 2-May-
2019].

25. F. Musumeci, C. Rottondi, A. Nag, |. Macaluso, D. Zibar, M.
Ruffini, and M. Tornatore, "An Overview on Application of Machine Learning
Techniques in Optical Networks” Arxiv.org, 2019. [Online]. Available:
https://arxiv.org/pdf/1803.07976.pdf [Accessed: 2-May-2019].

26. 1. de Miguel, R.J. Duran, T. Jimenez, N. Fernandez, J.C. Aguado,
R.M. Lorenzo, A. Caballero, I.T. Monroy, Y. Ye, A. Tymecki et al.,
"Cognitive dynamic optical networks”, IEEE/OSA Journal of Optical
Communications and Networking, vol. 5, no. 10, pp. A107-A118, Oct. 2013.

27. C. Rottondi, L. Barletta, A. Giusti, and M. Tornatore,
“Machinelearning method for quality of transmission prediction of
unestablished lightpaths,” IEEE/OSA Journal of Optical Communications and
Networking, 2018, vol. 10, no. 2, pp. A286—-A297.

28. S. Aladin and C. Tremblay, "Cognitive Tool for Estimating the QoT
of New Lightpaths", in Optical Fiber Communications Conference (OFC)
2018, Mar. 2018.

29. R. Boada, R. Borkowski, and I. T. Monroy, "Clustering algorithms
for Stokes space modulation format recognition”, Optics Express, 2015, vol.
23, no. 12, pp. 15521-15531.

30. S. Gosselin, J. L. Courant, S. R. Tembo, and S. Vaton, "Application
of probabilistic modeling and machine learning to the diagnosis of FTTH

238

22. Algorithms and applications for the utilization of SDN technologies to 10T

GPON networks", International Conference on Optical Network Design and
Modeling (ONDM) 2017, May 2017, pp. 1-3.

31. S. Shahkarami, F. Musumeci, F. Cugini, and M. Tornatore,
"MachineLearning-Based Soft-Failure Detection and Identification in Optical
Networks", Optical Fiber Communications Conference (OFC) 2018, Mar.
2018.

32. A Jayaraj, T. Venkatesh, and C. S. Murthy, "Loss Classification in
Optical Burst Switching Networks Using Machine Learning Techniques:
Improving the Performance of TCP", IEEE Journal on Selected Areas in
Communications, vol. 26, no. 6, pp. 45-54, Aug. 2008.

33. M. Nesterov, |. Skarga-Bandurova "Troubleshooting and
Performance Methodology for Business Critical Systems", The 9th IEEE
International Conference on Dependable Systems, Services and Technologies
(DESSERT'2018), May 2018, p. 551-555.

34. 1. Skarga-Bandurova, M. Nesterov, T. Biloborodova, G. Krivoulya,
I. Kotsiuba, O. Biloborodov, "Data Fusion Technique to Predicting Database
Performance Issues”, Conf. Proceedings of 2019 IEEE 10th International
Conference on Dependable Systems, Services and Technologies
(DESSERT'2019), UK, Leeds, June, 2019. In press.

35. J. Dezert, An introduction to DSmT.
http://fs.unm.edu/IntroductionToDSmMT.pdf. [Accessed 12 January 2019].

36. G. Shafer, "A Mathematical Theory of Evidence", Princeton Univ.
Press, Princeton, NJ, 1976.

37. "Advances and applications of DSmMT for information fusion™ F.
Smarandache, J. Dezert (Editors), American Research Press, Rehoboth, NM,
US.A., Vol. 1-3, 2004-2009. [Online]. Available:
http://fs.gallup.unm.edu//DSmT.htm. [Accessed 12 January 2019].

38. C. Chen-xiao, X. Ya-bin, "Research on Load Balance Method in
SDN", International Journal of Grid and Distributed Computing, 2016, vol.
9(1), pp- 25-36.D0I:10.14257/ijgdc.2016.9.1.03.

39. A.F. Hani, L.V. Paputungan, M.F. Hassan, "Support Vector
regression for Service Level Agreement violation prediction”, International
Conference on Computer, Control, Informatics and Its Applications (IC3INA),
November 2013. DOI: 10.1109/IC3INA.2013.6819192.

40. R.T. Kokila, S.T. Selvi, K. Govindarajan, "DDoS detection and
analysis in SDNbased environment using support vector machine classifier",
IEEE Sixth International Conference on Advanced Computing (ICoAC),
Chennai, India, December 2014, pp. 205-210.

41. T.A. Tang, L. Mhamdi, D. McLernon, et al. "Deep Learning
Approach for Network Intrusion Detection in Software Defined Networking",
The International Conference on Wireless Networks and Mobile

239

http://fs.unm.edu/IntroductionToDSmT.pdf
http://fs.gallup.unm.edu/DSmT.htm

22. Algorithms and applications for the utilization of SDN technologies to 10T

Communications (WINCOM'16), October 2016, Fez, Morocco. ISBN 978-1-
5090-3837-4

42. S. Ali, V. Sivaraman, A. Radford and S. Jha, "A Survey of Securing
Networks Using Software Defined Networking", IEEE Transactions on
Reliability, wvol. 64, no. 3, pp. 1086-1097, 2015. Available:
10.1109/tr.2015.2421391 [Accessed 28 July 2019].’

43. KTH | IK2220", Kth.se, 2019. [Online]. Available:
https://www.kth.se/student/kurser/kurs/IK2220?I=en. [Accessed: 28- Jul-
2019].

240

23. SDN in Context of Devops Technology

23. SDN IN CONTEXT OF DEVOPS TECHNOLOGY
Dr, Associated Prof. D. D. Uzun, Y.O. Uzun, DrS, Prof. V. S. Kharchenko
Contents

ADDIEVIATIONS ...c.eiiicic e 242
23.1 DevOps technology OVEIVIEWcccccvevvevieieiie e 243
23.1.1 Basic concepts and prinCiples.........cccoovvveveiiiie s, 243
23.1.2 Techniques and tooIScccevveveiiiiiiiniserese e 248
23.2 DEVSECOPS. ..ottt ettt 256
23.2.1 Features and PUIPOSES......cc.eivevereeeeiresieeiresreeresresreessesreennenns 256
23.2.2 APPIOACNES ..ottt 258
23.3 SDN and DeVOPS.......cooiiiiieieieieie e 262
23.3.1 SDN and DevOpsS interconnection...........cccoeveveveeeeneseennenn, 262
23.3.2 Leading practices for SDN and DevOpsccccceveveiverernernnnn 266
23.4 DeVOPS aNd 10T ..o 272
23.4. 1 GENEIAl ... 272
23.4.2 Reasons DevOps matter in 10Tccccovvveveveiie e 274
23.5 Work related analysiscocooerereieiiniininnese e 279
Conclusion and QUESLIONSc.cceieeieie e 279
RETFEIBNCES ...ttt 281

241

23. SDN in Context of Devops Technology

Abbreviations

AWS — Amazon Web Service

CI/CD - Continuous Integration and Continuous Delivery
CDN - Content Delivery Network

COTS — Commercial off the Shelf

CSP — Communication Service Provider

DAST — Dynamic Application Security Testing
DevOps — Development and Operations
DevSecOps — Development and Security Operations
EPC — Evolved Packet Core

IMS — IP Multimedia System

LAN — Local Area Network

MANO — Management and Orchestration

MS — Microsoft

NFV — Network Function Virtualization

OLA — Organization Level Agreement

OTT — Over-The-Top

OWASP — Open Web Application Security Project
SAST - Static Application Security Testing

SCM — Source Control Management

SDLC — Software Development Lifecycle

SDN - Software Defined Networking

SLA — Service Level Agreement

SQM - Service Quality Management

VNF — Virtual Network Functions

WAN — Wide Area Network

242

https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_delivery

23. SDN in Context of Devops Technology

23.1 DevOps technology overview

As innovation accelerates and customer needs rapidly evolve,
businesses must become increasingly agile. Time to market is key, and
to facilitate overall business goals, IT departments need to be agile.
Over the years software development lifecycles moved from waterfall
to agile models of development. These improvements are moving
downstream toward IT operations with the evolution of methodology
Development and Operations (DevOps).

In order to meet the demands of an agile business, IT operations
need to deploy applications in a consistent, repeatable, and reliable
manner. This can only be fully achieved with the adoption of
automation.

Widespread platforms, like AWS, MS Azure, Google Cloud, etc.
support numerous DevOps principles and practices that IT departments
can capitalize on to improve business agility.

This section focuses on DevOps principles and practices supported
on the well-known platforms, like AWS, MS Azure, Google Cloud, etc.
A Drief introduction to the origins of DevOps sets the scene and
explains how and why DevOps has evolved. Interconnection of
DevOps, Software Defined Networks (SDN) and 10T is analysed.

23.1.1 Basic concepts and principles

DevOps is a new term that primarily focuses on improved
collaboration, communication, and integration between software
developers and IT operations. It’s an umbrella term that some describe
as a philosophy, cultural change, and paradigm shift.

Historically many organizations have been vertically structured
with poor integration among development, infrastructure, security and
support teams. Frequently the groups report into different
organizational structures with different corporate goals and
philosophies.

Deploying software has predominately been the role of the IT
operations group. Fundamentally developers like to build software and
change things quickly, whereas IT operations focus on stability and
reliability. This mismatch of goals can lead to conflict, and ultimately
the business may suffer.

243

23. SDN in Context of Devops Technology

Developer e Operator

Figure 23.1 - Code transmission process

Today, these old divisions are breaking down, with the IT and
developer roles merging and following a series of systematic principles:

* Continuous Integration/Continuous Delivery

* Infrastructure as code

* Continuous deployment

* Automation

* Monitoring

* Security

An examination of each of these principles reveals a close
connection to the offerings available from Amazon Web Services.

Agile Evolution to DevOps. To fully appreciate DevOps principles,
it is helpful to understand the context in which they evolved. The story
begins with agile software development, which became popular over a
decade ago and was seen as better approach to building software. Prior
to agile, the dominant waterfall development methodology was based
on a sequence starting with a requirements phase where 100% of the
system under development was defined up front. The approach has
shown itself to be inflexible and monolithic.

The agile model brought the concept of new and improved
collaboration between business users and developers. Software
development began to focus on iterations of working software that
would evolve over time, delivering value along the way. Agile is a
disciplined engineering process, and numerous tools now support it. For
developers, such tools include IDEs, unit test frameworks, and code
optimizers. As developers become more productive, the business
becomes more agile and can respond to their customer requests more
quickly and efficiently.

244

23. SDN in Context of Devops Technology

Over the last few years, the agile software development evolution
has started to move downstream towards infrastructure under the label
DevOps. Whereas agile software development primarily focuses on the
collaboration between the business and its developers, DevOps focuses
on the collaboration between developers, IT operations and security
teams. IT operations include system administrators, database
administrators, network engineers, infrastructure architects, and support
personnel. Whereas agile software development provides business
agility, DevOps provides IT agility, enabling the deployment of
applications that are more reliable, predicable, and efficient.

DevOps practices vary with the task: With application
development, DevOps focuses on code building, code coverage, unit
testing, packaging, and deployment. With infrastructure, on the other
hand, DevOps focuses on provisioning, configuration, orchestration,
and deployment. But in each area the underlying principles of version
management, deployment, roll back, roll forward, and testing remain
the same.

Continuous Integration. Continuous integration is a software
development practice where developers regularly merge their code
changes into a central repository, after which automated builds and tests
are run. The key goals of continuous integration are to find and address
bugs quicker, improve software quality, and reduce the time it takes to
validate and release new software updates.

Continuous Delivery. Continuous delivery is a software
development practice where code changes are automatically built,
tested, and prepared for a release to production. It expands upon
continuous integration by deploying all code changes to a testing
environment and/or a production environment after the build stage.
When continuous delivery is implemented properly, developers will
always have a deployment-ready build artifact that has passed through a
standardized Gecko Test process.

Infrastructure as Code. A fundamental principle of DevOps is to
treat infrastructure the same way developers treat code. Application
code has a defined format and syntax. If the code is not written
according to the rules of the programming language, applications
cannot be created. Code is stored in a version-management system that
logs a history of code development, changes, and bug fixes. When code
is compiled (built) into applications, we expect a consistent application

245

23. SDN in Context of Devops Technology

to be created. That is to say, the build is repeatable and reliable.

Practicing “infrastructure as code” means applying the same rigor
of application code development to infrastructure provisioning. All
configurations should be defined in a declarative way and stored in a
version management system, just like application code. Infrastructure
provisioning, orchestration, and deployment should support the use of
the “infrastructure code.”

Until recently the rigor applied to application code development
has not necessarily been applied to infrastructure. Frequently
infrastructure is provisioned using manual processes. Scripts developed
during the provisioning may not be stored in version control systems
and the creation of environments is not always repeatable, reliable, or
consistent.

In contrast, widespread platforms, like AWS, MS Azure, Google
Cloud, etc. provide a DevOps-focused way of creating and maintaining
infrastructure. Similar to the way software developers write application
code, AWS and others provide similar services that enable the creation,
deployment and maintenance of infrastructure in a programmatic,
descriptive, and declarative way. These services provide rigor, clarity,
and reliability. These services discussed in this paper are core to a
DevOps strategy and form the underpinnings of numerous higher level
cloud provider platform DevOps principles and practices.

Continuous Deployment. Continuous deployment is another core
concept in a DevOps strategy. Its primary goal is to enable the
automated deployment of production-ready application code.

Sometimes continuous deployment is referred to as continuous
delivery. The only difference is that continuous deployment usually
refers to production deployments.

By using continuous delivery practices and tools, software can be
deployed rapidly, repeatedly, and reliably. If a deployment fails, it can
be automatically rolled back to previous version.

Blue-Green Deployment. Blue—green deployment is a DevOps
deployment practice that uses domain name services (DNS) to make
application deployments. The strategy involves starting with an existing
(blue) environment while testing a new (green) one. When the new
environment has passed all the necessary tests and is ready to go live,
you simply redirect traffic from the old environment to the new one via
DNS.

246

23. SDN in Context of Devops Technology

The ability to create and dispose of identical environments easily
in the cloud provider services makes DevOps practices like blue—green
deployment feasible.

The blue—green deployment can be also used for back-end services
like database deployment and failover.

Automation. Another core philosophy and practice of DevOps is
automation. Automation focuses on the setup, configuration,
deployment, and support of infrastructure and the applications that run
on it. By using automation, you can set up environments more rapidly
in a standardized and repeatable manner. The removal of manual
processes is a key to a successful DevOps strategy. Historically, server
configuration and application deployment have been predominantly a
manual process. Environments become nonstandard, and reproducing
an environment when issues arise is difficult.

The use of automation is critical to realizing the full benefits of the
cloud. Widespread platforms, like AWS, MS Azure, Google Cloud, etc.
relies heavily on automation to provide the core features of elasticity
and scalability. Manual processes are error prone, unreliable, and
inadequate to support an agile business. Frequently an organization
may tie up highly skilled resources to provide manual configuration.
Time could be better spent supporting other, more critical and higher
value activities within the business.

Modern operating environments commonly rely on full automation
to eliminate manual intervention or access to production environments.
This includes all software releasing, machine configuration, operating
system patching, troubleshooting, or bug fixing. Many levels of
automation practices can be used together to provide a higher level end-
to-end automated process.

Automation has many benefits:

* Rapid changes

* Improved productivity

* Repeatable configurations

* Reproducible environments

* Leveraged elasticity

* Leveraged auto scaling

* Automated testing

Automation is a cornerstone of cloud provider services and should
be internally supported in all services, features, and offerings.

247

23. SDN in Context of Devops Technology

Monitoring. Communication and collaboration is fundamental in a
DevOps strategy. To facilitate this, feedback is critical. Such core
services should provide a robust monitoring, alerting, and auditing
infrastructure so developers and operations teams can work together
closely and transparently.

Security. In a DevOps enabled environment, focus on security is
still of paramount importance. Infrastructure and company assets need
to be protected, and when issues arise they need to be rapidly and
effectively addressed.

23.1.2 Techniques and tools

As already been said, DevOps, like agile, has evolved to
encompass many different disciplines, but most people will agree on a
few things: DevOps is a software development practice or a software
development lifecycle (SDLC) and its central tenet is cultural change,
where developers and non-developers all breathe in an environment
where formerly manual things are automated; everyone does what they
are best at; the number of deployments per period increases; throughput
increases; and flexibility improves.

While having the right software tools is not the only thing you
need to achieve a DevOps environment, some tools are necessary. A
key one is continuous integration and continuous deployment (CI/CD).
This pipeline is where the environments have different stages (e.g.,
DEV, INT, TST, QA, UAT, STG, PROD), manual things are
automated, and developers can achieve high-quality code, flexibility,
and numerous deployments.

This subsection describes a five-step approach to creating a
DevOps pipeline, like the one in the following diagram, using open
source tools.

Step 1: CI/CD framework. The first thing you need is a CI/CD
tool. Jenkins, an open source, Java-based CI/CD tool based on the MIT
License, is the tool that popularized the DevOps movement and has
become the de facto standard.

Jenkins is an universal remote control tool that can manipulate
with many different services and tools and orchestrate them. On its
own, a CI/CD tool like Jenkins is useless, but it becomes more
powerful as it plugs into different tools and services. Jenkins is just one

248

23. SDN in Context of Devops Technology

of many open source CI/CD tools that you can leverage to build a
DevOps pipeline. Other open source CI/CD tools shown in Table 23.1.

Table 23.1 - Open source CI/CD tools

Name License

Jenkins Creative Commons and MIT
Travis Cl MIT

CruiseControl BSD

Buildbot GPL

Apache Gump Apache 2.0

Cabie GNU

Step 2: Source control management. The best (and probably the
easiest) way to verify that your CI/CD tool can perform some
experience is by integrating with a source control management (SCM)
tool. Why do you need source control? Suppose you are developing an
application. Whenever you build an application, you are
programming—whether you are using Java, Python, C++, Go, Ruby,
JavaScript, or any of the gazillion programming languages out there.

The programming codes you write are called source codes. In the
beginning, especially when you are working alone, it's probably OK to
put everything in your local directory. But when the project gets bigger
and you invite others to collaborate, you need a way to avoid merge
conflicts while effectively sharing the code modifications.

You also need a way to recover a previous version—and the
process of making a backup and copying-and-pasting gets old. You
(and your teammates) want something better.

This is where SCM becomes almost a necessity. A SCM tool helps
by storing your code in repositories, versioning your code, and
coordinating among project members.

Although there are many SCM tools out there, Git is the standard
and rightly so. I highly recommend using Git, but there are other open

249

https://github.com/jenkinsci/jenkins
https://github.com/travis-ci/travis-ci
http://cruisecontrol.sourceforge.net/
https://github.com/buildbot/buildbot
https://gump.apache.org/
http://cabie.tigris.org/

23. SDN in Context of Devops Technology

source options if you prefer. Open source SCM tools shown in Table
23.2.

Table 23.2 — Open source SCM tools

Name License

Git GPLV2 & LGPL v2.1
Subversion Apache 2.0
gymr(eg{/ 5 Versions GNU

Vesta LGPL

Mercurial GNU GPL v2+

The CI/CD tool can automate the tasks of checking in and
checking out source code and collaborating across members.

Step 3: Build automation tool. Now you can check out the code
and commit your changes to the source control, and you can invite your
friends to collaborate on the source control development. But you
haven't yet built an application.

To make it a web application, it has to be compiled and put into a
deployable package format or run as an executable. (Note that an
interpreted programming language like JavaScript or PHP doesn't need
to be compiled.)

Enter the build automation tool. No matter which build tool you
decide to use, all build automation tools have a shared goal: to build the
source code into some desired format and to automate the task of
cleaning, compiling, testing, and deploying to a certain location.

The build tools will differ depending on your programming
language, but here are some common open source options to consider.
Open source build automation tools are shown in Table 23.3.

Step 4: Web application server. So far, you have a packaged file
that might be executable or deployable. For any application to be truly
useful, it has to provide some kind of a service or an interface, but you
need a vessel to host your application.

250

https://git-scm.com/
https://subversion.apache.org/
http://savannah.nongnu.org/projects/cvs
http://savannah.nongnu.org/projects/cvs
http://www.vestasys.org/
https://www.mercurial-scm.org/

23. SDN in Context of Devops Technology

Table 23.3 - Open source build automation tools

Name License Programming Language

Maven | Apache 2.0 |Java

Ant Apache 2.0 | Java

Gradle | Apache2.0 |Java

Bazel Apache 2.0 | Java

Make GNU N/A
Grunt MIT JavaScript
Gulp MIT JavaScript
Buildr | Apache Ruby
Rake MIT Ruby
A-A-P | GNU Python
SCons | MIT Python
BitBake | GPLv2 Python
Cake MIT C#

ASDF | Expat (MIT) | LISP

Cabal BSD Haskell

For a web application, a server is that vessel. An application server
offers an environment where the programming logic inside the

251

https://maven.apache.org/
https://ant.apache.org/
https://gradle.org/
https://bazel.build/
https://www.gnu.org/software/make
https://gruntjs.com/
https://gulpjs.com/
http://buildr.apache.org/
https://github.com/ruby/rake
http://www.a-a-p.org/
https://www.scons.org/
https://www.yoctoproject.org/software-item/bitbake
https://github.com/cake-build/cake
https://common-lisp.net/project/asdf
https://www.haskell.org/cabal

23. SDN in Context of Devops Technology

deployable package can be detected, render the interface, and offer the
web services by opening sockets to the outside world. You need an
HTTP server as well as some other environment (like a virtual
machine) to install your application server. For now, let's assume you
will learn about this along the way (although | will discuss containers
below). There are a number of open source web application servers
available, shown in Table 23.4.

Table 23.4 — Open source web application servers

Name License Programming Language
Tomcat Apache 2.0 Java
Jetty Apache 2.0 Java
WildFly GNU Lesser Public Java

GlassFish CDDL & GNU Less Public | Java

Django 3-Clause BSD Python
Tornado Apache 2.0 Python
Gunicorn MIT Python
a_s%on MIT Python
Rails MIT Ruby
Node.js MIT Javascript

Now the DevOps pipeline is almost usable. Although it's possible
to stop here and integrate further on your own, code quality is an
important thing for an application developer to be concerned about.

Step 5: Code testing coverage. Implementing code test pieces can
be another cumbersome requirement, but developers need to catch any
errors in an application early on and improve the code quality to ensure
end users are satisfied. Luckily, there are many open source tools

252

https://tomcat.apache.org/
https://www.eclipse.org/jetty/
http://wildfly.org/
https://javaee.github.io/glassfish
https://www.djangoproject.com/
http://www.tornadoweb.org/en/stable
https://gunicorn.org/
https://github.com/cdent/paste
https://github.com/cdent/paste
https://rubyonrails.org/
https://nodejs.org/en

23. SDN in Context of Devops Technology

available to test your code and suggest ways to improve its quality.
Even better, most CI/CD tools can plug into these tools and automate
the process. There are two parts to code testing: code testing
frameworks that help write and run the tests (shown in Table 23.5),
and code quality suggestion tools (shown in Table 23.6) that help

improve code quality.
Table 23.5 - Code test frameworks

Name License Programming Language
JUnit Eclipse Public License | Java

EasyMock | Apache Java

Mockito MIT Java

PowerMock | Apache 2.0 Java

Pytest MIT Python

Hypothesis | Mozilla Python

Tox MIT Python

Table 23.6 - Code quality suggestion tools

Name License Programming Language
Cobertura GNU Java

CodeCover | Eclipse Public (EPL) Java

Coverage.py | Apache 2.0 Python

Emma Common Public License | Java

JaCoCo Eclipse Public License | Java

Hypothesis | Mozilla Python

253

https://junit.org/junit5
http://easymock.org/
https://site.mockito.org/
https://github.com/powermock/powermock
https://docs.pytest.org/
https://hypothesis.works/
https://github.com/tox-dev/tox
http://cobertura.github.io/cobertura
http://codecover.org/
https://github.com/nedbat/coveragepy
http://emma.sourceforge.net/
https://github.com/jacoco/jacoco
https://hypothesis.works/

23. SDN in Context of Devops Technology

Name License Programming Language
Tox MIT Python

Jasmine MIT JavaScript

Karma MIT JavaScript

Mocha MIT JavaScript

Note that most of the tools and frameworks mentioned above are
written for Java, Python, and JavaScript, since C++ and C# are
proprietary programming languages (although GCC is open source).

Now that you've implemented code testing coverage tools, your
DevOps pipeline should resemble the DevOps pipeline diagram shown
at the beginning of this tutorial.

Optional steps. Containers. As mentioned above, you can host
your application server on a virtual machine or a server, but containers
are a popular solution. The short explanation is that a VM needs the
huge footprint of an operating system, which overwhelms the
application size, while a container just needs a few libraries and
configurations to run the application.

There are clearly still important uses for a VM, but a container is a
lightweight solution for hosting an application, including an application
server. Although there are other options for containers, Docker and
Kubernetes are the most popular.

Optional steps. Middleware automation tools. Our DevOps
pipeline mostly focused on collaboratively building and deploying an
application, but there are many other things you can do with DevOps
tools. One of them is leveraging Infrastructure as Code (laC) tools,
which are also known as middleware automation tools. These tools help
automate the installation, management, and other tasks for middleware
software.

For example, an automation tool can pull applications, like a web
application server, database, and monitoring tool, with the right
configurations and deploy them to the application server. Several open
source middleware automation tools are presented in Table 23.7.

254

https://github.com/tox-dev/tox
https://jasmine.github.io/
https://github.com/karma-runner/karma
https://github.com/mochajs/mocha

23. SDN in Context of Devops Technology

Table 23.7 — Open source middleware automation tools

Name License

Ansible | GNU Public

SaltStack | Apache 2.0

Chef Apache 2.0

Puppet Apache or GPL

This is just the tip of the iceberg for what a complete DevOps
pipeline can look like. Start with a CI/CD tool and explore what else
you can automate to make your team's job easier.

23.2 DevSecOpS
23.2.1 Features and purposes

The development of information technologies in the end of the
past - the beginning of the present centuries has led to the emergence of
a new direction in science - information security. This issue has been
devoted to monographs, scientific articles by many scientists. The
works have shown the dependence of information security on time and
presented its mathematical model. Further development of information
security was cybersecurity (CS), which replaced it in information
technology. One of the main preventative methods of providing CS is
to find and eliminate various vulnerabilities that arise in the process of
software development. Vulnerabilities allow for various attacks that can
be used to access websites of different companies and agencies, credit
card information, personal data of citizens, etc.

An analysis of recent research and publications indicates that over
the last 2 years, about 216 unique incidents have been identified among
ordinary users related to cyberattacks (accounting for 26% of the total).
The most stolen data is medical information and payment card details
Software applications are complex and can potentially have many
different security issues. Problems range from bad code to improperly
configured servers and all hardware in between. There are currently

255

https://www.ansible.com/
https://www.saltstack.com/
https://www.chef.io/
https://puppet.com/

23. SDN in Context of Devops Technology

many ways to test the security of a software product with its advantages
and disadvantages.

Despite this, the problem of hacking and hacking is still relevant
and, unfortunately, is picking up at the same speed with which
information technology is evolving. One way to solve this problem is to
create a DevSecOps software. More precisely, it is not a software
product, but a new ideology in which every programmer is responsible
for the safety of their product.

The purpose of DevSecOps is to bring developers of all areas to a
high level of professionalism in the field of security in a short period of
time. DevSecOps aims to ensure that every security flaw, upon
detection, is timely identified and recorded, autotested, and added to a
permanent build process to close the most urgent and important security
gaps.

Figure 23.2 shows how DevSecOps integrates into software
development. DevSecOps basic concepts will be presented the analysis
of the technology of using the DevSecOps software for security testing
in the form of approaches or ideas used to achieve this goal.

- e - ———
L NI U U P P —

Figure 23.2 - DevSecOps integration into software development
lifecycle

23.2.2 Approaches

Approache 1. “Automate {in origin “kill”’} them all”. Speed is one
of the main strengths of DevOps. In the context of continuous
integration and continuous deployment (CI / CD), the ability to quickly

256

23. SDN in Context of Devops Technology

get a working software product. For the sake of security, to be part of
this workflow, it must be automated. Security controls and tests must be
implemented early on and throughout the development lifecycle, and
they should be driven automatically as developers introduce new
versions of the code 50 times a day for a single application. Automation
has become a key feature of DevSecOps in integrating with the very
mature DevOps practice. This is a great advantage over the Waterfall
Development Model, where automatic safety tests are launched just
before they are released. More and more tools have emerged with a
wide range of security analysis and testing capabilities throughout the
software development lifecycle, from source code analysis to post-
deployment integration and monitoring.

These include Checkmarx, Splunk, Contrast Security, Sonatype,
Tanium, InSpec, FireEye, and Metasploit. You need to automate
thoughtfully. Trying to run automatic testing of the entire program
source code every day can be time consuming and you may lose track
of daily changes. Consideration should also be given to implementing
automated Dynamic Application Security Testing (DAST) in the
software development lifecycle. Unlike static analysis that focuses on
search potential security issues in the code itself, DAST looks for real-
time vulnerabilities while the application is running. DAST Automation
scans and runs tests against recent or new code changes to identify
security vulnerabilities listed in the Open Web Application Security
Project (OWASP) list the most common flaws, such as SQL injection
errors, that can be skipped during static analysis of a program code that
can be skipped during static analysis of applications code.

Approach 2. Checking the vulnerability of the generated code.
Despite growing concern about the risks of using third-party software
components, companies use software with open source applications. A
separate audit conducted by the company in more than 1,000
commercial applications showed that 96% of them include open source
components. More than 6 in 10 applications contain known security
vulnerabilities in these components, and some have been there for four
years. Despite this, only 27% of respondents said they have processes
for automatically identifying and tracking patches for known
shortcomings in open source software.

Understanding the use of open source is the key to more extensive
adoption of DevSecOps methods. Developers often do not have time to

257

23. SDN in Context of Devops Technology

view the code in their open source libraries or read documentation, so
automatic processes for managing open source and third-party
components are a major requirement for DevSecOps. During the work
it is necessary to monitor the use of open source contextual and other
vulnerabilities in the code and what impact these vulnerabilities may
have on the dependent code. Code dependency checks are fundamental
to DevSecOps, and utilities like OWASP Dependency-Check do not
allow you to use code with known software vulnerabilities. OWASP
works by testing code and dependent open source or component
libraries to find out any key disadvantages of OWASP. It works with a
constantly updated database of all known open source software
vulnerabilities.

Approach 3. Trusting the Tool SAST tools allow developers to get
instant feedback on defects that can cause security issues while writing
code, test the code as they write it, to get instant feedback on defects
that can cause security issues.

These tools help developers identify and eliminate potential
security wvulnerabilities during the normal workflow, and should
therefore be an important component of DevSecOps practice. However,
the key to implementing such tools is to think little. Often when a
security team implements a static test tool in the CI / CD pipeline, the
team tends to include checks on a whole host of security issues and this
ends up with other problems that have the difficulty of supporting such
processes. Instead, it is much better to include one or two security
checks at a time and get developers to use the idea of security rules in
the workflow. For example, with the implementation of the SAST tool
in development, it is possible to start by including a set of tests to
capture SQL injection errors.

As soon as developers find out how the tool helps them catch
coding errors, they are more likely to work with it. "Before you
incorporate more and more rules, you need to build trust in the tool."

Approach 4. Some tools may be more useful than others. Every
day, there are new tools needed for security testing, so there are several
key considerations when buying them:

- Security products should be able to integrate into the
development pipeline and allow the development and security team to
work together, not just throwing things at the fence to each other. The
security testing product should make it easy for developers to quickly

258

23. SDN in Context of Devops Technology

initiate testing and get results without having to leave their existing
toolkit;

- Other key requirements are speed and accuracy. Security must
work quickly. But false positives can be an absolute killer in a DevOps
environment;

- A tool that requires a developer or security engineer to take a
timeout to verify test results is of little help. The results generated by
the tools should be fast, accurate and immediate. Tools are needed to
help developers identify and prioritize vulnerabilities as they write
software. Code vulnerability identification should be based on an
understanding of the software itself, as opposed to comparing it with
signatures.

Approach 5. Threat modeling is difficult but still necessary It is
recommended to use threat modeling and risk assessment before
moving to DevSecOps. A threat modeling exercise can help a security
organization better understand asset threats, asset types and
sensitivities, existing asset security controls, and any gaps in controls
that need to be addressed. Such assessments can help identify
deficiencies in application architecture and design would miss other
security approaches.

Doing threat simulation in a DevOps environment can be tricky
because it can slow down the speed of the Cl / CD process. You cannot
automate threat mapping processes in the same way as for any other
DevOps boundary. value for overall success DevOps efforts because it
causes developers to think about their software from the perspective of
an attacker.

Approach 6. Teaching Developers to Secure Coding. There may
be some problems with using DevSecOps. One of the biggest is simply
convincing developers of the feasibility of taking this approach. Getting
the investment and time it takes to prepare a development team for
secure coding is another big problem. Developers often don't know that
they are coding in a dangerous way. developers. Many DevSecOps
methods and tools are still being developed, and many are still
unknown in DevSecOps technology. But it is obvious that in a world of
continuous integration and rapid release cycles, it is no longer possible
to ignore application security. Advantages and disadvantages of
DevSecOps. It's easy to spell out DevSecOps's benefits - automating
processes from the very beginning of the programming process reduces

259

23. SDN in Context of Devops Technology

the likelihood of incorrect administration and errors that often lead to
downtime or open up opportunities for attacks. Automation also
eliminates the need for IB specialists to configure the console manually.

Thus, security features such as identity management, access
(IAM), firewall operation, and vulnerability scanning are
programmatically activated in the DevOps process. As a result of this
approach, teams of ISPs can focus on policy setting. Experts estimate
that 80% of development teams will use DevSecOps by 2021. Figure
23.2 shows how DevSecOps integrates into application development.
One of the major benefits of DevSecOps is that every team involved in
development is responsible for security. This approach leads to the
creation of special tools aimed at enhancing security at different stages
of the DevOps pipeline. A major drawback is the fact that the number
of security professionals well-versed in DevSecOps still remains
depressingly small. To train such professionals, it is necessary to study
courses that are exotic to most programmers. CS specialists focus on
endpoint security, so they are not particularly interested in DevSecOps.

23.3 SDN and DevOpS
23.3.1 SDN and DevOpS interconnection

The introduction of Software Defined Networking (SDN) and
Network Functions Virtualization (NFV) has ushered in a new era of
innovation that enables communication service providers (CSPs) to
create highly automated networks and introduce new customized
services. Leading CSPs recognize that innovation does not only come
from within; they are constantly looking outside the organization for
partners with whom they can jointly capitalize on new market
opportunities. An innovative professional service partner can help CSPs
take advantage of these immediate opportunities while facilitating a
long-term transformation strategy to achieve a sustainable competitive
advantage.

The evolution of virtualization technology has disrupted traditional
service delivery. Alternative cloud service or Over-The-Top (OTT)
providers such as Skype and Line 2 are leveraging these virtualization
technologies to rapidly roll out a new platform and services. As
enterprises and consumers shift their applications to a cloud-based
environment, these nimble OTT players, supported by automated and

260

23. SDN in Context of Devops Technology

programmatic platforms, can swiftly scale up new services to address
unanticipated demands as well as “fail fast” by almost instantaneously
scaling down unsuccessful services. Rapid innovation has slowly but
surely rendered conventional network connectivity a commodity.

Telecommunication networks are migrating from traditional
hardware and appliance-centric deployments to cloud-based
deployments, with software as the critical component of all network
functionality. At the heart of this revolution are two technologies:
Network Function Virtualization (NFV), and Software Defined
Networking, both of which aim at virtualizing network applications as
well as the network connectivity. Both these technologies, and the
interaction between them, have been undergoing trials over the past few
years, and new standards as well as architecture options have begun to
emerge.

While most of the initial focus has centered on defining the
solution architecture, the stakeholders responsible for operating these
networks, so, network and IT operations teams, need to still iron out
operational aspects which are critical to seamless delivery of end user
services. Migration from network element-centric to software centric
operations will drive fundamental changes in the network operating
model across multiple dimensions, from tighter integration across
network, IT, and architecture teams to new processes, and tools to
manage the network.

In this point of view, we present some of the leading practices for
software-centric network operations, based on successful early stage
implementations, that can help Communications Service Providers
(CSPs) effectively manage their services and end user experience
within the NFV and SDN domain. Key drivers for migration to NFV
and SDN are presented on Figure 23.3.

261

23. SDN in Context of Devops Technology

Gologe | D | mma

+ Large CAPEX required to support

+ Reduced service provider

Increased revenue increasing traffic volumes profitability
to cost disparity . Rapigly declining revenues (on a » + Continued growth in expense -
per traffic unit basis) both CAPEX and OPEX
+ OEM-built differentiators into + Vendor lock-in leading to high
Increéfsed proprietary hardware and costs for expansion and upgrade
::z:?:?n software » + Limited ability to introduce new
network + Historically, specialized hardware vendors due to compatibility
has provided better performance issues
+ Custom development to ensure + Limited ability to challenge
that proprietary hardware and competition such as OTT players
Heavy effort

software systems work together
to launch new

. + Coordination required acrass
services

multiple organizational silos to
launch service

with disruptive offers
+ Increased time to catch up with

competition when needed

+ Network resources are mostly

static and tied to a geographic

Limited flexibility ~ location

and agility + Dynamic adjusiments to alleviate
traffic hotspots and congestion

not supported

+ Networks need to be over-
provisioned to handle worst case
traffic scenarios

* + Sub-optimal utilization of

network resources

Figure23.3 - Key drivers for migration to NFV and SDN

Changing business dynamics and operational challenges are

driving the shift to SDN/ NFV.

From a CSP perspective, while user data traffic has been growing

exponentially with the increase in OTT and other data-centric services
driving high capital investments, revenues have not kept pace. NFV and
SDN are complementary technologies which leverage cloud
infrastructure and can help both increase revenues with the rapid
introduction of new services, and reduce expenses by shifting from
expensive proprietary hardware to lower cost commodity hardware.
With NFV, functionality such as firewalls, load balancers, deep
packet inspection and IP Multimedia System (IMS) nodes which were
traditionally implemented with hardware-based appliances, are

262

23. SDN in Context of Devops Technology

delivered as software-based Virtual Network Functions (VNFs) on a
carrier-grade cloud infrastructure. SDN, on the other hand, simplifies
the connectivity between physical and virtual network elements at layer
2/3 via network virtualization protocols such as OpenFlow.

NFV and SDN together offer an elegant solution for CSPs looking
to address the challenges driven by business dynamics and operational
considerations for today’s telecom networks. Some key underlying
industry and business drivers for migration towards NFV and SDN are
shown in Figure 23.4.

NFV and SDN will introduce a radical shift in telecom network
architecture.NFV and SDN principles can be applied to most telecom
access and core level network elements. Transport elements such as
routers and switches in both the Local Area Network (LAN) and Wide
Area Network (WAN) network segments can be replaced by
commodity switches supporting SDN approaches such as OpenFlow.

Similarly, most hardware-based elements such as IMS nodes,
Evolved Packet Core (EPC) platforms and Content Delivery Network
(CDN) platforms, can all be virtualized on the cloud infrastructure with
NFV. CSPs are also exploring alternatives to migrate hardware-based
Customer Peripheral Equipment (CPE), such as Set Top Boxes (STBs),
to NFV based principles.

As illustrated in Figure 23.4., in a completely virtualized
environment, most services would be based on a common cloud
platform which can deliver Telco-grade capabilities.

However, the migration path towards the network shown in Figure
23.4. is likely to be a phased one, primarily governed by business
decisions and investment lifecycles.

Operations teams will be faced with the reality of needing to
manage hybrid deployments, including both physical and virtual
network elements, for an extended period of time, and need to be
equipped with the necessary tools, processes, and skills to do so.

263

23. SDN in Context of Devops Technology

7+ Standardized
[3 off-the-shelf
+ Fragmented hardware
propretary j ardware
hardware + Management of
A _— standards-based
RAN ['H + Element centric (~) = T
0 . Ware i
——————— management Mobile '

RAN Core
Mabile h = based on
. environment
wore :r i proprietary EMSs o S
+ Automated,

« Physical install per

policy driven
app site

- PTV PP . ﬂ orchestration with

Central

Office + High entry 2aS/Paas Centra improved seff-

. barrier created Office healing capabilties

Access by proprietary
Terminal 12aS/Paa$ hardware J + Increased service

agility and
innovation

Figure 23.4 - Telecom Architectur e shift towards a NFV/SDN
Environment

IMS

Migration to the NFV/SDN architecture will impact most
operations functions

With the migration of networks to a virtualized and software-
centric model, current operations functions and processes need to
undergo major changes to ensure delivery of carrier grade performance.
Key considerations for effective operations in NFV/SDN networks
include:

* Service strategy and design needs to maintain status quo in terms
of operational performance for traditional services being migrated to
NFV/SDN.

* Carrier grade performance needs to be ensured by leveraging
features such as dynamic creation and migration of virtual network
functions to meet availability requirements.

* Operations needs to migrate to “management by exception”
wherein . most common errors and performance degradations are
addressed via automated self-healing and self-optimization rules.

* Critical functions such as fault, outage, and performance
management need to be supported with smooth handoffs across
different teams which maintain physical and virtual network resources.

* The skillset of operations teams needs to be expanded to include
scripting capabilities (or their equivalent via GUI-based tools) to be
able to effectively create “recipes” for managing software VNFs.

264

true multi-vendor

23. SDN in Context of Devops Technology

* A DevOps-based model which drives closer coordination
between operations and development teams needs to be introduced to
improve service agility and quality.

The role of operations spans across the entire service lifecycle, and
each of these stages is impacted by the introduction of NFV and SDN
based networks. The entire operations model including processes, tools
and technology, as well as people and organization needs to be
redesigned for each functional area within Service Design and
Fulfillment, Service Operations and Readiness, as well as Service
Assurance, as shown on Figure 23.5.

Service lifecycle area | Functional domains
Service fulfillment Activation and provisioning

Change management

Operations support Capacity management
and readiness Inventory management
DevOps

Performance management

Fault management

Service assurance SLA/OLA management

End-to-end service
management

Figure 23.5 - Functional Domains by Service Lifecycle

23.3.2 Leading practices for SDN and DevOps

Leading practices for service fulfillment. Activation and
provisioning. For an ideal service launch experience, it is necessary to
ensure that setup and end-to-end orchestration via Management and
Orchestration (MANO) happens without any errors. This can be
ensured by leveraging the following practices:

* Activation and provisioning needs to be enabled via an intuitive
portal which provides a simplified workflow, and pre-defined templates

265

23. SDN in Context of Devops Technology

for standard activities such as service definition and composition,
service activation, as well as service modification.

* Provisioning should be based on industry standard protocols such
as YANG, NETCONF, and TOSCA - which enable end-to-end
chaining of components from multiple vendors in a seamless manner.
Newer protocols also include support for rollback, to enable a revert to
the original configuration in case any step of the end-to-end
provisioning fails.

Leading practices for operations support and readiness.

Change management. One of the key benefits of implementing a
SDN and NFV based network is increased agility. This is, in part,
enabled by the fewer errors in change management because fewer
manual steps are needed for sign-off and change implementation. The
following practices can help in creating an automated change
management process, which speeds up realization of the approved
changes:

* A software-based workflow should be implemented to acquire
approvals for changes, and automatically effect approved changes via
the centralized orchestrator.

* Logically isolated test environments, built using SDN, can
provide the ability to simulate multiple What-If scenarios and quantify
impact of planned changes in a staging environment.

Inventory Management. In the NFV and SDN world, inventory
management needs to be considered at the service, virtual network
application, and resource level (Virtual Machines (VM) and physical
server). With a highly dynamic virtual environment, one click access to
the most up to date inventory becomes a necessity. To support these
requirements, the following leading practices need to be adopted:

* Physical inventory data needs to be enhanced to include VNF and
virtual network details in order to build an integrated view of utilization
of logical and virtual resources across the infrastructure.

* A software repository will be needed to maintain details such as
package versions and license usage.

* Auto discovery algorithms and version controlled archival
systems need to be implemented which can help establish a real-time
topology view and inventory reporting system. This reduces
troubleshooting issues by providing the ability to identify the exact

266

23. SDN in Context of Devops Technology

topology at the time of an event.

DevOps. To achieve improved multi-service release stability and
greater deployment agility, network changes will need to be managed in
a methodical and consistent way, while eliminating need for
device/hardware specific scripts, and reliance on specific team
members. To meet this requirement in a virtualized and software
defined network infrastructure engineers need to apply DevOps
principles pioneered in the enterprise cloud environment. Some leading
DevOps practices are as follows:

* The network’s tolerance for frequent changes needs to be
increased by automating testing and deployment of changes across
multiple non-production and production environments.

* Creating an automated test suite allows changes to be verified
and risks to be identified through event driven triggers across multiple
environments, thus, avoiding last-minute surprises.

* Operations is deeply involved with solution design and testing of
end-to-end capabilities prior to the software drops in the production
environment. Feedback from operations on production networks is
tracked, maintained, and rolled into subsequent product sprints.

Leading practices for service assurance.

Performance management. For effective management of services
in the virtualized environment where performance is highly dependent
on underlying cloud infrastructure, self-learning and predictive
techniques must be developed to manage end-to-end service
performance by intelligently correlating inputs at all levels and across
locations. This can be achieved by adopting some of the leading
practices as outlined below:

* New or revised KPIs/KQIs e.g., Infrastructure Response Time,
VNF Contention Analysis, and sophisticated algorithms need to be
defined that can correlate inputs at all levels and provide insightful
performance views across VNFs and virtual infrastructure.

* Predictive analytics needs to be leveraged to proactively manage
resources based on predicted faults, dynamically update policies and
rules based on real-time traffic characteristics. This can help minimize
the occurrence of issues across the virtualized infrastructure.

» Self-optimization capabilities need to be introduced in
performance management modules which can optimize configuration

267

23. SDN in Context of Devops Technology

based on current network performance e.g., scale up VMs, add new
VNF instances for load balancing, configure new routes between VMs,
etc..

Fault management. Early fault detection and mitigation is key to
deliver carrier grade availability and improve end user customer
experience. With the ability to proactively correlate physical and virtual
level faults at a service level and performing VNF/network topology
reconfiguration, Mean Time To Repair (MTTR) can be greatly reduced.
Leading practices for proactive fault management include:

e The service model should be leveraged to identify all
components and links impacted by a particular fault. This can be done
by using the YANG model to identify which components of a service
are impacted, trigger policy based alarms, and suppress duplicate
alarms.

* Policy driven self-healing strategies need to be implemented to
route around faults identified via monitoring of various instances of a
VNF across VMs and performing distributed failure checks.

SLA/OLA management. To be able to maximize benefits from the
use of virtualization, stringent Service Level Agreements (SLAS) need
to be enforced onto the groups providing operations support for the
underlying cloud infrastructure. This is needed to ensure that the
carrier-grade requirement for availability (e.g., 5 nines) and other
regulatory (e.g., NEBS) compliance requirements are met.

Additionally, Organization Level Agreements (OLAS) also need to
be updated to encompass all types of VNFs hosted in the network.
Implementing the following practices will ensure effective SLA/OLA
management:

* Carrier-grade SLA/OLAs need to be enforced on Commercial off
the Shelf (COTS) hardware and software components to ensure that
off-the-shelf solutions can support carrier-grade network requirements.
These SLAs and OLAs also need to be enforced across organizations
supporting the underlying platform on which network services are
provided.

» A common SLA/OLA framework needs to be established with all
vendors providing software-based VNFs or controllers. While the
framework can be used to establish implementation guidelines, it must
be flexible enough to support different requirements based on VNF

type.

268

23. SDN in Context of Devops Technology

» SLAs and OLAs need to include key operational parameters such
as service response time and scalability, packets lost, etc. and not be
limited to the time in which an assigned ticket is acknowledged. End-
to-end Service Management.

To manage and meet expectations on a per-customer basis for
multiple services the focus needs to shift from merely monitoring
network and node level KPlIs, and turn towards analysis and correlation
of performance at every layer of the network stack. The following
practices will enable this correlation:

* End-to-end) with integrated dashboards which provide the
ability to drill down along the VNF chain all the way to the underlying
virtual and physical resources and help localize issues.

* Cross domain correlation based on metrics for service
accessibility, integrity, and retention which are built on new/revised
KPIs/KQIs with inputs from VNFs, virtualized infrastructure, and
network layers.

So, the evolution of virtualization technology has disrupted
traditional service delivery. Alternative cloud service or OTT providers
such as Skype and Line 2 are leveraging these virtualization
technologies to rapidly roll out a new platform and services.

As enterprises and consumers shift their applications to a cloud-
based environment, these nimble OTT players, supported by automated
and programmatic platforms, can swiftly scale up new services to
address unanticipated demands as well as “fail fast” by almost
instantaneously scaling down unsuccessful services. Rapid innovation
has slowly but surely rendered conventional network connectivity a
commodity.

Transforming to a Virtualized Environment. To remain relevant in
today’s market and avoid marginalization, CSPs must leverage the
latest SDN and NFV innovations to provide virtualized end-to-end
solutions that immediately address customers’ evolving requirements.
CSPs also need to initiate a foundational transformation to build a
sustained long-term competitive advantage. It can be defined as a
foundational transformation in the business model, service development
processes, skills, and culture.

Business Model Evolution. Traditional network infrastructures are
designed and deployed in a rigid and complex fashion, with hardcoded
workflows and limited flexibility. Service deployment can take from 12

269

23. SDN in Context of Devops Technology

to 18 months, require large upfront capital investments, and demand
significant resources to integrate, test, and deploy. As a result, CSPs
have traditionally taken a risk-averse approach to new service
deployment, limiting their ability to respond to market changes and
exploit new opportunities.

A virtualized network based on SDN and NFV technologies
transforms this business model and disrupts traditional network
economics. Virtualization technologies can significantly reduce upfront
capital expenses (CapEx), while a highly scalable and flexible IP
infrastructure layer can be optimized instantaneously for efficiency,
lowering operational expenses (OpEx). An automated service
orchestration layer improves time to market, enabling CSPs to quickly
capitalize on new market opportunities with new services.

This increased agility enables CSPs to transform their business,
allowing them to offer new services and data analytics as part of a
platform-based, on-demand, and pay-as-you-grow model. Lower
CapEx and OpEx also allow CSPs to effectively expand their service
footprint and target new customer segments and geographies. The
resulting expansion of the service portfolio increases customer
relevance and drives profitability.

DevOps Practice and Agile Development Methods. Service
development has traditionally relied on a waterfall process comprised
of multiple stages, each with highly defined requirements that must be
completed sequentially. Features are predefined and functionalities are
delivered all at once.

Needless to say, traditional service development is a lengthy
process, compounded by the need to perform time-consuming manual
testing over a complex hardware-centric infrastructure.

As a result, by the time the service or application is finally
delivered, the market has moved on and customer requirements have
evolved.

The emergence of DevOps, a new collaborative practice,
establishes a process that involves developers and operational
organizations collaborating, facilitating an exchange of ideas, and
expediting decision making processes that lead to real action.

Agile development, on the other hand, is a software development
methodology involving cross-functional teams defined within the
DevOps process. The agile development approach promotes service

270

23. SDN in Context of Devops Technology

flexibility, where software development focuses on evolutionary
development, early delivery of incremental features, and continuous
improvements.

Moving towards a combined DevOps practice and an agile
development methodology enables CSPs to dramatically accelerate the
development process, reducing service delivery from months or years
to mere days - all while continuously delivering relevant innovation.

23.4 DevOpS and loT
23.4.1 General

It’s increasingly apparent that the development of software for the
Internet of Things (loT) and the management of those systems once
they are in operation cannot be separated making loT software an area
ripe for “DevOps.” More than a buzzword, DevOps has the potential to
help accelerate system development, ensure system quality, and
optimize system reliability in the field.

DevOps is already being used in the 10T enterprise systems where
the business logic resides. This paper sets forth six sound reasons why
DevOps should, and likely will, become standard practice in the
development and deployment of software for gateways and edge
devices as well, and outlines a technology infrastructure that can help
organizations implement l1oT DevOps more quickly and easily.

The integration of development and operations, dubbed “DevOps,”
is a hot topic in IT circles—so hot, in fact, that a standard definition, let
alone formalized DevOps structures and best practices, is yet to emerge
. One source characterizes DevOps as a ‘“culture, movement, or
practice” emphasizing collaboration between developers and IT
operations teams with the goal of creating an “environment where
building, testing, and releasing software can happen rapidly, frequently,
and more reliably.”

Note that this definition refers to “culture” rather than
organization. While it’s true that DevOps may ultimately require an
organizational change, it first requires a cultural change to break down
silos that separate those who build software and systems from those
who implement and operate them. (The evolution of DevOps may be
likened to that of agile development, which began as a movement with

271

23. SDN in Context of Devops Technology

the “Agile Manifesto” and is still thought of more as a set of principles
than a process).

For developers of embedded systems, the concept of DevOps may
at first seem foreign. Historically, the development team built the
software (or a device) and handed it off to another team for release and
support. But in IoT that model is a recipe for something far short of
success, if not failure.

The reliable performance of an loT solution requires a constant
feedback loop, regular monitoring, speedy issue resolution, and
frequent upgrading. Internet connectivity creates the opportunity for
constant infusion of innovation into the system, without waiting for the
next “big bang” release. It’s a process of continuous learning that
necessarily requires developers and operators to collaborate closely
every day.

Agile development is the forerunner to DevOps. In agile
development, designers, testers, developers, and integrators merge into
cross-functional teams that have end-to-end responsibility for specific
functions or subsystems (see Figure 23.6).

That responsibility includes delivery, which ideally can be
automatic once the software passes internal testing and quality
assurance. Automation of delivery makes possible the concept of
continuous deployment, which increasingly goes hand in hand with
agile methodologies.

If your organization practices agile development and continuous
deployment, you are on the evolutionary path to DevOps. You may
even be practicing DevOps in an ad hoc fashion without realizing it.
The next step is to formalize a DevOps organizational process and
structure, supported by technology that integrates the building, testing,
deployment, and management of 10T applications on a single platform
with a high level of automation. But before we discuss how you do it,
let’s be clear about why you should.

272

23. SDN in Context of Devops Technology

Functional Organization

Cross-Functional Organization

I I I 1 r
.. 1Team! 1Team! 1Team| 1Team! ~ Endtofnd
| i H I | H L | Responsibility
| | | 1y f 1 Iy ! —
i Team | | ! | ! i ! i !
e L L L L L L L L T P T l I I] I
__ I | I |] | 1 |
I 1 | 'y I] 1y i
| Team Develop ! Develop
LI I I | \ | \ ' \ ! \
| i
' Team Tes | A
| i
Y [b | i P |
e hegt T
Leeoemsmsmsmssemeesessemesssssssseemsesessenemsmne- i i o ' i o '
__ | | i '
| | . o . (— .
| Team | T i i
hemsssssmsmsssssssssssssssssssssssmsmsmessssssssssas| | [| ' Iy |
o o e | oo ool
| Operate i " Operate ‘ ‘
i Team P I 3 0 P | |
___ | | ' !
i i i i i V4
1y [|

Figure 23.6 - Functional vs. cross-functional organization

23.4.2 Reasons DevOps matter in 10T

Six reasons DevOps matters in 10T. DevOps has already gained a
foothold at the enterprise level. Witness the social media networks or
video or music streaming services that are constantly pushing new
content to users. Or consider the mobile device makers and application
providers that make new releases of operating systems and other apps
available for download on a regular basis. Now, the next frontier for
DevOps is IoT, specifically the edge devices (the “things” in the
Internet of Things) that perform the IoT system operations and feed
data back to the enterprise. Here’s why:

* The evolution effect: DevOps is simply bound to happen, in
some shape of form, as the next step in the evolution from agile
development to continuous deployment. Organizations that embrace
DevOps and formalize it through integrated, cross functional teams are
likely to have a decided advantage over those that do not.

* The spreading effect: If software on enterprise servers is being
updated regularly or continuously, the systems that are connected to
those servers and dependent on that software will likely require
frequent updating as well. At some point, teams that develop the
enterprise software will expect faster release cycles in the other parts of
connected systems.

273

23. SDN in Context of Devops Technology

* The infrastructure in place: With systems now connected via the
Internet and the cloud, it’s possible to automatically deploy and
regularly upgrade software in multiple field devices remotely.

* Software-defined “anything”: Increasingly, it is the software
deployed on a device (regardless of the hardware) that differentiates it
and defines its functionality. That means that when functionality needs
to be updated, it is more often going to entail a software update rather
than an electrical or mechanical modification.

* New business models and revenue streams: The big promise of
loT is that it makes possible new business models and sources of
revenue that couldn’t otherwise exist. The ability to constantly deliver
new software updates makes it possible to sell services that generate
continuous revenues, rather than simply the one-time sale of the
underlying product.

» Greater productivity and cost-efficiency: A process that
accelerates development cycles without compromising quality through
more effective collaboration is simply a better, faster, smarter way to
work—uwith the potential to drive down operating costs.

The case for evolving DevOps from enterprise systems to 10T edge
devices is fairly compelling. loT application and device developers are
under enormous pressure to deliver quality solutions and meet tight
time-to-market demands. Because 10T systems may be expected to
perform for many years, development and operations teams must work
together to plan for their entire lifecycle, from design through end-of-
life. Companies that can meet these challenges stand to gain a
significant competitive advantage—and a transition to a formalized
DevOps organizational structure would seem to be the answer for
adapting to this new environment.

So why isn’t it happening more quickly? Let’s look at some of the
obstacles and challenges to DevOps implementation.

Overcoming the obstacles. Change is rarely easy, and instituting
DevOps is no exception. Organizations are likely to encounter several
obstacles in the transition.

¢ Cultural and organizational change is difficult: A transition to
DevOps entails overcoming years of ingrained cultural perceptions and
behavior. Changes in reporting relationships, responsibilities, and
accountabilities are bound to be a bit rocky. An organization must
recognize the need to change and then build the processes and systems

274

23. SDN in Context of Devops Technology

necessary to accomplish the DevOps vision.

* DevOps is inherently difficult at the device level: Unlike the
enterprise software environment, where server hardware is fairly
standardized, loT systems can be very large, unique, and complex, with
a wide variety of hardware platforms. Where enterprise systems have
built-in redundancy, there is typically very little redundancy for
software embedded in field devices. Reducing the risk of costly failure
requires exhaustive production-level testing and quality assurance,
which lengthens development cycles.

* Reliability is paramount: When software is continuously
deployed, it has to work as promised. 10T solutions have very high
demands for reliability, quality, security, and safety. Correcting
problems in deployed software can be extremely cumbersome and
inefficient, and the business risk is high if the manufacturer has a
contractual obligation to ensure performance as expected. Quality
assurance is an essential ingredient of any DevOps model.

There are few tools that actually support the DevOps paradigm,
which calls for agile code sprints, automated testing, fast and automated
feedback loops, and collaborative teams with a high degree of
autonomy and communication. What’s needed is a clear path between
development platforms and field systems, so that DevOps teams can
monitor system health, detect potential issues, and act on them before
they become problems.

How technology can enable DevOps. DevOps in loT is not
inevitable. It requires commitment, collaboration, communication, and
a willingness to change. It can, however, be made easier with
technology that integrates system development, testing and debugging,
deployment, monitoring, and management on a single platform. Unlike
conventional development tools designed to support functional
organizations working in horizontal layers, an integrated approach
would enable true cross-functional collaboration in a vertical model
(refer to Figure 23.6).

It would allow system developers and those responsible for
operationalizing the software to work as a coordinated team in a
centralized, cloud-based environment, thereby accelerating the delivery
of applications with full quality assurance and enabling effective
troubleshooting of systems in the field.

It’s important to think of DevOps not simply as the merger of

275

23. SDN in Context of Devops Technology

development and operations, but as the intersection of development,
quality assurance (QA), and operations (see Figure 23.7) - QA being
the essential step that ensures a system will work properly before going
into operation.

Development
(Software
Engineering)

Quality
Assurance (QA)

Technology
Operations

Figure 23.7 - DevOps as the intersection
of development, quality assurance, and operations

Helix Cloud maps to this three-stage DevOps model through the
integration of three core components:

* Wind River Helix App Cloud serves the development side of
DevOps. It equips application developers with ready-to-use tools and
software development kits (SDKs) for any hardware variant. App
Cloud makes it possible to easily build applications independent of
device operating system and hardware complexity.

By providing developers with the appropriate tools and target
systems, App Cloud helps mitigate integration issues between
application and platform software and cut down on team handovers. As
a cloud platform, it also allows anytime, anywhere access to tools and
enables large, geographically dispersed development teams to
collaborate across borders and time zones.

* Wind River Helix Lab Cloud addresses the testing and quality
assurance aspect of DevOps. It allows instant access to virtual hardware
of whole systems at representative scale, enabling teams to use full-

276

23. SDN in Context of Devops Technology

system simulation for testing and QA of complex and large-scale 10T
systems. A simple login provides any engineer with access to the cloud-
based virtual lab. Using on-demand simulation software as a
complement to hardware, teams can automate testing in entirely new
ways and create any number of virtual target systems for parallel
testing.

This significantly shortens the cycle between application
development and system testing. With Lab Cloud, teams can stage and
test systems at representative scale in a pre-production environment so
they can move into production with confidence in system continuity.

» Wind River Helix Device Cloud is the platform for managing and
operating devices from the cloud—the “bridge” between development
and operations. It enables operators to safely and securely update,
monitor, service, and manage devices in the field. Device Cloud
automatically collects and integrates data from hundreds or thousands
of disparate devices, machines, and systems, enabling operators to track
device status and content, share data among engineers, and proactively
determine when updates are needed.

Collectively, the Helix Cloud suite enables organizations to
transition into a DevOps team structure. Specifically, it:

* Facilitates a new paradigm of “always connected” collaboration
that isn’t restricted by geography

* Helps break down the silos that separate those who develop
software and systems from those who deploy and operate them,
enabling teams to work cross-functionally in a collaborative spirit and
making the release of software fast, reliable, and automated

* Allows testing of software at scale before deployment as well as
proactive management of field devices, which together enable
continuous quality assurance

So, connected IoT edge devices have a lifecycle beyond “deploy,
break and fix, and retire.” Connectivity creates the opportunity to
continuously infuse incremental innovation across the system lifecycle.
DevOps puts organizations in the best position to capitalize on that
opportunity.

As the lines between software creation and operation begin to
disappear, so too must the organizational lines that separate system
developers from system operators. The DevOps concept has been
proven at the enterprise level and is evolving toward gateways and edge

277

23. SDN in Context of Devops Technology

devices as a means to meet the unique challenges of developing and
managing loT systems. While there are obstacles to overcome, both
cultural and practical, a technology platform that integrates system
development, testing and QA, deployment, and management can
provide the necessary infrastructure for implementing DevOps,
empowering cross-functional teams to accelerate system development,
ensure system quality, and optimize system reliability in the field.

23.5 Work related analysis

The section is based on analysis of publications and materials of
leading companies in DevOps methodology, SDN and IoT.

A few USA and EU universities including ALIOT project partners
conduct research and implement education MSc and PhD modules
related to DevOps and connection of this methodology with SDN and
loT. In particular, the following courses and programs have been
considered:

- Washington University in St. Louis [12];

- Coimbra University, Portugal: 10T course for MSc [22]. The
courses represents a new stage in the digital evolution and focuses on
the Internet of Things for smart transport and cities, and the
development of tools to transform city infrastructure;

- KTH University, Sweden: three MSc programs including loT
related topics in Information and Network Engineering [23] and
Communication Systems [24];

- Newcastle University, United Kingdom: MSc Programme on
Embedded Systems and Internet of Things (ES-10T) MSc [25].

Conclusion and questions

The improvements assured by implementation of agile models of
software and systems development are moving downstream toward IT
operations with the evolution of DevOps methodology. In order to meet
the demands of an agile business, IT operations need to deploy
applications in a consistent, repeatable, and reliable manner. This can
only be fully achieved with the adoption of automation.

Widespread platforms, like AWS, MS Azure, Google Cloud, etc.
have been analysed. These solutions support numerous DevOps
principles and practices that IT departments can capitalize on to
improve business agility.

278

23. SDN in Context of Devops Technology

This section has been dedicated to analysis of DevOps principles
and practices supported on the well-known platforms, like the
following:

- AWS,

- MS Azure,

- Google Cloud, etc.

A Dbrief introduction to the origins of DevOps sets the scene and
explains how and why DevOps has evolved. Interconnection of
DevOps, Software Defined Networks (SDN) and loT has been
analysed.

In order to better understand and assimilate the educational
material that is presented in this section, we invite you to answer the
following questions.

1. Describe basic concepts of DevOps. Which main features of

this methodology are?

2. Describe principles of DevOps methodology. Which are main

elements of this methodology?

3. Describe Agile evolution to DevOps. What does CI/CD mean?

4. Which are features of Blue—Green Deployment (BGD) as a

practice of DevOps?

5. Describe a five-step approach to creating a DevOps pipeline.
Which are features of the steps:

- CI/CD framework?

- Source control management?
- Build automation tool?

- Web application server?

- Code testing coverage?

6. Which are features of optional steps such as containers,
middleware automation tools?

7. Which are DevSecOps features and purposes?

8. Which are DevSecOps approaches: “Automate {in origin
“kill”} them all”? Checking the vulnerability of the generated code and
others?

9. How are SDN and DevOps connected?

10. Describe leading practices for SDN and DevOps for:

279

23. SDN in Context of Devops Technology

- service fulfillment,
- operations support and readiness,
- service assurance.
11. Which are reasons DevOps matter in 10T?
12. How do DevOps application influence on characteristics of
developed IoT systems

References

1. Introduction to DevOps on AWS,
https://d0.awsstatic.com/whitepapers/AWS DevOps.pdf

2. A beginner's guide to building DevOps pipelines with open source
tools, https://opensource.com/article/19/4/devops-pipeline

3. DevOps - Technology and Tools overview,
https://www.gecko.rs/sites/default/files/pdf/Gecko_Solutions_DevOps
Technology Overview.pdf

4. Devops in the internet of things. Six reasons it matters and how to
get there, https://events.windriver.com/wrcd01/wrcm/2016/08/WP-
devops-in-the-internet-of-things.pdf

5. Practicing Continuous Integration and Continuous Delivery on AWS,
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-
integration-continuous-delivery-on-AWS.pdf

6. DevOps for 10T Applications using Cellular Networks and Cloud
Athanasios Karapantelakis, Hongxin Liang, Keven Wang, Konstantinos
Vandikas, Rafia Inam, Elena Fersman, Ignacio Mulas-Viela, Nicolas
Seyvet, Vasileios Giannokostas,
https://www.ericsson.com/assets/local/publications/conference-
papers/devops.pdf

7. Vlasov, Y., llliashenko, O., Uzun, D., Haimanov, O.
Prototyping tools for 10T systems based on virtualization techniques
(Conference Paper). Proceedings of 2018 IEEE 9th International
Conference on Dependable Systems, Services and Technologies,
DESSERT 2018, 9 July 2018, P. 87-92

8. M. H. Syed, E. B. Fernandez. Cloud Ecosystems Support for
Internet of Things and DevOps Using Patterns, Conference: 2016 IEEE
First International Conference on Internet-of-Things Design and
Implementation (IoTDI), DOI: 10.1109/10TDI.2015.31

280

https://d0.awsstatic.com/whitepapers/AWS_DevOps.pdf
https://opensource.com/article/19/4/devops-pipeline
https://www.gecko.rs/sites/default/files/pdf/Gecko_Solutions_DevOps_Technology_Overview.pdf
https://www.gecko.rs/sites/default/files/pdf/Gecko_Solutions_DevOps_Technology_Overview.pdf
https://events.windriver.com/wrcd01/wrcm/2016/08/WP-devops-in-the-internet-of-things.pdf
https://events.windriver.com/wrcd01/wrcm/2016/08/WP-devops-in-the-internet-of-things.pdf
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://www.ericsson.com/assets/local/publications/conference-papers/devops.pdf
https://www.ericsson.com/assets/local/publications/conference-papers/devops.pdf

23. SDN in Context of Devops Technology

9. AWS loT Plant Watering Sample,
https://docs.aws.amazon.com/iot/latest/developerguide/iot-plant-
watering.html

10.The DevOps Handbook: An Introduction Summary,
https://caylent.com/devops-handbook-introduction-summary/

11.The Definitive Guide to Scrum: The Rules of the Game,
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-
Guide-US.pdf#zoom=100

12.Cloud Tutorial: AWS loT,
https://www.cse.wustl.edu/~lu/cse521s/Slides/aws-iot.pdf

13.Allan K. (2018), “Automated Security Testing Best Practices”
https://phoenixnap.com/blog/devsecopsbest-practices-automated-security-
testing

14. Litz S. (2015) “What is DevSecOps”
http://www.devsecops.org/blog/2015/2/15/what-is-devsecops

15.Savant S(2018) “What is the difference between DevOps and
DevSecOps”, https://www.quora.com/What-is-the-difference-between-
DevOps-andDevSecOps

16.GitLab, (2018) “Static Application Security Testing (SAST)”,
https://docs.qgitlab.com/ee/user/project/merge requests/sast.html

17.S. Harris, “Physical and Environmental Security. In CISSP Exam
Guide”, USA McGraw-Hill, 6th ed., pp.427-502 2013.

18.Network Transformation with NFV and SDN,
https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000628-en.pdf

19. Operationalizing SDN and NFV Networks,
https://www?2.deloitte.com/content/dam/Deloitte/us/Documents/technology
-media-telecommunications/us-tmt-operations-sdn-and-nfv-networks.pdf

20. Tempus SEREIN project official website http://serein.eu.org/

21.Erasmus+ ALIOT project official website http://aliot.eu.org/

22.Internet Of Things Course - Immersive Programme Master in
City and Technology [https://apps.uc.pt/search?g=Internet+of+Things]

23.MSc Programme in Information and Network Engineering
[https://www.kth.se/en/studies/master/information-and-network-
engineering/master-s-programme-in-information-and-network-
engineering-1.673817]

24. MSc Programme in Communication Systems

[https://www.kth.se/en/studies/master/communication-systems/
description - 1.25691]

281

https://docs.aws.amazon.com/iot/latest/developerguide/iot-plant-watering.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-plant-watering.html
https://caylent.com/devops-handbook-introduction-summary/
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf#zoom=100
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf#zoom=100
https://www.cse.wustl.edu/~lu/cse521s/Slides/aws-iot.pdf
https://phoenixnap.com/blog/devsecopsbest-practices-automated-security-testing
https://phoenixnap.com/blog/devsecopsbest-practices-automated-security-testing
http://www.devsecops.org/blog/2015/2/15/what-is-devsecops
https://www.quora.com/What-is-the-difference-between-DevOps-andDevSecOps
https://www.quora.com/What-is-the-difference-between-DevOps-andDevSecOps
https://docs.gitlab.com/ee/user/project/merge_requests/sast.html
https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000628-en.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/us-tmt-operations-sdn-and-nfv-networks.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/us-tmt-operations-sdn-and-nfv-networks.pdf
http://serein.eu.org/
http://aliot.eu.org/
https://www.google.com/aclk?sa=l&ai=DChcSEwilmM2Gi6rjAhWNyrIKHbSYCNMYABAAGgJscg&sig=AOD64_27dh93cxSXkir78gqu1WZHI9Di6Q&adurl=&q=&nb=0&res_url=https%3A%2F%2Fapps.uc.pt%2Fsearch%3Fq%3DInternet%2Bof%2BThings&rurl=https%3A%2F%2Fwww.uc.pt%2Fen&nm=101&bg=!f3ylfGREDaBlpklBXogCAAAAJlIAAAAJmQE8oAB9aGtm8bAMUAKQAS_stWTgpRmippO7CchBIE_NC_WIAV8Mp9bNaW0CvBhhxLis_fVh_pqTRLaPXkD-1j9lDQ8dY1JjhdF1lmNzgppvcSTOH6xqq0GoZxGTF5ttyAu0hrg-T2KnwU4LjGIhVGoJh-pjhqV_U9eUIE_R8acyA_2tUR3yEpaBwiquioFJpry2OcGX8lDgcNVOCQzKMAO1v1DzaWsBuF5aRYxxd68DhkxuYI8Vj6yQuHvOxbooXGrdrCPjnrqCAsNysqnq2g-u5sStdbQ1hFKRQmlkvw-NmFWobDBrV_3-NSv-YKUOVLlL_x73PUMRVYau8THhhtG3bXyWoeWUZ_dJrPIFQSgOKUy8iCVeeJK9fn0WjD89prwJIMq1lVVyMBrnfVLIyl_xc0uh2El3uKEoMhqJhQ
https://www.google.com/aclk?sa=l&ai=DChcSEwilmM2Gi6rjAhWNyrIKHbSYCNMYABAAGgJscg&sig=AOD64_27dh93cxSXkir78gqu1WZHI9Di6Q&adurl=&q=&nb=0&res_url=https%3A%2F%2Fapps.uc.pt%2Fsearch%3Fq%3DInternet%2Bof%2BThings&rurl=https%3A%2F%2Fwww.uc.pt%2Fen&nm=101&bg=!f3ylfGREDaBlpklBXogCAAAAJlIAAAAJmQE8oAB9aGtm8bAMUAKQAS_stWTgpRmippO7CchBIE_NC_WIAV8Mp9bNaW0CvBhhxLis_fVh_pqTRLaPXkD-1j9lDQ8dY1JjhdF1lmNzgppvcSTOH6xqq0GoZxGTF5ttyAu0hrg-T2KnwU4LjGIhVGoJh-pjhqV_U9eUIE_R8acyA_2tUR3yEpaBwiquioFJpry2OcGX8lDgcNVOCQzKMAO1v1DzaWsBuF5aRYxxd68DhkxuYI8Vj6yQuHvOxbooXGrdrCPjnrqCAsNysqnq2g-u5sStdbQ1hFKRQmlkvw-NmFWobDBrV_3-NSv-YKUOVLlL_x73PUMRVYau8THhhtG3bXyWoeWUZ_dJrPIFQSgOKUy8iCVeeJK9fn0WjD89prwJIMq1lVVyMBrnfVLIyl_xc0uh2El3uKEoMhqJhQ
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817

23. SDN in Context of Devops Technology

25. MSc Programmes to Embedded Systems and Internet of Things
[https://www.ncl.ac.uk/postgraduate/courses /degrees/embedded-
systems-internet-of-things-msc/relateddegrees.html]

282

https://www.ncl.ac.uk/postgraduate/courses%20/degrees/embedded-systems-internet-of-things-msc/relateddegrees.html
https://www.ncl.ac.uk/postgraduate/courses%20/degrees/embedded-systems-internet-of-things-msc/relateddegrees.html

24. Dependability and security models of loT

PART VII. DEPENDABLITY AND SECURITY OF IOT
24. DEPENDABILITY AND SECURITY MODELS OF IOT

DrS. Prof. V. V. Sklyar, DrS. Prof. V. S. Kharchenko (KhAI)

Contents
ADDIEVIATIONSeiiicie e e 284
24.1. Dependability and security concepts for 10Tcccceveivinnnne 285
24.1.1. Taxonomy of safety and security requirements..................... 285
24.1.2. Dependability, safety and security attributes taxonomy........ 287
24.1.3 Risk analysis fundamentalsccooooniiviniieneiciceeie 289
24.2 Dependability and safety models for 10Tcccccevveiiiiincnnenn, 290
24.2.1 Reference architectures of 10Tcccovvvvvviivinnieneieieenciens 290
24.2.2 Redundancy and self-diagnostics implementation in 0T systems
... 292
24.2.3 Dependability and safety indicators............cccoeevveiieieieennnnn, 296
24.2.4 Failure Mode, Effect and Criticality Analysis (FMECA) of 10T
SYSEEIMS ..ottt 300
24.3 Security models for 10Tcccoveieiiiciccece e 302
24.3.1 10T SYSIEMS IrEALSocvirieeiiieeeiie st 302
24.3.2 SECUNILY MEASUIESevivieiieieieieeesie sttt 307
24.3.3 Threat and attacks modeling for 10T systems.........c..cccevenee. 310
24.4 Work related analysSisc.cocvcvevieieeieie i 312
Conclusions and QUESLIONS..........cceoerierieieisisisie e 314
RETEIENCESvi et 315

283

24. Dependability and security models of loT

Abbreviations

C&C — Command and Control

EUC — Equipment Under Control

FMECA — Failure Mode, Effect and Criticality Analysis
ICS — Industrial Control System

IEC — International Electrotechnical Commission

IEEE — Institute of Electrical and Electronics Engineers
10T — Industrial 10T

ISA — International Society of Automation

ISMS — Information Security Management System
RAMS — Reliability, Availability, Maintainability, Safety
RBD — Reliability Block Diagrams

SIL — Safety Integrity Level

284

24. Dependability and security models of loT

24.1. Dependability and security concepts for loT
24.1.1. Taxonomy of safety and security requirements

Taxonomy of safety and security requirements is based on analysis
of relevant standard in this area, such as IEC 61508 “Functional safety
of electrical/electronic/programmable electronic safety-related systems”
and ISA/IEC 62443 “Security for Industrial Automation and Control
Systems”. These functional safety requirements can be divided in some
following categories [1]:

— Requirements to functional safety management;

— Requirements to functional safety life cycle;

— Requirements to systematic (system and software design)
failures avoidance;

— Requirements to random (hardware) failures avoidance.

A scope of the above requirements is highly dependent from as
named Safety Integrity Level (SIL) [2] which establishes relation
between loT system risk level and a scope of the related safety
assurance countermeasures. The discussed approach can be represented
in a view of a diagram (see Fig. 24.1).

The above approach can be applied for loT security concept.
Firstly, Security Levels shall be implemented for loT system taken into
account risks levels (see Section 24.1.3). Secondly, Information
Security Management System (ISMS) shall be implemented and
coordinated with functional safety management issues. Thirdly, a
common security and safety life cycle shall be established to cover all
the process of 10T system development, verification and validation.
Fourthly, common safety and security risks shall be avoided to
implement coordinated countermeasures against random (hardware)
and systematic (system and software design) failures. Examples of
common safety and security random failures avoidance countermeasure
include redundancy, self-diagnostic, electromagnetic disturbances
protection and others (see Fig. 24.2) [3].

285

24. Dependability and security models of loT

Safety Integrity

Level (SIL)
Random Systematic
Capability Capability
Random Functional Functional System and
Failures Safety Safety Life Software Failures
Avoidance Management Cycle Avoidance
Functional
Safety
Assessment

Fig. 24.1 — A concept of 10T safety requirements

Management of Processes
Safet Functional . .
.y unctiona Security Security
Integrity Safety (e
Level (SIL) 'IManagement Management|, Level (L)
el g BY
\ Safety & / \
» Security Life < \
- Cycle ~ \
~ \
Functi N
unctional \ Ra.ndom / ~ security
Safety k--%‘r---—- Failures f————- t——9 Assessment
Assessment Avoidance //
N //
N\ [System and R4
Software Attacks
. > .
Failures Avoidance
Avoidance
Countermeasures

Fig. 24.2 — A concept of 10T harmonized security and safety
requirements

286

24. Dependability and security models of loT

Examples of common safety and security systematic failures
avoidance (attacks avoidance for security) are access control and
configuration control. Fifty, assessment shall be periodically performed
for both, security and safety. The discussed approach is the base for
security and safety coordination, as it is represented on Fig. 24.2.

24.1.2. Dependability, safety and security attributes taxonomy

Four of the attributes RAMS (Reliability, Availability,
Maintainability, Safety) used to be considered as extensions for
“classical” Reliability. The paper “Basic Concepts and Taxonomy of
Dependable and Secure Computing” [4] launched in 2004 the new
IEEE Transactions on Dependable and Secure Computing. It explains
the complexity of dependability in relation with security of modern
computer-based systems (see Fig. 24.3).

— Availabilty —
— Reliability
Safety
Confidentiality —
— Integrity —
— Maintainability

Dependability — — Security

Fig. 24.3 — Dependability and security attributes

In the [2], dependability is considered as an integrating concept
including the following attributes:

— Availability is a readiness for correct service;

— Reliability is a continuity of correct service;

— Safety is an absence of catastrophic consequences for the user
and the environment;

— Integrity is an absence of improper system alterations;

— Maintainability is an ability to undergo modifications and
repairs.

287

24. Dependability and security models of loT

Security is a composite of the attributes availability, integrity, and
confidentiality. When addressing security, availability is considered for
authorized actions as well as integrity is considered for a proper
authorization. Confidentiality is a supplementary, in comparison with
dependability, security attribute, which means the absence of
unauthorized disclosure of information.

Standardized definition of dependability is the following:
“dependability is the property to keep within the established values of
the parameters under all the stated conditions within a stated period of
time.” The above definition supposes a taxonomy which contains the
following four attributes of dependability:

— Reliability is continuity of the operation state during some time;

— Durability is continuity of operation with periodic maintenance
and repairs until retirement time; it is highly related with long term
operation;

— Maintainability is an ability to support operation state and to turn
back to operation state after periodic maintenance and repairs;

— Storability is an ability to support all dependability attributes
during storage.

To harmonize two dependability taxonomies (RAMS with the
standardized taxonomy) and security attributes let’s consider the
following statements [1]:

— Availability is a combination of Reliability and Maintainability
what is from equation A = MTTF / (MTTF + MTTR), where MTTF —
Mean Time to Failure, MTTR — Mean Time to Restoration;

— Accessibility is more appropriate term for safety domain the
Availability. However Accessibility is a part of Availability, so such
relation is established;

— Safety takes a care mostly about the failures of Safety Functions
(dangerous failure), which are intended to achieve or maintain a safe
state of a system. So there is a relation between Reliability and Safety,
and this relation is established via Safety Functions;

— At the same, Safety includes both Safety Functions and Integrity,
what is stated in the standards IEC 61508 as the confidence level
(sometimes, probability) of a system satisfactorily performing the
specified safety functions under all the stated conditions within a stated
period of time.

288

24. Dependability and security models of loT

The considered approach to analysis of dependability, safety and
security attributes allows representing all attributes in a view of one
diagram (see Fig. 24.4).

Dependability

7
Accessibility

Security
CIA Triad

s A
7 Efety FunctionsJ

7
—_ -
Integrity N Security
N
N

Y

Fig. 24.4 — Integrated taxonomy of dependability, safety and
security attributes

Confidentiality

24.1.3 Risk analysis fundamentals

Risk is a basic concept and indicator of safety or security, which is
a combination of the probability of an undesirable event and its
consequences [2]:

R(t) = P(t) - C, where P(t) is the probability of an undesirable
event, C is the potential damage.

289

24. Dependability and security models of loT

Risk assessment can be quantitative and qualitative, where a
qualitative one operating with such categories as “high”, “medium”,
“low”, etc.

If an undesirable event and damage from it are stated, then the risk
is numerically equal to the probability P(t) of the occurrence of fixed
damage. For example, the risk of a nuclear power plant accident with
the release of radioactive products into the atmosphere today is not
more than 107 1/year.

In information security a quantitative assessment can be made as a
boundary value for single loss expectancy (SLE): SLE = AV - EF,
where AV is asset value, EF is exposure factor which expresses a
percentage of damage to asset value because any of threat. To get
annual loss of expectancy (ALE) it is needed to take into account
annual risk concurrency (ARO): ALE =SLE - ARO. Investment to
security protective measures during one year cannot be more than ALE
value.

The ALARA / ALARP principle (as low as reasonably applicable /
practicable) is widely used for risk assessment and management. This
approach implies risk reduction as much as possible to achieve due to
actually available limited resources.

24.2 Dependability and safety models for 10T
24.2.1 Reference architectures of 1oT

Requirements for 1oT components have been identified by
different vendors, system integrators, consortia etc. 10T Reference
Architecture is a subject of standardization, what is developing now by
International Electrotechnical Commission (IEC) and Institute of
Electrical and Electronics Engineers (IEEE). The loT Reference
Architecture should describe the system or systems for the loT, the
major components involved the relationships between them, and their
externally visible properties (see Fig. 24.5).

To specify a possible structure of I0T system let’s consider a
medical application (Fig. 24.6) which includes Blood Pressure Devices
(device layer), Local Network Router & Medical Service Gateway
(network layer), Cloud Data Center (service layer), and User
Application (application layer).

290

24. Dependability and security models of loT

Application Layer

AL Interface | Interface
NL-AL DL-AL

Interface SL

Service Layer

Interface NL-SL

Network Layer

Interface DL-NL

Device Layer

Fig. 24.5 — loT Reference Architecture

Local
Network ‘ Cloud Data
Blood Router Medical Center User Terminal
Pressure Service (User Application)
Devices Gateway

Fig. 24.6 — An example of medical 10T system
Device layer is represented by sensor networks which are

connected with mini-computers or controllers. Device Layer has a
typical structure of the Industrial Control System (ICS), what is

291

24. Dependability and security models of loT

reflected in architecture of Industrial 10T (110T) or Internet ICS (IICS)
as well as in Industry 4.0 concept (see Fig. 24.7). Such architecture is a
result of hybridization of ICS with IoT.

Remote Client

ey~ A Remote Site 1 Remote Site N Mobile Client
Physical system Physical system
Sensors and actuators Sensors and actuators
Remote Terminal Remote Terminal
Units (RTU) Units (RTU)

Fig. 24.7 — An example of architecture of Industrial 0T system

24.2.2 Redundancy and self-diagnostics implementation in loT
systems

To provide redundancy of IoT systems let’s investigate a system
represented on Fig. 24.6. For this system we added a redundant channel
as well as redundant cross-channel communication which allow
recovering system in a case of single failures. Cloud Data Centers need
to have communication link to synchronize stored data in accordance
with implemented time intervals (see Fig. 24.8). Redundancy can be
implemented for some components as well for a system. Since
redundancy for some components does not provide a big value for a

292

24. Dependability and security models of loT

system (for example redundant Blood Pressure Devices for a single
patient), a criteria “Reliability / Cost” has to be used for system
efficiency analysis.

—
—

Cloud Data
Local — Center 1
Network _
Router 1 User Terminal 1

(User Application)

/
\ / i \ \ /
Blood \\ / \\ / Medical \ / N/
Pressure N / } /
. AN \ £ \
Devices1 /Y Gatewayl /| A
/ oA I\ \

|
|
|
|
Service ! N
\ I
|
|
|
|
|

\ / \ —

/ \ / \ ——
=
=

Local ; ;
Network S Cloud Data
Blood Router 2 Medical Center 2 User Terminal 2
Pressure Service (User Application)
Devices 2 Gateway 2

Fig. 24.8 — Redundant medical loT system

Redundant 10T systems have to implements redundancy for both
ICS (RTU) and IoT parts. For this approach let’s investigate a system
represented on Fig. 24.7. Fig. 24.9 represents a single connected to lloT
site, and such sites can be multiple. Also redundancy can be
implemented for components as well as for a system. Fig. 24.9
represents inter-channel communication links, but channel can be
separated to implement independency.

The typical ICS includes [1,2]:

— power supply components;

— field equipment (sensors and actuators);

293

24. Dependability and security models of loT

— programmable logic controllers, including input and output
modules and control modules;
—network equipment, servers, and human-machine interface

components.
AC| Power Input Logic Output
—b

—
Supply 1 ev Module 1 Module 1 Module 1 Al

DC| Power | @A Input Logic Output

Supply 2 Module 2 Module 2 Module 2 A2

Network 1

Local Network
Router 1

Network 2

Local Network
Router 2

User Terminal 1
(User Application)

User Terminal 2
(User Application)

Center 1 Center 2

Fig. 24.9 — Redundant Industrial 10T system

Ideally, maximum independence is ensured by power supplying of
independent channels of the system from independent inputs. The
diagram shows that the first channel is powered by an alternating
current, and the second channel is powered by direct current. Then, in
case of problems with power supply in one of the power supply
systems, only one of the channels will be de-energized. Ensuring
continuity and quality of power supply even in extreme conditions is a
vital aspect of ensuring the safety and security of control systems.

294

24. Dependability and security models of loT

Redundant sensors, controllers and actuators may be used.
Protocols of information exchange can be organized between channels,
or maximum independence between channels can be realized, and then
there will be no exchange.

In addition, a redundant network architecture and a duplicate man-
machine interface with redundant computing components and data
storages can be implemented.

Redundant architectures with “2-out-of-3” and “2-out-of-4” voting
logic are also used In ICS important for safety and security.

Self-diagnostics of digital devices can be described as on
Fig. 24.10. Along with the main algorithms of digital control, in
parallel, the system implements the processing of diagnostic data and
watchdog functions. All these three processes are performed
independently of each other, and independent clock sources, different
chips, etc. can be used [1,3].

cLOCK 1 Control Logic L _

L Processing Safe State
" Heart Beat t Power Actuation System
Signal Control {}UTDR_,_I’{E-
- .,\:
CLOCK 2 +» Watch Dog Timer OR ——= =«
M ; — <
Heart Beat Power
SiE_rl.-i 5 Control Safe State
cLOCK 3 | N Diagnostics Data Actuation
M Processing

Fig. 24.10 — Self-diagnostics of loT

Watchdog monitors the simplest response (heart bit) from the
chips that perform data processing, and when a problem is detected (the
response is stopped), it turns off the power and puts the system into a
safe state. In addition, the watchdog timer can monitor the power level
and produce a similar shutdown command if there is a dangerous power
deviation from the specified level. Safe state for safety systems, as a
rule, consists in removing power from the output analogue and discrete

295

https://1.bp.blogspot.com/-HLrLKsnNS9I/WQmF8KdbdZI/AAAAAAAABV0/XWwnWU3zN-ckK7TWKqYM07ey-x3JBffBACEw/s1600/Fig7.7_Functional_Safety_Sklyar.png

24. Dependability and security models of loT

outputs. If necessary, the safety system can supply power to the
actuators, but then the output requires additional signal converters.

If self-diagnostics detects a critical failure (for example, hardware
failure, hardware or software configuration violation, data transmission
violation, etc.), a command is issued to put the system into a safe state,
which is performed as if the command came from main control logic.

Now we generalize typical functions of digital devices self-
diagnostics. The functions of the watch dogs and power control have
been already considered. An important diagnostic function is to control
the configuration of software and hardware. This property also affects
information security. During operation, each hardware module
periodically transmits information about its serial number and
configuration of the loaded software (for example, check-sum). If a
configuration failure occurs, then the system performs the specified
protective actions, up to a transition to a safe state and power off.

Another option to perform hang-up monitoring is internal or
external timers that check the execution time of control logic loops.
Some procedures can be restarted several times, and in case of several
unsuccessful restarts, a decision to transit to a safe state can be made.

An important function of control systems is to ensure the accuracy
of measurement of input and output analogue signals. To diagnose
measurement accuracy, redundant analogue-digital converters (ADCS)
and digital-analogue converters (DACs) can be used, in which the
processing results are compared and a diagnostic message is generated
on the coincidence or discrepancy of the results.

Much attention in the control systems is paid to the transfer of data
packages, both through communication channels and in the processing
distributed between the software and hardware components. Here,
methods such as transmission confirmation, timeout control, integrity
monitoring and data packages transmission sequence, cyclic
redundancy codes (CRC) are used for self-diagnostics. To protect
information during data transmission encryption algorithms can be
used.

24.2.3 Dependability and safety indicators

The basic concept of functional safety assessment is dividing a
common failure rate A (let us begin with the exponential distribution
with a constant failure rate) into dangerous and safe failures as well as

296

24. Dependability and security models of loT

into detected and undetected failures. This is a main difference of
functional safety from reliability. From this point of view we have four
failures sets (see Fig. 24.11):

— Safe Detected failures with a failure rate ASd — failures which
put the equipment under control (EUC) to a safe state and are
discovered by self-diagnostics;

— Safe Undetected failures with a failure rate ASu — failures which
put the EUC to the a state and are not discovered by self-diagnostics;

— Dangerous Detected failures with a failure rate ADd — failures
which put the EUC to a potentially dangerous state and are discovered
by self-diagnostics;

— Dangerous Undetected failures with a failure rate ADu — failures
which put the EUC to a potentially dangerous state and are not
discovered by self-diagnostics.

Safe Dangerous
Detected | Detected

(Asa) (Apa)

Safe Dangerous
Undetected | Undetected

(Asu) (Apu)

Fig. 24.11 — Failures theoretical-set model

So, there are some obvious dependencies following from
Fig. 24.11:

— Common failure rate is A = ASd + ASu + ADd + ADu;

— Dangerous failure rate is AD = ADd + ADu;

— Safe failure rate is AS = ASd + ASu;

— Detected failure rate is Ad = ASd + ADd;

— Undetected failure rate is Au = ASu + ADu.

297

24. Dependability and security models of loT

Also a lot of relative metrics can be extracted from dependencies
between sets cardinality and different failure rates values. The most
important from these metrics are the following:

— Safe Failure Fraction (SFF) in accordance with IEC 61508 is
SFF = (AS + ADd) / A;

— Dangerous Failure Fraction (DFF) in accordance with IEC 61508
is DFF =1 - SFF =ADu/ A;

— Diagnostic Coverage (DC) for dangerous failures in accordance
with IEC 61508 is DCp = ADd / AD;

—More widely used equation for Diagnostic Coverage is
DC=AD/A;

— Proof Test Coverage (PTC) should be calculated from the total
failure rates for the using the formula PTC = 1 — ADuaPT / ADu, where
ADuaPT is ADu after Proof Test.

In addition, IEC 61508 requires the following indicators to be
determined for the system components:

— Lifetime — the time during which the element performs its
functions without breaking the properties;

— Periodic proof test interval — the time between conducting
periodic tests, which cover such components that cannot be diagnosed
during operation; thus, dangerous undetected failures are identified,;

— Diagnostic test interval — the time between conducting tests in
the process of operation;

— Mean Repair Time (MRT), which may be equivalent to Mean
Time to Restoration after failure (MTTR).

To move ahead with safety indicators we need to introduce some
definitions from the standards series IEC 61508.

— Safety Function is a function to be implemented by a safety-
related system or other risk reduction measures, that is intended to
achieve or maintain a safe state for the EUC, in respect of a specific
hazardous event; all the above indicators are usually calculated for
specified Safety Functions; sometimes for ICS a term Safety
Instrumented Function (SIF) is used as equal;

— Safety Integrity is a probability of a safety-related system
satisfactorily performing the specified safety functions under all the
stated conditions within a stated period of time;

298

24. Dependability and security models of loT

— Safety Integrity Level (SIL) is a discrete level (one out of a
possible four), corresponding to a range of safety integrity values,
where SIL 4 has the highest level of safety integrity and SIL 1 has the
lowest;

— Mode of Operation is a way in which a safety function operates,
which may be either

» Low Demand Mode: where the safety function is only performed
on demand, in order to transfer the EUC into a specified safe state, and
where the frequency of demands is no greater than one per year; or

 High Demand Mode: where the safety function is only performed
on demand, in order to transfer the EUC into a specified safe state, and
where the frequency of demands is greater than one per year; or

« Continuous Mode: where the safety function retains the EUC in a
safe state as part of normal operation.

IEC 61508 states different Safety Indicators depending from the
Mode of Operation.

For Low Demand Mode average probability of dangerous failure
on demand (PFDavg) shall be calculated. PFDavg is mean
unavailability of a safety-related system to perform the specified safety
function when a demand occurs from the EUC.

The IEC 61508 states that only Dangerous Undetectable failures
contribute to PFDavg, the last can be calculated as PFDavg(Du) =
=1 - A(Du) = U(Du) = ADu / (ADu + puDu), where uDu is restoration
rate of Dangerous Undetectable failures.

Also for Dangerous failures PFDavg(D) = 1 — A(D) = U(D) =
=AD / (AD + uD), where pDu is restoration rate for all the Dangerous
failures.

For High Demand Mode and Continuous Mode average frequency
of a dangerous failure per hour (PFH) shall be calculated. PFH is the
average frequency of a dangerous failure of a safety related system to
perform the specified safety function over a given period of time.

Usually PFH is defined as failure rate, so on the base of Dangerous
Undetectable failures PFH(Du) = ADu, and on the base of all the
Dangerous failures PFH(D) = AD.

Also the IEC 61508 states that PFH can be calculate as
unavailability or as unreliability depending from a safety-related system
application conditions.

299

24. Dependability and security models of loT

24.2 .4 Failure Mode, Effect and Criticality Analysis (FMECA) of
10T systems

FMECA differs from other methods of dependability and safety
analysis in that it puts together all the tasks of calculating safety
indicators. The standard IEC 60812:2006 “Analysis techniques for
system reliability — Procedure for failure mode and effects analysis
(FMEA)” has been developed is to describe this method.

At the initial stages of the FMECA application, it is recommended
to apply a hierarchical decomposition of the system, for example, using
Reliability Block Diagrams (RBD).

The safety and security analysis sequence using FMECA includes
the following steps:

— analysis of the structure and functions of the system;

—division of the system into its parts and elements, based on the
influence of element failures on system failures and the level of detail;

— drawing and analysis of RBDs for system decomposition;

— determination of types of failures and operating modes of the
system;

— determination of the effects of failures and their criticality;

— determination of root causes of failures;

— determination of failures rate;

— determination of methods for detection and compensation of
failures; for this self-diagnostic approach is analysed, both for hardware
and software, as well as the diagnostic coverage;

— calculation and analysis of dependability and security indicators;
bottom-up analysis has to be performed, i.e. elements are assembled in
units, parts and the system as a whole; the obtained indicators are
compared with the specified requirements.

For the above steps, different levels of details may be applied.
Usually for safety systems, the analysis takes into account all electronic
components, such as resistors, capacitors, diodes, etc.

FMECA is performed for the identified safety and security
functions from the point of view of the software and hardware involved
in the execution of the function. For these functions, the states of
dangerous failures have to be defined and described. The results of the
analysis are recorded in the form of FMECA tables (see Table 24.1).

300

24. Dependability and security models of 1oT

Table 24.1 — A part of FMECA table for a hardware module

Unit Failure | Failure | Failure Effect Failure Failure Failure Failure

Mode Cause Critica- Diag- Recovery Rate

lity nostics
Power Loss of | Short Loss of power [Dange- Online Safe state | 7-10°8
Supply power break of the module rous check of | transition 1/hour
Unit voltage
value

Clock Loss of | Short Power off of | Dange- Watch Safe state | 2-10°8
Frequency | clocks break Micro- rous Dog transition 1/hour
Unit pulses controller Unit
Micro- No Fault of | Power off of [Dange- Watch Safe state | 1,5-10°%
controller contact | solde- Micro- rous Dog transition 1/hour
Unit ring controller Unit
Micro- RAM Fault of | Not trusted | Dange- RAM Safe state | 2,5-108
controller error a chip Micro- rous test transition 1/hour
Unit controller Unit

301

24. Dependability and security models of loT

24.3 Security models for 10T
24.3.1 10T systems treats

An actual landscape of 10T threats is represented in the [5]. loT
threats are grouped in 8 categories and are briefly discussed in
Table 24.2.

Table 24.2 — 10T systems treats

Threat Threat description

Nefarious activity / Abuse

Denial of This attack can be bi-directional. It can target an
Service IoT system resulting in system unavailability and
production disruption caused by a massive number of
requests sent to the system. On the other hand, an
attacker may take advantage of a large number of loT
devices and create an army of 10T botnets as a platform
to attack some other system.

Malware The penetration of malicious software in an loT
aimed at performing unwanted and unauthorised
actions, which may cause damage to an OT system,
operational processes and related data. Ransomware,
viruses, Trojan horses and spyware are common
examples of this threat.

Manipu- Threat of unauthorized manipulation of devices
lation of | software or applications within an OT system by an
hardware | attacker. In terms of ToT systems, an attacker’s actions
& may include manipulation of an industrial robot,
software | manipulation of remote controller devices suppressing
state of a control device and modification of its
configuration.

Manipu- The threat of unwanted and unauthorized data
lation of | modification by an attacker. This may apply to
informa- | compromising OT or production supporting systems,

302

24. Dependability and security models of loT

Threat

Threat description

tion

and manipulation of process data. Possible
consequences may include inappropriate decisions
based on falsified data.

Targeted
attacks

The threat of a cyberattack targeting a specific
organisation (or a specific person in this organisation).
Such attack aims at harming an organisation possibly to
take control over the system using various technical
means such as compromising key devices and falsifying
telemetry deceiving unaware operators. Other impacts
include damage of reputation or theft of company
secrets. This attack is different from wider scale attacks
whose objective is to infect any company that connects
to a certain website prepared by an attacker or any
company that uses a device or software with a certain
vulnerability.

Abuse of
personal
data

The threat of compromising personal / sensitive
information stored on devices or in the cloud. The
attacker’s goal is to gain unauthorised access to this
kind of data and use it in an illicit manner.

Brute
force

The threat of gaining unauthorised access to an
organisation’s resources (i.e. data, systems, devices,
etc.) through a large number of attempts to guess the
correct key or password. loT systems that allow the
utilisation of uncomplicated or default passwords for
devices and systems may be especially vulnerable to
such attacks.

Eavesdropping / Interception / Hijacking

Man-in-
the-
Middle
attack /
Session

The threat of active eavesdropping, where
messages exchanged between unaware affected parties
are relayed by an attacker. The attacker may just listen
to the exchanged messages or modify or delete
transmitted information, leading to communication

303

24. Dependability and security models of loT

Threat Threat description

hijacking | disruption.

loT The threat of an attacker taking control of an

commu- existing communication session between two network

nication components, which may lead to the disclosure of

protocol passwords and other confidential information.

hijacking

Network The threat of revealing internal network

recon- information (e.g. connected devices, used protocols,

naissance | open ports and used services, etc.) to an attacker who
manages to scan a network passively. With this
knowledge, the attacker can plan which actions to take
next to compromise system operation.

Physical attack

Vanda- The threat of causing physical damage to the

lism and | device by a saboteur who gains physical access to the

theft operational environment — either an outsider who has
managed to bypass insufficient physical security
measures or an insider, e.g. a disgruntled employee
who, for some reasons, wants to harm the organization.
This threat also includes theft.

Sabotage The threat of tampering with a device by a

saboteur who gains physical access to the operational
environment — either an outsider who manages to
bypass insufficient physical security measures or an
insider, e.g. a disgruntled employee who, for some
reasons, wants to harm the organization. The attacker
may take advantage of improper configuration of ports
and possibility exploit open ports. The attacker may
also use access to execute unauthorized operator
actions.

304

24. Dependability and security models of loT

Threat

Threat description

Unintentional damages (accidental)

Uninten-
tional
change
of data or
configu-
ration

The threat of disrupting an operational process by
unintentional data or configuration change in the loT
system performed by an insufficiently trained
employee. Even with good intentions, an unskilled
employee, unaware of the consequences, may introduce
improper changes to the system, especially if he or she
receives higher than necessary privileges.

Errone-
ous use
or
adminis-
tration

The threat of disrupting an operational process or
causing physical damage to the device by unintentional
misuse of a device by an insufficiently trained
employee. Even with good intentions, an unskilled
employee

Damage
caused
by a third
party

The threat of damaging assets caused by a third
party. The third parties may have access to the OT
system, for example, for maintenance or software
update purposes. If this access is not controlled in a
sufficient way, security breaches of a third party
organisation may affect the company that receives the
service.

Failures / Malfunctions

Failure
or mal-
function
of a
sensor /
actuator

The threat of failure or malfunction of loT end
devices. This can occasionally happen, especially if
proper maintenance and compliance with the devices’
manuals and instructions during the exploitation is not
ensured.

Failure
or mal-
function
of a

The threat of failure or malfunction of control
system. This can occasionally happen, especially if
proper maintenance and compliance with the devices’
manuals and instructions during the exploitation is not

305

24. Dependability and security models of loT

Threat Threat description
system ensured.
Software The threat that an attacker takes advantage of
vulnera- I1oT end device firmware or software
bilities vulnerabilities. Such devices are often vulnerable
exploita- due to lack of updates, usage of weak or default
tion passwords and improper configuration..
Failure The threat of disruption of processes that rely on
of third party services in case of failure or malfunction of
service these services.
providers
Outages

Commun The threat of unavailability of communication
ication links related to problems with cable, wireless or mobile
network network.
outage
Power The threat of failure or malfunction of the power
supply supply. If no emergency power supply exists for critical
outage systems, any power supply disruption may result in

serious consequences due to a sudden shutdown of

production processes.
Loss of The threat of failure or malfunctions of systems
support supporting
services

Legal

Violation The threat of legal issues and financial losses
of rules | related to personal data processing, e.g. related to the
and usage of 10T end devices without complying with local
regula- laws or regulations. In operations within the European
tions Union, these requirements are imposed on companies

306

24. Dependability and security models of loT

Threat Threat description

by the GDPR.

Failure The threat of violating contractual requirements by
to meet a | components manufacturers and software providers in
contract case of failure to ensure the required security measures.

Disaster

Natural The threat of natural disasters such as floods,
disasters | lightning strikes, heavy winds, rain and snowfall, which
may cause physical damage to the environment

components.
Environ- The threat of incidents and unfavorable conditions
mental such as fires, pollution, dust, corrosion, explosions,
disasters | which may cause physical damage to the environment
components.

24.3.2 Security measures

The document [5] describes three groups of loT measures,
including policies, organizational practices, and technical practices.

This first group of security measures mostly refers to policies and
procedures that should be established within organizations to help
ensure a good level of cybersecurity, especially where 10T solutions are
concerned. In addition, privacy issues have been covered in the context
of manufacturers who should ensure that their solutions do not violate
privacy regulations, and operators, who should be sensitized to privacy
related risks and made aware of how to utilize IoT devices without
exposing users’ personal information. Policies include four the
following categories which contains 24 practices [5]:

— Security by design includes security measures which should be
applied from the very beginning of product development;

— Privacy by design includes security measures related to privacy
and protection of personal data. These measures should be applied from
the first stages of product development;

307

24. Dependability and security models of loT

— Asset Management includes security measures regarding asset
discovery, administration, monitoring and maintenance;

—Risk and Threat Management includes security measures
regarding the recommended approach to the process of risk and threat
management adapted to loT environment.

Organization principles and governance are indispensable factors
that are usually critical in terms of company security. The following
security measures explain how industrial companies should operate,
what organizational rules and responsibilities they should establish and
follow and what approach they should adopt towards their employees
and third party contractors to handle effectively cybersecurity incidents,
manage vulnerabilities and ensure security of 10T solutions throughout
their lifecycle. Organizational practices include six the following
categories which contains 27 practices [5]:

— Endpoints lifecycle includes security measures related to security
at different stages of product (including end devices and infrastructure)
lifecycle, including the procurement process, supply chain, handover
phase, exploitation and end-of-life;

— Security Architecture includes security measures regarding the
architectural-based approach and establishment of security architecture.

—Incident handling includes security measures regarding the
detection and response to incidents that may occur in loT system
environments;

— Vulnerabilities management includes security measures on the
vulnerability management process, related activities and vulnerability
disclosure;

— Training and Awareness includes security measures regarding
the recommended approach related to security training and raising
awareness of employees working with 10T devices and systems;

— Third Party Management includes security measures related to
third party management and control of third party access.

Apart from implementing policies and organizational practices,
security also needs to be addressed through the appropriate technical
capabilities of loT solutions and the environments where they are
deployed. The technical security measures listed below constitute a last
piece of the puzzle enabling 10T and Industry 4.0 companies to improve
their level of security. Technical practices include ten the following
categories which contains 59 practices [5]:

308

24. Dependability and security models of loT

— Trust and Integrity Management includes security measures that
can help ensure the integrity and trustfulness of data and devices;

—Cloud security includes security measures regarding various
security aspects of cloud computing;

— Business continuity and recovery includes security measures
regarding the development, testing and reviewing of company’s plan to
ensure resilience and continuity of operations in the event of security
incidents;

— Machine-to-Machine security includes security measures
regarding key storage, encryption, input validation and protection in
Machine-to-Machine communications security;

— Data Protection includes security measures regarding protection
of confidential data on various levels of an organization and
management of access to data;

— Software/Firmware updates include security measures regarding
verification, testing and execution of patches.

— Access Control includes security measures regarding the control
of remote access, authentication, privileges, accounts and physical
access;

— Networks, protocols and encryption include security measures
those can help ensure security of communications through proper
protocols implementation, encryption and network segmentation;

— Monitoring and auditing includes security measures regarding
the network traffic and availability monitoring, logs collection and
reviews;

— Configuration Management includes security measures regarding
security configuration, management of changes in configuration,
devices hardening and backup verification.

24.3.3 Threat and attacks modeling for 10T systems

A kill chain is a systematic process to target and engage an
adversary to create desired effects. U.S. military targeting doctrine
defines the steps of this process as find, fix, track, target, engage, assess
(F2T2EA): find adversary targets suitable for engagement; fix their
location; track and observe; target with suitable weapon or asset to
create desired effects; engage adversary; assess effects.

309

24. Dependability and security models of loT

This is an integrated, end-to-end process described as a “chain”
because any one decency will interrupt the entire process [6].

With respect to computer network attack or computer network
espionage, the definitions for these kill chain phases are as follows:

1. Reconnaissance — Research, identification and selection of
targets, often represented as crawling Internet websites such as
conference proceedings and mailing lists for email addresses, social
relationships, or information on specific technologies.

2. Weaponization — Coupling a remote access trojan with an
exploit into a deliverable payload, typically by means of an automated
tool (weaponizer). Increasingly, client application data files such as
Adobe Portable Document Format (PDF) or Microsoft Office
documents serve as the weaponized deliverable.

3. Delivery — Transmission of the weapon to the targeted
environment. The three most prevalent delivery vectors for weaponized
payloads by advanced persistent treats actors, as observed by the
Lockheed Martin Computer Incident Response Team (LM-CIRT) for
the years 2004-2010, are email attachments, websites, and USB
removable media.

4. Exploitation — After the weapon is delivered to victim host,
exploitation triggers intruders' code. Most often, exploitation targets an
application or operating system vulnerability, but it could also more
simply exploit the users themselves or leverage an operating system
feature that auto-executes code.

5. Installation — Installation of a remote access trojan or backdoor
on the victim system allows the adversary to maintain persistence
inside the environment.

6. Command and Control (C&C) — Typically, compromised hosts
must beacon outbound to an Internet controller server to establish a
C&C channel. Advanced malware especially requires manual
interaction rather than conduct activity automatically. Once the C&C
channel establishes, intruders have “hands on the keyboard” access
inside the target environment.

7. Actions on Objectives — Only now, after progressing through
the first six phases, can intruders take actions to achieve their original
objectives. Typically, this objective is data exfiltration which involves
collecting, encrypting and extracting information from the victim
environment; violations of data integrity or availability are potential

310

24. Dependability and security models of loT

objectives as well. Alternatively, the intruders may only desire access
to the initial victim box for use as a hop point to compromise additional
systems and move laterally inside the network.

The threats and risks previously listed could be used by attackers
to cause cascade effects and further damages at different levels in the
infrastructures. The different attack scenarios and the level of
importance of each attack have been gathered from the desktop
research as well as the information provided by the experts who have
contributed to the report. It is worth noting that the attacks may take
place throughout the whole process, and the impact that attacks may
have on each specific part of the process has also been analysed.

There are the following types of the most critical attacks of loT
systems [7]:

— Against the network link between controller(s) and actuators;

— Against sensors, modifying the values read by them or their
threshold values and settings;

— Against actuators, modifying or sabotaging their normal settings;

— Against the administration systems of 10T;

— Exploit Protocol vulnerabilities;

— Against devices by injecting commands into the system console;

— Stepping stone attacks;

— DDoS using an 10T botnet;

— Power source manipulation and exploitation of vulnerabilities in
data readings;

— Ransomware.

Let’s consider a botnet attack, as an example for modeling. This
attack entails the exploitation of some vulnerability inside a device to
inject commands and obtain administrator privileges, with the purpose
of creating a botnet made up of those vulnerable 10T devices. A botnet
is a network of automatic devices that interact to accomplish some
distributed task. Due to the characteristic interconnection of loT
devices and their poor configuration, carrying out such an attack is
simple. This attack scenario is based on the Mirai botnet, which has
conducted several of the most forceful attacks in recent history, and has
proven capable of attacking varied kinds of targets. Therefore, with
potential targets such as a hazardous energy infrastructure, the impact
of a Mirai’s attack can reach extremely critical levels. A kill chain for a
botnet attack which includes the following actions:

311

24. Dependability and security models of loT

— Scanning open ports in 10T devices that are accessible over the
Internet, which are usually poorly protected by default usernames and
passwords that, users never change;

— Gaining access to the device;

— Commands injection into the device’s console;

— Obtain administrator privileges;

— Connect the device to a C&C;

— Execution a malicious script;

— Deleting the script itself afterward and running in-memory;

— Spread attacking the same way other vulnerable devices, in order
to gather an 10T device army, conscripting them into a botnet;

— Control the botnet from a C&C centre, in order to launch
distributed attacks.

24.4 Work related analysis

Some lack of standardization efforts is identified in area of loT
safety and security [8]. An issue is a new security focus in loT
applications area. For example, the [8] identifies the following five
main loT areas: connected vehicles, consumer 10T, health and medical
devices, smart buildings, and smart manufacturing.

Cybersecurity objectives for traditional information technology
systems generally prioritize confidentiality, then integrity, and lastly
availability. 10T systems cross multiple sectors as well as use cases
within those sectors. Accordingly, cybersecurity objectives may be
prioritized very differently by various parties, depending on the
application.

The increased ubiquity of IoT components and systems heighten
the risks they present. Standards-based cybersecurity risk management
will continue to be a major factor in the trustworthiness of loT
applications. Analysis of the application areas makes it clear that
cybersecurity for 10T is unique and requires tailoring existing standards
and creating new standards to address challenges, for example:

- pop-up network connections,

- shared system components,

- the ability to change physical aspects of the environment, and

- related connections to safety.

312

24. Dependability and security models of loT

However in the last 1-2 years this gap is partly fulfilled by
technical reports describing good practices in 10T area [5,7]. Also there
are researches targeted to development and adjustment of dependability
and security models for 10T systems as the followings.

A team of University of Coimbra focuses on the paradigm of the
fog orchestration as a basic of 10T Service Layer with open challenges,
technological directions [9]. Another research direction of the team is
features of resilience for cyber-physical systems [10].

A.-L. Kor and C. Pattinson from Leeds Beckett Univercity pay
attention to social aspects of loT implementation in frame of user-
oriented design methodology named SMART-ITEM [11].

We can consider the typical studies in area of loT safety and
security, which take into account the following research scenario [5]:

—To defines relevant terminology to promote common
understanding of relevant dependability and cybersecurity issues;

— To categorizes in a comprehensive taxonomy of the assets across
the information process and value chain;

—To introduce detailed hazards and threats taxonomy based on
related risks and attack scenarios;

—To maps the identified hazards and threats to assets, thus
facilitating the deployment of dependability and security measures
based on the customized requirements of interested stakeholders;

— To list dependability and security measures related to the use of
loT system and map them against the aforementioned hazards and
threats.

Conclusions and questions

Dependability and security models are represented in the section
based on concept “safety risks — hazards; security risks — treats”, and
implementation it in the appropriated approaches to assess the most
important indicators.

Dependability and safety models are mostly quantitative based on
probabilistic analysis of indicators values. Security models are mostly
qualitative based on threats analysis and the associated attacks scenario.

A common basic of safety and security risks, hazards and threats
allows to consider integration of these 10T systems features. A set of

313

24. Dependability and security models of loT

requirements to loT systems contains issues of process management,
life cycle, random and systematic failures avoidance, as well as attacks
avoidance.

In order to better understand and assimilate the educational
material that is presented in this section, we invite you to answer the
following questions.

1. What types of risks arise in 10T systems, and what is the
nature of each of these risks?

2. How are dependability, safety and security interrelated?

3. What are the challenges in terms of safety and security those
are created by the rapid increase in the number of devices connected to
the Internet?

4. What are the groups of requirements for safety and security?

5. What attributes of functional safety does IEC 61508 define?

6. How do safety attributes constitute a common system with
attributes of security and dependability?

7. What attributes does the abbreviation RAMS include?

8. What is the difference between reliability, dependability,
availability and safety?

9. What is risk? Please let’s explaine features of concept of risk
for different systems.

10. How can risk be assessed qualitatively and quantitatively?

11. What is the principle of ALARA?

12. What are the main indicators of dependability and formulas
for their calculations?

13. What are the main indicators of safety and formulas for their
calculations?

14. Why is it necessary to analyze simultaneously indicators of
dependability, safety and security?

15. How is the method of Reliability Block Diagrams applied?

16. How is the method of Failure Mode, Effect and Criticality
Analysis (FMECA) applied?

17. What are the main threats of loT systems?

18. Which security measures are recommended to be
implemented for l0T systems?

19. What are the most serious cyber-attacks of 10T systems?

20. How threats and attacks can be modeled for I0T systems?

314

24. Dependability and security models of loT

21. What modifications of FMECA technique do you know that
can be applied for security analysis (for example technique IMECA and
others)?

References

1. Cxmap B.B. O6ecneuenne Oe3zomacHoctn ACYTII B
COOTBETCTBHH C COBPEMEHHBIMU cTaHmaptamu. — MHppa—mxenepus,
2018.

2. Rausand M. Reliability of safety—critical systems : theory and
application. — John Wiley & Sons, Inc., Hoboken, New Jersey, USA,
2014.

3. ®epopos IO.H. CnpaBounuk wumxenepa mno ACY TII:
[IpoextupoBanue u pa3zpadorka. — Unppa—Umxenepus, 2008.

4. Avizienis, A., Laprie, J.-C., Randell, B. and Landwehr, C.
Basic Concepts and Taxonomy of Dependable and Secure Computing.
IEEE Transactions on Dependable and Secure Computing (2004), 1(1):
11-33.

5. Good Practices for Security of Internet of Things in the context
of Smart Manufacturing. — The European Union Agency for Network
and Information Security, 2018.

6. Baseline Security Recommendations for IoT in the context of
Critical Information Infrastructures. — The European Union Agency for
Network and Information Security, 2017.

7. Hutchins E., Cloppert M., Amin R. Intelligence-Driven
Computer Network Defense Informed by Analysis of Adversary
Campaigns and Intrusion Kill Chains. — Lockheed Martin Corporation,
2017.

8. NISTIR 8200, Interagency Report on the Status of International
Cybersecurity Standardization for the Internet of Things (loT). —
National Institute of Standards and Technologies, 2018.

9. Velasquez, K., Abreu, D.P., Assis, M. et al. Fog orchestration
for the Internet of Everything: state-of-the-art and research challenge.
Journal of Internet Services and Applications (2018) 9: 14.

10. Curado M. et al. Internet of Things. In: Kott A., Linkov I. (eds)
Cyber Resilience of Systems and Networks. Risk, Systems and
Decisions. Springer, 2019.

315

24. Dependability and security models of loT

Kor A.L., Pattinson C., Yanovsky M., Kharchenko V. 1oT-
Enabled Smart Living. In: Dastbaz M., Arabnia H., Akhgar B. (eds)
Technology for Smart Futures. Springer, 2018.

316

25. Safety and security management of loT

25. SAFETY AND SECURITY MANAGEMENT OF IOT

DrS. Prof. V. V. Sklyar (KhAl)

Contents
ADDIEVIATIONSeiiicie e e 318
25.1 Safety and security management requirements to loT 319
25.1.1 Safety and security management planccocoeveiiiiiinnne 319
25.1.2 Human resource management.........ccoovrverrenrereenreseeseseeenenns 321
25.1.3 Configuration managementcccocvevvevienesieseceese s 322
25.1.4 Tools selection and evaluationcccccoeevevenenennnniiniinnnns 324
25.1.5 Documentation managementccovvvrerenereneneeieeiesennens 326
25.1.6 Safety and security asseSSMENt..........ccceevevveveiiiesiesiesiesreenenns 327
25.2 Safety and security life cycle for 10Tcccocoovvievvciicceiec, 329
25.2.1 Overall [ife CYCIeooviiieeee e 329
25.2.2 Safety and security life cycle: design top-down brunch......... 330
25.2.3 Safety and security life cycle: integration down-top brunch..331
25.2.4 ReqUIrements traCingcooceeervereeienenineneseseesreseeesesennens 331
25.3 Review, analysis and testing techniques for 10Tccccceeee 334
25.3.1 DOCUMENTS FEVIEW ...ttt sie e esnesnennens 334
25.3.2 Static code analySiS........ccovieeiieieeieie i 335
25.3.3 FUNCLIONAl TESTINGveviviiiieieee e 335
25.3.4 Code structural teStingccovevvevieiieiiiiiece e 336
25.4 Work related analysisc.cccecveieieiieie i 337
Conclusions and QUESLIONS..........cceoerierieieisisisie e 338
RETEIENCESvi et 339

317

25. Safety and security management of loT

Abbreviations

FMECA - Failure Mode, Effect and Criticality Analysis

IEC — International Electrotechnical Commission ISA — International
Society of Automation

ISMS — Information Security Management System

ISO — International Standardization Organization

NIST — National Institute of Standards and Technologies

SAD - System Architecture Design

SCA — Static Code Analysis

SRS — Safety Requirements Specification
SSLC — Safety and Security Life Cycle

SSMP — Safety and Security Management Plan
TP&S — Test Plan and Specification

TR — Test Report

V&V — Verification and Validation

318

25. Safety and security management of loT

25.1 Safety and security management requirements to loT

25.1.1 Safety and security management plan

General structure of requirements to safety and security is
considered in Section 24.

The umbrella part of requirement is related with safety and
security management. Safety and security management plan (SSMP) is
the document, which states the main safety and security issues for
specific 10T system or systems development and operation project.

The SSMP covers a set of processes which can be developed in a
view of separated document. There are the following safety and
security processes which have to be reflected in the SSMP [1]:

— Human Resource Management (see 25.1.2);

— Configuration Management (see 25.1.3);

— Tools Selection and Evaluation (see 25.1.4);

— Verification and Validation (see 25.3);

— Requirements Tracing (see 25.2.4);

— Documentation Management (see 25.1.5);

— Safety and Security Assessment (see 25.1.6).

Also SSMP has to cover the following issues (see Fig. 25.1) [2,3]:

— Project Policy and Strategy is a declarative description of how
and why the goals of the project will be achieved;

—Project Management is reasonable applicable to project
performance since, for example, the IEC 61508-2 (Annex B) requires
applying this method to protect the product against systematic failures;

— Quality Management System it important to implement quality
for all products and processes; special attention is paid to interaction
with suppliers of products and services that affect safety and security;

— Information Security Management System (ISMS) has to cover
activities in accordance with requirements of ISO/IEC 27000
“Information technology — Security techniques — Information security
management systems” or any other relevant ISMS framework [4];

— Safety & Security Life Cycle has to be described in SSMP stage
by stage (see 25.2).

319

25. Safety and security management of loT

Safety & Security

Audit Plans
Safety & Security
Audit Reports éafet){t&
. seunty Project Policy
Safety & Security Assessment and Strategy
Certification Reports
Documentation Project
Management Management

Plan Documentation

Management
Quality Management
System

Verification ‘

Safety & Securi
an?d g Yy ty Information Security
Validation Management Plan Management System
(SSMP)

Requirements Human
Tracin
9 K Resource
Report Requirements Management
Tracing Human Plan
Resource
Management

Verification and
Validation Plan

Safety & Security Life Cycle

Configuration

Tools Management

Selection and Configuration Plan

Evaluation Management
Report Tools i

Selection and

Evaluation

Fig. 25.1 — Structure of Safety and Security Management Plan
(SSMP)

All the above activities cover both safety and security issues.
Additionally ISMS has to cover activities like the following: asset
management, identification and authentication, access control, system
perimeter protection, work stations, servers, and other devices
protection, network and communications protection, cloud
infrastructure protection, database protection, cryptography, monitoring
and recovery, incidents response and investigation. All appropriate
measures and activities have to be implemented for the considered lIoT
system.

320

25. Safety and security management of loT

25.1.2 Human resource management

For detailed personnel management planning, an appropriate
Human Resource Management Plan has to be developed. Note that this
plan does not apply to the organization as a whole, but only to the
participants in the project of loT system development and certification
against safety and security requirements. The personnel management
plan should contain (see Fig. 25.2):

— Organizational chart of the project with a description of project
roles;

—A list of project participants indicating project roles and
responsibilities for planning and performing work at various stages of
the life cycle;

— The competence matrix and the conclusions on the adequacy or
lack of competencies of the appointed performers, i.e. what knowledge
and skills are required for a particular project role and to what extent a
particular employee corresponds to them;

— Personnel training activities aimed at achieving and maintaining
the above mentioned competences that are critical for the
implementation of the project; training plans and reports should be
documented;

— Communication plan for the project participants;

—A list of the signatures of personnel, indicating the
familiarization with this plan.

Participants and Organizational
Signature List p Y| Chart

Human

Participants Resources Project Roles
Communications Plan Management Description

Plan

Training Plans and Training

\[Competency Matrix]
Records Reference

Fig. 25.2 — Structure of Human Resource Management Plan

321

25. Safety and security management of loT

25.1.3 Configuration management

When defining configuration items in the context of safety and
security, it is important to understand that they include not only source
codes and program builds, but also development and testing tools, a
complete set of design, user, and any other relevant documentation,
including design documentation, according to which all mechanical,
electrical and electronic components are manufactured (see Fig. 25.3).
Such a structure can serve as the basis for the project repository.

Source Code Files

Executable Code
Files

Software Tools

Software code

Hardware Tools
(Design and

Documents) Mechanical Design

Electrical Design

Options Setup

anq Service Hardware Electronic
Scripts s 3 i Desian
Configuration Design 519
Tools User IeGiiis (Printed
Manuals Circuit Boards)
Tools Bug
Reports and __ Design Documents _
Errata Sheets Verification and
Tools Validation
Documents

Specifications,
Information
about Designers
and other

Functional Safety
Documents

Documents

User Documents

Guides and
Instructions

Test Programs
and Test Data

Fig. 25.3 — A set of configuration items of 10T system

Configuration management directly depends on the used electronic
document management tools, however, some the following general
points can be included in the Configuration Management Plan (see
Fig. 25.4):

—The roles and responsibilities of project participants in the
configuration management process; the Configuration Management &
Change Control Board of the key project participants should be
organized with all those, whose opinions are important to consider
when making changes;

322

25. Safety and security management of loT

—An approach to planning and maintaining the configuration
management process;

— Resources of the configuration management process, first of all,
the applied tools of electronic document management (SVN, Git, etc.);

— The procedure for the identification of the configuration items
and the formation of baselines (basic versions);

— The procedure for applying tools to control the versions of
software and hardware components of the product and to account for
their status;

—The procedure for accessing configuration components and
backup storage;

— The procedure and periodicity for configuration audits;

— The procedure for analyzing and eliminating the detected defects
and bugs including those found during operation;

— The procedure for change control, including impact analysis and
validation of changes.

Change Control and Impact

Roles and Responsibilities }
Analysis

Configuration Management
Planning

" . Configuration Management
Configuration MEiRteREREs
Management

Plan .

Configuration Management
Resources
\ Configuration Identification]

Configuration Baselines

Input for Change Control

‘ Hazardous Incidents Analysis as

Configuration Audits

Configuration Access and
Backup Storage

{ Configuration Status Accounting

Versions Control

Fig. 25.4 — Structure of Configuration Management Plan

323

25. Safety and security management of loT

25.1.4 Tools selection and evaluation

The IEC 61508 “Functional safety of electrical/ electronic/
programmable electronic safety-related systems” states the following
tools classification depending on the degree of influence on the final
product, system, or software (see Fig. 25.5):

— Class T1 tools do not generate any outputs that directly affect the
executable code; it includes text and image editors, configuration
management tools (those do not directly generate code), action & bug
trackers;

— Class T2 tools support testing and other types of verification and
validation (for example, static code analysis or test coverage analysis);
there is no direct impact on the executable code, however, a problem in
the test tools may lead to errors in the software that may not be
detected; this class should include not only software, but also software /
hardware simulators of input / output signals; it should be noted that
design tools for mechanical, electrical and electronic components (for
example, printed circuit boards design tool) can also be assigned to
class T2;

— Class T3 tools generate outputs that directly affect the executable
code, such as translators and compilers that are components of
Integrated Development Environments (IDE) & Software Development
Kits (SDK), scripts to support builds and controller logic configuration.

Modelling Tools

Text Editors
Inputs / Outputs

Graphical Editors Simulation Tools
Action & Bug Test Coverage
Trackers . Analysis Tools
? : W

Configuration Static Analysis

Management and s Tools

Version Control Typical Tools %

Tools Profile for Mechanical Design
Functional 1poks

IDE & SDK Safety Project ED|9CF”C5‘T| ;

(translators and L 00 OO

compilers) Electronic

Build Scripts . DESGHTOO ,
SCADA

Fig. 25.5 — Tools classification

324

25. Safety and security management of loT

To ensure compliance with safety and security requirements, it is
advisable to develop a special report on the selection and evaluation of
tools that shall cover the following issues (see Fig. 25.6):

Tool name

Version number

Supplier name

Class (T1, T2, or
T3)

Supported

processes

Generated
Configuration
Items

Requirements
Specification is

available (T2&T3)

Requirements
Specification
compliance is

confirmed (T2&T3)

Tools versions are
under
Configuration
Management

All project

participants use the
same tools versions

General
description
of tools

of IEC
61508-3

A procedure for
tools versions
changing is
implemented
Tools I/0
compliance has to
be tested, when
applicable

Requirements

Tools
Selection
and
Evaluation
Report

Performed
functions and
functions
applicability for
the project
Experience to
work with

Available user

documentation

Supplier
reputation
and quality
management
approach

Impact to
final product
safety

Arguments
for
selection

Detected
and fixed
errors in
tools (errata
sheets)

Risk analysis
and
management
for possible

tools failures

Compatible
programable
integrated
circuits are
available at
the market

Fig. 25.6 — Structure of Tools Selection and Evaluation Report

— A description of the used stack of tools (both software and
hardware, both commercially available and in-house) used for product

325

25. Safety and security management of loT

development, testing, and supporting processes (configuration
management, documents processing, project management, etc. .) for
each of the tools you should specify: type (to support which process is
used), name, version number, supplier name, class (T1, T2 or T3), as
well as generated outputs in terms of Configuration Items;

— Results of evaluation (analysis) of tools according to a set of
predetermined criteria, such as, for example: the functions performed
and their applicability in this project, experience of use, available
documentation, information about the supplier (market reputation,
quality management system, approach to configuration management
and etc.), the impact on the safety of the product, the errors found and
eliminated, the possible risks of use in terms of failures and the strategy
for managing these risks, the availability of compatible products on the
market programmable chips (for software development and electronic
projects);

— The results of the analysis for compliance with the requirements
for the tools specified in IEC 61508-3, such as:

- for toolts of classes T2 and T3 requirements specifications or
user documentation should be available that uniquely describe how the
operation takes place;

- for tools of classes T2 and T3 their compliance with the
requirements specification or user documentation has to be documented
(for example, in the form of a certificate);

- the versions of the tools used should be monitored, since not all
versions can meet the specified conditions; all project participants must
use the same version; for transitions between versions the appropriate
procedure should be applied,;

- if the tools are used as a single technological complex (for
example, code and tests are generated based on the specification), their
compatibility with each other should be tested.

25.1.5 Documentation management

For detailed documentation management a related Documentation
Plan has to be developed. That plan does not apply to the organization
as a whole, but only to the participants of a considered project for
developing a product important to safety and security. The
Documentation Plan has to cover the following issues (see Fig. 25.7):

326

25. Safety and security management of loT

—Requirements to identification, development, execution,
coordination and approval of documents;

— Review procedures and criteria for evaluating documents (for
example, in the form of checklists);

— A list of project documents and allocation of responsibility for
the development, review and approval;

— The procedure for access to documents and access rights of
project participants;

—The procedure for making changes to documents, accounting
policy and version changes;

—Requirements to use of electronic document management
system;

— A structure of the project repository.

[Project Repository Structure
/ Documents Format and Template
Electronic Document

Control System

Documents
Preparation, Review

Documentation
Plan and Approval

Documents Versions and
Change Control

Documents List and
Responsibilities
{ Documents Access Rights

Fig. 25.7 — Structure of Documentation Plan

25.1.6 Safety and security assessment

To assess safety and security during the project, periodic safety
and security audits are conducted. These audits can be either internal
(conducted by the project team) or external (performed by the third
party). Another kind of audits is the certification audit, which is
conducted upon completion of the project work by the certification
authority. According to the results of the certification audit, a certificate
of compliance with the standards requirements is issued. In addition,
the certification authority may also participate in periodic audits. Audits
should be conducted according to pre-developed plans. In the audit

327

25. Safety and security management of loT

plan, the following issues have to be defined (see Fig. 25.8 as an
example for Functional Safety Audit):

Audit milestones

Audit check lists
Audit scope:

assessed products
and processes

Approach to
document audit
results and content

of Functional Safety Functional Required resources:
Audit Report Safety organizations and
. ersonnel involved,
Audit Plan P v
time, finances,
Approach to tools, etc.

handle foundings

Independency level]

Expected results

Auditors competencies]

Fig. 25.8 — Structure of Functional Safety Audit Plan

— Periodicity of audits (for example, at the completion of each of
the development stages);

— Areas of assessment in terms of the structure of products and
processes;

— Involved participants, organizations and other required resources
(temporary, financial, required tools, etc.);

— The level of independence of auditors; as noted above, audits can
be internal and external; in general, the issue of independence in
evaluating safety has its traditions in various industries and countries;

— Competencies of the employers performing the audit;

— Expected results;

— Corrective actions performance;

— An approach to document audit results and requirements for the
content of audit report, which shall be issued based on the results of
audits;

— Checklists, including a specific set of requirements (issues),
compliance with which should be evaluated during the audit; the initial

328

25. Safety and security management of loT

data for compiling an audit checklist are the requirements of SSMP and
other plans related to ensuring of safety and security.

25.2 Safety and security life cycle for loT
25.2.1 Overall life cycle

Existing standards do not describe a life cycle for 1oT systems.
Thus, we propose interpretation of Safety & Security Life Cycle
(SSLC) based on requirements to critical programmable systems (see
Fig. 25.9). Used abbreviations are given below.

Concept

SRS

. L N
Review 'L \f Validation | | Validation |
L e I rees TV R

SAD - TTTTTTTTTT TTTTTTTT
Review | m o mrtinn !
| ; .
| Integration | Integration |
Report "= SAD F--—----—--———— oo " Ti&s r - gTR !
| 1
Software [X WA .
) Pl —a
Design | 1/ Hardware | FMECA | |Fault Insertioni | Fault |
Review | J-----~- : F=—-wm b [l ; !
I | Hardware | Design _-"1 Report 1 TP&S | lInsertion TR |
Report |) T e e a
F—m———— J Design -
! | Review I
1 /| Report 7
1 -
1 / e
: Soft\:.rare 7 T Lo A
[el L
Designe ﬁ‘Software TP&SIr +: Software TR :
el
| I"Static Code |
Software b - - Analysis !
Code | [!
| L _ Report _1

Fig. 25.9 — V-shape Safety & Security Life Cycle

The content of the SSLC stages and the relevant documents are
detailed in subsections 25.2.2, 25.2.3. The life cycle model includes the
sequentially performed steps (in the diagram, the steps are indicated by
the names of the final documents). For top-down branch details of
design is performed from system level to hardware and software parts.
For down-top branch staged integration with appropriate testing is
performed before for software and hardware parts, and after for
programmed component and for system as whole.

329

25. Safety and security management of loT

25.2.2 Safety and security life cycle: design top-down brunch

Step by step description of the design details has to be done for
loT system and it hardware and software parts. This design
development includes the following stages (see Fig. 25.9).

Development of the product concept means creating of a top-level
concept document (for example, a contract) which defines the needs of
enterprises or businesses and automation processes, including the
identification of hazards and threats.

Development of the Safety Requirements Specification (SRS)
covers describing the system in the form of a “black box”, that is, “what
it is performed” and not “how it is performed”. The SRS has to contain
functional and safety requirements, including modes, time
characteristics, interfaces, signals, self-diagnostics, periodic testing,
limiting external conditions and other.

Review of the SRS for compliance with the requirements of the
Concept is a stage of Verification and Validation (V&V) process.

Development of the System Architecture Desigh (SAD) represents
the system in a view of a “white box”, that is, “how it is performed”,
and not “what it is performed”, including a detailed structure and
behavior description.

Review of the SAD for compliance with the requirements of the
SRS is a stage of V&V.

Development of the Hardware Design covers creating of design
documentation for hardware which includes both projects of electronic
boards and drawings of mechanical structures and electrical parts,
including cables, power supply and interface components for field
equipment (sensors and actuators).

Review of the Hardware Design for compliance with the
requirements of the SAD is a stage of V&V.

Failure Mode, Effect and Criticality Analysis (FMECA), is the
stage of V&V process (see 24.2.4). When performing FMECA, the
hardware structure is primarily taken into account, however, the
diagnostic and fault tolerance mechanisms implemented in the software
are also taken into account.

Development of the Software Design covers creating of
documentation for the software on the basis of which coding is carried
out.

330

25. Safety and security management of loT

Review of the Software Design for compliance with the
requirements of the SAD is a stage of V&V.

Software Coding covers creating of source code development.

Static Code Analysis (SCA) is a stage of V&V when code is
verified for compliance with the Software Design including coding
rules and others.

25.2.3 Safety and security life cycle: integration down-top brunch

Step by step integration of hardware and software parts has to be
done for 10T system. This integration and associated testing include the
following stages (see Fig. 25.9).

Software Testing is a stage of V&V when code is verified for
compliance with the Software Design. It includes unit and integration
testing, as well as both functional and structural testing. Before testing,
the Software Test Plan and Specification (TP&S) has to be developed,
and the results shall be documented in the Software Test Report (TR).

Fault Insertion Testing is a stage of V&V when code is verified for
compliance with the results of FMECA. Testing is performed after
seeding defects in hardware and software. Inputs for testing are
produced by FMECA in the part of analysis of the implementation of
self-diagnostics. After that malfunctioning hardware and software is
tested to check implementation of self-diagnostic functions.

Integration Testing is a stage of V&V when integrated system
parts are verified for compliance with the SAD.

Validation Testing is a stage of V&V when integrated system is
verified for compliance with the SRS. Validation may include, in
addition to functional testing, also testing for resistance to external
environmental impacts.

25.2.4 Requirements tracing

Requirements tracing is one of the processes of a wider area of
knowledge called Requirements Engineering [5]. Requirements tracing
is a method for managing changing requirements and related artifacts.
Requirements tracing solves three main tasks:

—To ensure the implementation at the lower level of all the
requirements of the upper level,

— To prevent from undocumented functions appearing on the lower
level,

331

25. Safety and security management of loT

— To support testing of all requirements.

Specialized software is used to manage requirements. One of the
most famous of these tools is IBM Rational DOORS. To perform
requirements tracing, documents must be prepared for this process by
arranging requirements identifiers and tags that define the boundaries of
the wording of requirements.

In the considered life cycle (see Fig. 25.9), requirements are traced
between design documents as follows. First, direct tracing of
requirements from SRS to SAD is performed. Then backtracking of the
requirements from SAD to the SRS is performed in order to make sure
that the SAD does not include extra functionality that is not
documented in the SRS. After SAD, the design process is divided into
two streams, which are Hardware Design & Software Design. Forward
and backward tracing is performed for both documents. Hardware
Design includes mainly drawings in which it is problematic to place
tags, so the Hardware Design Review Report is laid out under the
tracing (see Fig. 25.10).

During testing, requirements tracing is done by extracting
requirements from project documents. For complicated projects, the
development of test documents can take place in two stages. First, a test
plan is developed, containing a list of test requirements, and then test
cases are developed for each requirement in the test specification.
During testing, direct tracing of requirements is carried out from the
project document to the test plans and specifications, and then to the
testing report. For testing by the method of seeding defects, the list of
tests is extracted from the FMECA report by analyzing self-diagnosed
failures.

For a reasonable set of failures, a set of tests is made, on which
diagnostic functions are checked. Backward tracking is not critical here,
because if additional tests are performed that are not due to project
documents, this will not affect safety and security (see Fig. 25.11).

332

25. Safety and security management of loT

SAD -> Software Design
Software Design -> SAD

|r Fault

SRS -> SAD
SRS SAD -> SRS SAD
\\x,\ \ .
SAD Softv?are
Design
SAD SAD -> Hardware Design RR
Hardware Design RR -> SAD
- %
N
Hardware
Design
Review
Report
Fig. 25.10 — Requirements tracing for design stages
Software | | Software :_ ftﬁaf_rtn_/a_r;_:
Designe . TtP&s T, TR
Informal testcase . _ _ _ _ _ _ _ _
FMECA |extraction from Fault Insertion |
Report FMECA results | TP&S
_____ . F= ===
iIntegration, |Integration
SAD |- =
W ote&s [T TR
S I B
SRS | —» Validation | | Validation |
. tpes T TR

Fig. 25.11 — Requirements tracing for testing stages

333

|
J

25. Safety and security management of loT

25.3 Review, analysis and testing techniques for 10T
25.3.1 Documents review

Document review performed for design of 10T system is the
process whereby review team to a case sorts through and analyzes the
documents and data. During review, a design document has to be
verified against input requirements [2].

Assessment criteria of documents include compliance of
documents with a requested set of functional and non-functional
requirements. Requirements stated in the document have to be
verifiable and testable, as well as feasible. Formal and semi-formal
methods can be applied to describe design functionality. Quality criteria
are assessed to ensure a document is clear, precise, unambiguous,
maintainable and understandable. If requirements tracing is
implemented, it has to be an additional activity of documents review
related to check how a document is fit for tracing.

All criteria of a document assessment are stated in a document
check-list, which is used as a tool of document review.

For software design document some specific assessment criteria
have to be stated in relation with desirable software architecture. There
are the following assessment criteria for software design documents
review/

Software architecture has to be as simple as possible. It should not
be many levels of hierarchy. It should not be much complexity from
point of view of program brunches and loops. It should be using of as
many standardized and proven in use components as possible.

Software architecture has to have relationship with the software
requirements, and this relationship has to be clearly explained and
motivated. Also it can be approved via requirements tracing. All
requirements have to be covered. Functionality which is not described
in requirements has not to be implemented in architecture. Flexibility of
the architecture has to be demonstrated.

Components and interfaces of software architecture have to be
precisely described. Routine kind, name, parameters and their types,
return type, pre- and post-condition, usage protocol etc. have to be
described. File name, format, permissions have to be described.

Software architecture can be described in a view of different UML
diagrams which have to represent logical, process, and physical view.

334

25. Safety and security management of loT

All the following cross-cutting issues have to be resolved:
exception handling, initialization and reset, memory management,
built-in test facilities.

25.3.2 Static code analysis

SCA is the analysis of computer software that is performed
without actually executing programs, in contrast with dynamic analysis,
which is analysis performed on programs while they are executing [6].
In most cases the analysis is performed on some version of the source
code, and in the other cases, some form of the object code. SCA is
usually combined with code review. Code review is performed
manually and it is similar with documents review. SCA supposes using
automated tools.

There are different methods of SCA, and the most important of
them are described below.

Coding rules verification is checking of software code against
some requirements to coding, for example, using of forbidden code
construction, coding style, valuables naming, etc. These rules are
described in coding standards.

Control flow analysis checks program control graph against using
knots and complicated loops constructions.

Software complexity analysis checks such parameters as quantity
of loops and binary decisions, quantity of program interfaces, entrance
and exit points, etc.

Formal methods are the term applied to the analysis of software
and computer hardware whose results are obtained purely through the
use of rigorous mathematical methods. The mathematical techniques
used include semantics and abstract interpretation.

25.3.3 Functional testing

Functional testing is a type of software or system testing whereby
the system is tested against the functional requirements [6]. Functions
are tested by feeding them input and examining the output. Functional
testing ensures that the requirements are properly satisfied by the
application. This type of testing is not concerned with how processing
occurs, but rather, with the results of processing. It simulates actual

335

25. Safety and security management of loT

system usage but does not make any system structure assumptions. For
loT functional tests are performed for software as well as for all levels
of integrated system, including devices, networks, clouds and
application terminals.

TP&S has to be developed before testing implementation. Test
plan is developed by traceable extraction of requirements from design
documents. 100% of requirements have to be tested. After that test
cases have to be developed for each of the requirements. Some test
cases are simple but some test cases can include many test scenarios.
Acceptance criteria have to be developed for every test case.

Test tools have to be proven in use and evaluated before its
selection for some specific 10T system project. Automated tests can be
implemented when it is reasonable. Functional tests results have to be
documented in the TR.

A feature of software code verification is the analysis of software
criticality, during which various software modules are differentiated
depending on their participation in safety and security functions. This
allows concentrating while providing the focus on the most responsible
software and reasonably reducing the scope of measures to ensure the
safety and security for the secondary software.

To perform a software criticality analysis, a method called
HAZOP (Hazard and Operability) analysis, that is, an analysis of
hazards and functioning, can be applied. As a result of performing
analysis for software, the performed scope of diagnostic functions can
also be justified and initial information for performing FMECA can be
obtained.

25.3.4 Code structural testing

Structural testing also known white-box testing is a method of
testing software that tests internal structures or software as opposed to
functional testing [6]. In structural testing an internal perspective of the
software are used to design test cases. This is complimentary to
functional testing. The tester chooses inputs to exercise paths through
the code and determine the expected outputs. Usually it is performed
during unit testing.

At the integration level structural testing can be implemented for
checking path between units. The following coverage criteria can be
applied for structural testing: branch coverage, statement coverage,

336

25. Safety and security management of loT

decision coverage, modified condition / decision coverage (MC/DC),
path testing, etc.

This is complimentary to the basic functional testing, and has to be
documented in the TP&S as well as in the TR. Test coverage criteria
have to be documented.

When functional tests are performed, structural test coverage can
be defined for the functional tests. 100% code coverage can indicate no
additional structural tests are needed. However, if code coverage is less
than 100%, then additional structural tests cases have to be developed
to cover the rest. If finally obtained code coverage is less than 100%, it
has to be augmented.

25.4 Work related analysis

Safety and security management area is well known and nowadays
it is more practical that theoretical. It means there are not many
researches in this area. Achieved technological level is committed in
modern standard, for example, such as IEC 61508 “Functional safety of
electrical/electronic/programmable electronic safety-related systems” or
ISA/IEC 62443 “Security for Industrial Automation and Control
Systems”. Concerning loT it is difficult to identify issues which would
be specific from point of processes management.

For functional safety management there some published
methodologies directed to certification of safety critical systems [1-3].
Agile development methodologies are widely used for development of
non-critical software. However it seems reasonable to use agily
methods for safety critical applications taken into account safety
requirements. So there are researchers who pay attention to combine
and implement agile and safety methodology [7].

ISMS frameworks are developed by some institutions, for
example, by National Institute of Standards and Technologies
(NIST) [4]. Also NIST analyzes the best practices and standards
relevance for 10T [8,9]. In 2019 NIST is planning to issue a new report
named “Considerations for Managing Internet of Things (IoT)
Cybersecurity and Privacy Risks”, which has been already drafted.

For different techniques of software testing and static analysis
there are many different technics and even a brief review of this area
would take many pages. For example, researchers of University of

337

25. Safety and security management of loT

Coimbra pay attention to testing of heterogeneous platforms
interoperation. To implement that, they developed special online
service, which can be applicable for 10T systems and components [10].
In area of static code analysis the same team is working to investigate
vulnerabilities in the source code of web applications [11]. The
obtained results can be applied for safety and security critical 10T
systems.

Conclusions and questions

Safety and security management issues are a part of critical loT
systems requirements which are extracted from appropriated standards,
good practices and frameworks. Safety and security management
contain the following main issues:

— Human Resource Management;

— Configuration Management;

— Tools Selection and Evaluation;

— Verification and Validation;

— Requirements Tracing;

— Documentation Management;

— Safety and Security Assessment.

Safety and Security Management Plan has to be developed and
implemented as an umbrella document considering the above parts.

Safety and Security Life Cycle implementation is a core of
management processes. This life cycle is V-shaped, so it contains top-
down brunch related with design and down-top brunch related with
integration. Verification and validation activities have to be performed
after each of design and integration stage to confirm compliance of the
stage inputs with obtained output results. Verification and validation
methods include documents review, static code analysis, as well as
functional and structural testing.

In order to better understand and assimilate the educational
material that is presented in this section, we invite you to answer the
following questions.

1. What requirements should be taken into account for managing

and assessment of safety and security?

2. What structure of SSMP has to be implemented?

338

25. Safety and security management of loT

6.
7.
8.

9

10.
11

12.
13.

14.
15.
16.
17.
18.

19.
20.

21.
22.
23.
24.

What documents can be developed to supplement the functional
safety management plan, and in what cases it is advisable to
develop such documents?

What structure should have Human Resource Management
Plan?

What part of the Human Resource Management Plan should be
developed during the preparatory work for the certification
project?

List the components of the 10T system configuration.

What structure should have Configuration Management Plan?

Describe the algorithm of change control for the configuration
items.

Describe the computer tools classification.

Describe the typical set of tools used in 10T systems projects.

What structure should have Tools Selection and Evaluation
Report?

What are the criteria for tools selection and evaluation?

What is the relationship between tools, coding rules and software
verification?

What structure should have Documentation Plan?

What types of audits are conducted to assess safety and security?

What structure should have Safety and Security Audit Plan?

Describe a structure of VV-shape life cycle.

What is a difference between software life cycle and 10T system
life cycle?

What is a purpose of requirements tracing?

Which design and test documents have to be covered with
requirements tracing?

Describe documents review method.

Describe static code analysis method.

Describe functional testing method.

Describe structural testing method.

References

11. Ckuap B.B. Oo6ecneuenne Oe3zonmacHoct ACYTII B
COOTBETCTBHHM C COBPEMEHHBbIMU cTaHaapTamu. MHppa—mxeHepus,

2018.

339

25. Safety and security management of loT

12. Medoff M., Faller R. Functional Safety — An IEC 61508 SIL 3
Compatible Development Process. exida L.L.C., Sellersville, PA, USA,
2010.

13. Smith D., Simpson K. Functional Safety. A Straightforward
Guide to applying IEC 61508 and Related Standards. Elsevier
Butterworth—Heinemann, Oxford, UK, 2004.

14. NIST SP 800-53 Revision 4, Security and Privacy Controls for
Federal Information Systems and Organizations. National Institute of
Standards and Technologies, 2015.

15. Standard glossary of terms used in Requirements Engineering,
Version 1.3. Requirements Engineering Qualification Board, 2014.

16. Standard glossary of terms wused in Software Testing,
Version 2.3. International Software Testing Qualifications Board, 2014.

17. Hanssen G., Stalhane T, Myklebust T. SafeScrum® — Agile
Development of Safety-Critical Software. Springler, 2018.

18. NISTIR 8200, Interagency Report on the Status of International
Cybersecurity Standardization for the Internet of Things (loT). —
National Institute of Standards and Technologies, 2018.

19. NIST SP 1500-201, Framework for Cyber-Physical Systems.
National Institute of Standards and Technologies, 2017.

20. Martins B., Laranjeiro N., Vieira M. INTENSE:
INteroperability TEstiNg as a Service // Proceedings of 2017 IEEE
International Conference on Web Services (ICWS 2017).

21. Nunes P., Medeiros 1., Fonseca J. at all. Benchmarking Static
Analysis Tools for Web Security. IEEE Transactions on Reliability
(2018), 67(3): 1159-1175.

340

26. Assurance Case for loT

26. ASSURANCE CASE FOR IOT

Prof., DrS V. V. Sklyar, Prof., DrS V. S. Kharchenko (KhAI)

Contents
ADDIEVIATIONSeiiicie e e 342
26.1. Assurance Case fundamentalscccoooovviivininninicicininiens 343
26.1.1. Assurance Case concept and history..........cccoeeevveieeieirennnnn, 343
26.1.2. Standards for ASSUranNCe Caseccccvvvrereriererierierenieniennens 346
26.2. Safety and security techniques and measures for IoT............... 347
26.2.1. Claims, Arguments and Evidence (CAE) notation................ 347
26.2.2. Update and application of Claims, Arguments and Evidence
(7 = I 10 - L1 o] SRS 350
26.2.3. Goal Structuring Notation (GSN).........ccocvviviievivnieieseeen 356
26.3. Security informed and energy efficiency informed Assurance
LOF: T o] [0 1 SRS 357
26.3.1 Tools for development of Assurance Case..........cccceevverveennenn. 357
26.3.2. Assurance Case structure for 10T SyStems..........ccccveevevrennene 360
26.4 Work related analysSisc.ccccveieieeiienie i 363
Conclusions and QUESLIONS..........cceoerierieieisisisie e 364
RETEIENCES ... e 366

341

26. Assurance Case for loT

Abbreviations

CAE - Claim, Argument and Evidence

GSN — Goal Structuring Notation

IEC — International Electrotechnical Commission
ISO — International Standardization Organisation

PMM — Power Modes Management

342

26. Assurance Case for loT

26.1. Assurance Case fundamentals

26.1.1. Assurance Case concept and history

Final safety and security assessment is running after completion of
all development, verification and validation stages. In this section we
discuss how can all project artifacts be represented for safety and
security assessment, and what is the way to most effectively confirm
compliance with the safety and security requirements? The answer to
these questions is provided by the Assurance Case methodology, which
is widely used in the practice of safety and security assessment.

The Assurance Case is a structured set of arguments and
documentary evidence that justify the compliance of a system or
service with specified requirements [1].

Licensing and certification authorities check the Assurance Case,
as an integral document proving compliance with the entire set of
requirements to safety and security. The Assurance Case can be either
compiled by the project team or outsourced.

The historical and theoretical origins of the Assurance Case lie in
the field of logical reasoning, such as operations with logical
predicates, including the implication In 1958, the British philosopher
Stephen Tulmin published the book “The Uses of Argument” [2], in
which he expanded the operation of logical inference with the degree of
confidence and additional arguments and counter-arguments. In
addition, Toulmin proposed to present the argument in graphical form,
and this approach has since become widespread. Tulmin's notation
operates on the following entities (Fig. 26.1): data (D) is the initial data
for analysis, claim (C) is the goal of logical implication output (If D So
C), warrant (W) is an additional argument, qualifier (Q) is the degree of
confidence in the results of inference, rebuttable (R) is an additional
counter-argument. This approach was initially used exclusively in the
humanities.

At the same time, after the Second World War, the rapid
development of complex industries, such as nuclear energy, space
technology, oil and gas, chemical industries, and transport began. All
this was accompanied by the introduction of new at that time
automation technology. As a result, humanity was faced with man-
made disasters of unprecedented scale.

343

26. Assurance Case for loT

D So
Since
Unless
@ e
(®

Fig. 26.1 — Argumentation proposed by Stephen Toulmin

Also, in the post-war world, human life was recognized as the
highest value. The level of acceptable technical risk was set by law at a
fairly hard-to-reach level of 10° 1 / year, i.e. one death per million
people per year from technical risks.

Thus, the predecessor of the Assurance Case is historically the
Safety Case. The concept of the Safety Case originated in the 1950s,
although the term itself appeared later. The first regulatory document
requiring the development of a Safety Case for hazardous industrial
facilities is the European Union’s “CIMAH (Control of Major
Accidents Hazards) Regulations”. The widespread introduction of the
Safety Case into practice began to occur after an unprecedented
accident on the Piper Alpha oil platform in the North Sea, which
claimed the lives of 167 people in 1988 [3].

All of the above has led to new approaches in safety assessment
and assurance. In the 1990s. Tulmin’s argument was used as the basis
for the development of semi-formal notations to justify safety [1]. The
work was done in the UK, at the University of York, where Goal
Structuring Notation (GSN) was developed. Adelard developed the
Claim, Argument and Evidence (CAE) notation in parallel. These
notations are used in the present, and then we consider them in more
detail (see subsection 26.2).

Initially, the focus was on functional safety issues (Safety Case),
then with the advent of the information security problem, a similar

344

26. Assurance Case for loT

approach was extended to the Security Case, and with it came the
understanding that it was necessary to work simultaneously on
providing both safety and security features. Currently, the term
Assurance Case means the justification of both safety and security.

In justifying safety and security, we need to confirm the
compliance of a certain system or software with the requirements set.
At the same time compliance with a particular requirement is the goal
of the Assurance Case. In addition, there is a set of documented
evidence that requirements are met. To associate evidence with goals
and requirements, an argumentation system is used, which is given
special attention in the Assurance Case (Fig.26.2). The lack of
arguments or evidence indicates a failure to comply with safety and
security requirements [1].

Safety Requirements & Objectives

(i

Safety Argument

L

Safety Evidence

Fig. 26.2 — Objectives, arguments and evidence of safety

The Assurance Case should be developed in stages throughout the
life cycle, starting from the first stage of the concept and contract
(Fig. 26.3). Then, over the course of development, deviations from
requirements can be quickly identified and corrected with less cost. At
the same time, assessment of the implementation of both product
requirements and requirements for safety and security management
processes is supported.

345

26. Assurance Case for loT

Contract

Certification

[J(NotFunctional

Assurance Case

Framework
Requirements)
jReference
. . Safety (Security)
Functional ——\Requirements
R I P Management
Requirements Specification Plan

|

Life Cycle
Implementation

Supporting
Processes
Implementatio

Safety
(Security)
Certification

Fig. 26.3 — General approach to applying the Assurance Case in a

certification project

26.1.2. Standards for Assurance Case

To date, regulatory documents have been developed that regulate
the use of the Assurance Case in the nuclear power industry, aviation,
the automotive industry, etc. The most general provisions for the
application of the Assurance Case relating to system and software
engineering are given in the standards of the ISO/IEC 15026 series
“Systems and software engineering — Systems and software assurance”
[4], which includes four parts:

— Part 1: Concepts and vocabulary;

— Part 2: Assurance case;

— Part 3: System integrity levels;

— Part 4: Assurance in the life cycle.

346

26. Assurance Case for loT

Object Management Group (OMG) developed Structured
Assurance Case Metamodel (SACM) [5]. Goal Structured Notation
Community Standard [6] is closely related with OMG SACM providing
the GSN description.

ISO 26262:2011 “Road vehicles — Functional safety” standard in
ten parts requires the Safety Case implementation for automotive
systems. The document “Common position of international nuclear
regulators and authorized technical support organizations — Licensing
of safety critical software for nuclear reactors” [7] describes software
Assurance Case applicability in nuclear industry recognized by such
countries as Belgium, Canada, Germany, Finland, Spain, Sweden, and
UK. The document “European Organization for Safety of Air
Navigation (EUROCONTROL) — Safety Case Development Manual”
[8] describes Safety Case applicability for European Air Traffic
Management Systems.

In the U.S. two huge government organizations, such as National
Aeronautics and Space Administration (NASA) and Department of
Homeland Security (DHS) have already implemented Assurance Case
approach for their products, services and regulatory documents. NASA
established the Robust Software Engineering Group in the Intelligent
Systems Division for support of Independent Verification and
Validation [9] that is implemented by NASA for space programs as
well as for Unmanned Aircraft Vehicles. The DHS Cyber Emergency
Response Team (US-CERT) implements Assurance Case methodology
to establish security assurance ecosystem. The last activity, including
lecture courses providing, is widely supported in Software Engineering
University, which is a part of Carnegie Mellon University [10].

26.2. Safety and security techniques and measures for 10T

26.2.1. Claims, Arguments and Evidence (CAE) notation

The CAE (Claim, Argument and Evidence) notation operates with
three specified entities: claim indicates the achievement of the required
system properties, evidence provides a documented basis for
argumentation, demonstrating the achievement or non-achievement of
goals, and arguments are built using inference rules and link evidence
with objectives. Arguments such as deterministic (or logical),

347

26. Assurance Case for loT

probabilistic, and qualitative are commonly used. To designate claims,
arguments and evidence, graphic primitives are introduced that have
different shapes (Fig. 26.4).

Fig. 26.4 — Claim, Argument and Evidence (CAE) notation:
main components

Is a subclaim of Is a subdéigim of

Is evidence for

Evidence

Building a hierarchy of goals and sub-goals is the first step in the
development of the Assurance Case. As shown in the diagram
(Fig. 26.4), the structure of goals, arguments and evidence is not
necessarily three-level, for example, additional sub-goals can be used to
support the argument.

348

26. Assurance Case for loT

As an example of using CAE notation, consider the general case of
the formation of requirements for system functional safety [11]. The
main goal is adequate, accurate and complete wording of the
requirements. For this, the following subgoals must be achieved
(Fig. 26.5):

— Requirements for the management of functional safety have to
be defined,;

— Regulatory requirements established in standards, laws and other
regulatory documents have to be defined;

— Safety criteria have to be defined;

— Integration requirements have to be defined.

]
Safety

requirements are
adequately defined

C1.2

[] yied
Prescriptive safety
Safetyn?anage:’nenl requirements identified Saf g‘ .:"l . I ICL‘:i
requirements by adequate review of afety criteria ntegration
defined legislation, standards adequately defined requirements (if

and policy any) identified

Register of Review the Broadly
Overall safety applicable applicabilityot acoeptable‘and ALARP risk Integration
gement legislati identified tolerable risk eriteria requilisent
requirements policy and legislation/ criteria thresholds
standards standards / policy defined

Fig. 26.5 — CAE notation: an example for functional safety

This diagram does not show the argumentation system, since this
is a general case, and the argumentation strategy may be different. The
requirements stated in regulatory documents, the results of risk
analysis, etc. are used as evidence.

349

26. Assurance Case for loT

26.2.2. Update and application of Claims, Arguments and
Evidence (CAE) notation

Usually CAE notation is applied in graphical view, but tabular
view can also be used. Claim, Argument and Evidence should be
located respectively in the fields of the table (Table 26.1). Let’s
consider an example from the standard IEC 61508 “Functional safety of
electrical/ electronic/ programmable electronic safety-related systems”
relating to personnel management (see subsection 25.1.2).

Table 26.1 — A table view of CAE notation

IEC Claim Argument Evidence
61508
1/6.2.1 Responsibilities of | HR1: -
the project | Organizational
participants Chart.
HR2: Project Roles
Description
1/6.2.3 Understanding by the | HR6: Participants -
project participants | and Signature List
of their roles and
responsibilities
1/6.2.4 Communications of | HR5: Participants -
the project | Communications
participants Plan
1/6.2.13 | Evaluation and | HR3: Competency -
assurance of the | Matrix.
project participants | HR4: Training
competencies Plans and Training
Records Reference
1/6.2.14 | Issues affected to the | HR3 —
project participants | HR4
competencies
1/6.2.15 | Documentation of | HR3 -
the project | HR4
participants
competencies

350

26. Assurance Case for loT

IEC Claim Argument Evidence
61508
1/6.2.16 | Monitoring of safety | HR1 -
management HR2
processes

Table 26.1 describing CAE contains fields used according to the
following purpose:

— IEC 61508 — a reference to part (before the slash "/") and clause
of IEC 61508;

—Claim — a brief statement of the requirement; note that for
convenience, the entire requirement can be placed in a table according
to the text of the standard; in the table under consideration, only those
requirements related to personnel management are selected;

— Argument — an approach to represent compliance with the
requirement; several approaches can be applied to ensure compliance
with the same requirement (one-to-many relationship), and the same
approaches can be used for different requirements (many-to-one
relationship or many-to-many relationship); if we consider the Human
Resource Management Plan (Fig. 25.2), it becomes clear that its
structure is determined by the arguments derived from the requirements
of IEC 61508; a graphical representation of the structure of the Human
Resource Management Plan confirms the effectiveness of using the
graphic Mind Map notation for a simplified description of the
Assurance Case; the arguments are assigned the numbered identifiers
from HR1 to HR6, also according to the order of their entry into the
structure of the Human Resource Management Plan (Fig. 25.2);

—Evidence — in this example, that field of the table is not
populated, since the assessment of compliance with the requirements is
determined for each specific project based on an audit of the developed
documents and the implemented processes.

The table describing the Assurance Case may also include fields
for independent evaluation by a third party and description of corrective
actions. Consider, by the example of the Human Resource Management
Plan, the application of the process approach to managing and
evaluating the safety at all stages of the life cycle. To fulfill this task,
we modify the CAE notation. A reasoning strategy may be supported

351

26. Assurance Case for loT

by compliance criterion and coverage criterion. Compliance criterion
clarifies how compliance with requirement and claim can be achieved.
Coverage criteria applies to multiple hierarchical requirements (for
example, when all requirements must be verified during the testing
process). Thus, CAE notation is transformed into CAEC notation
(Claim, Argument, Evidence and Criteria) (Fig. 26.6).

The second component of the amended methodology is the
notation describing the promotion of the Assurance Case through the
stages of the life cycle. V-shaped life cycle is implemented for loT
system (see subsection 25.2), which includes phased development and
phased verification and validation. Thus, the Assurance Case must be
supplemented after each of the stages of development, verification and
validation (Fig. 26.7).

Acceptance
Criteria

Evidence | Argument

Coverage
Criteria

Fig. 26.6 — Claim, Argument, Evidence and Criteria (CAEC)
notation: main components

352

26. Assurance Case for loT

/ \ i?””j;f”:*~>

Development \ Assurance

VerificationCase

&
Validation
Fig. 26.7 — The relationship between the components of the life cycle
(development, verification and validation, Assurance Case)

This approach is described in the form of DVA notation
(Fig. 26.8), what means Development, Verification & Validation, and
Assurance Case.

The DVA notation includes the following data sets transmitted
between components:

—-Di = {di, diz, .., dix} — input development process data
transmitted from the previous stage of the life cycle;

— V(D) = {Via1, Vid2, ..., ViaL} — the input data of the verification and
validation process transmitted from the development process;

DSw
| |
| |
D, --» Vi) ~ Ay Ao
—— D > > A
1 JVI(A Aip) 1
D J)

Fig. 26.8 — The relationship between the components of the life
cycle (development, verification and validation, Assurance Case)

—Aip) = {aid1, aig2, ..., aigm} — input data of the Assurance Case
process, transmitted from the development process;

— Ay = {av1, a2, ..., &} — input data of the Assurance Case
process, transmitted from the verification and validation process;

353

26. Assurance Case for loT

—Dyvy = {di1, div2, ..., divv} — input development process data
transmitted from the verification and validation process (feedback);

—Dyay = {dia1, diaz, ..., diag} — input development process data
transmitted from the Assurance Case process (feedback);

— Vi) = {Via, Via2, ..., Visr} — input data of the verification and
validation process transmitted from the Assurance Case process
(feedback);

— Ao = {801, ao2, ..., s} — output data of the Assurance Case
process (this is also output data of the life cycle stage), transmitted to
the input of the next life cycle stage after resolution of all findings and
anomalies.

The application of the considered CAEC and DVA notations
constitutes an approach called Assurance Case Driven Design [12]. The
goal of the approach is to reduce certification costs by consistently
preparing and correcting the Assurance Case, starting from the very
first stages of the life cycle. Thus, the Assurance Case supports and
guides the development, verification and validation process.

From the point of view of life cycle organization, the application
of the Assurance Case methodology should be coordinated during
development, quality assurance, safety and safety assurance, as well as
during assessment and certification, like DevOps (development and
operation) methodology (Fig. 26.9).

) Assessment &
Design Certification

Management

Fig. 26.9 — The diagram of components interaction for
development of the Assurance Case
Let’s consider applying the Assurance Case methodology
throughout the life cycle stages. To do this, we use the example of
assessing the compliance of the Human Resource Management Plan

354

26. Assurance Case for loT

with the requirements of IEC 61508 (Table 26.1). Below is a list of the
stages of the Safety and Security Life Cycle, including development,
verification and validation (Table 26.2).

At each stage, the compliance of the human resource management
process with each of the requirements of the Human Resource
Management Plan should be verified.

The use of the Assurance Case methodology allows determination
of compliance with the requirements at the argument level {HR1, ...,
HR6}. Records of compliance checking and the associated results are
phased into the documented Assurance Case.

Table 26.2 — The Assurance Case Driven Design application
through Safety and Security Life Cycle (Fig, 25.9)

SSLC stage ID HR1 HR2 HRG6
Concept D1 A(D1,HR1) | A(D1,HR2) A(D1,HR6)
SRS D2 A(D2,HR1) | A(D2,HR2) A(D2,HR®6)
SRS V2 A(V2,HR1) | A(V2HR2) A(V2,HR6)
Review

SAD D3 A(D3,HR1) | A(D3,HR2) A(D3,HR6)
SAD V3 A(V3,HR1) | A(V3,HR2) A(V3,HR6)
Review

HW Design D4 A(D4,HR1) | A(D4,HR2) A(D4,HR6)
HW Design V4 A(V4,HR1) | A(V4,HR2) A(V4,HR6)
Review

FMECA V5 A(V5,HR1) | A(V5HR2) A(V5,HR6)
SW Design D5 A(D5,HR1) | A(D5,HR2) A(D5,HR®6)
SW Design V6 A(V6,HR1) | A(V6,HR2) A(V6,HR6)
Review

SW Coding D6 A(D6,HR1) | A(D6,HR2) A(D6,HR®6)

355

26. Assurance Case for loT

SSLC stage ID HR1 HR2 HR6
Code V7 A(V7,HRL) | A(V7,HR2) A(V7,HR6)
Analysis
and Review

SW V8 A(V8,HR1) | A(V8,HR2) A(V8,HR6)
Testing

Fault V9 A(V9,HRL) | A(V9,HR2) A(V9,HR6)
Insertion
Testing

Integra V10 | A(V10,HR1) | A(V10,HR2) A(V10,HR6)
tion Testing

Valida | V11 | A(V11,HR1) | (V11,HR2) A(V11,HRS)
tion Testing

26.2.3. Goal Structuring Notation (GSN)

GSN (Goal Structuring Notation), like CAE, operates with entities
such as goal (indicated by a rectangle and is analogous to a claim),
argumentation strategy (indicated by a parallelogram and is analogous
to argument), and a solution (indicated by a circle and is analogous to

evidence) (Fig. 26.10).
The context is used for informational support of goal setting.

Assumptions and justifications can be used to support argumentation.
The goal structure is also hierarchical. It should be noted that the GSN

is described in the GSN Community Standard [6], and Structured
Assurance Case Metamodel [5] is developed by Object Management

Group.

356

26. Assurance Case for loT

Goal In context of >@

Is solyed by

@4 In context of Strategy ;

Is solyed by

Goal In context of }

Is spfied by Is solved by

Fig. 26.10 — Goal Structuring Notation (GSN) notation:
main components

26.3. Security informed and energy efficiency informed
Assurance Case for 10T

26.3.1 Tools for development of Assurance Case

Today, there are three of the most functional software tools that
are used to create and maintain the Assurance Case. All of them have a
paid license.

The first and the most widely used tool is the ASCE (Assurance
and Safety Case Environment), which has been developed and
maintained by the British company Adelard since the 1990s. In the UK,
the development of the Assurance Case is required by laws and
standards in many areas related to security, so ASCE has a fairly large
market here (Fig. 26.11).

357

26. Assurance Case for loT

45 6N joguar_crermple Y03c.anmi - ASCE - Assurance and Sefety Case Environment | = e =
Fle Edt View Formai Took Windows Help

pael= B

-| 2

e SRR < = £

Fig. 26.11 — Adelard ASCE program interface

Adelard ASCE supports both CAE and GSN. The main part of the
tool is a graphic editor, in which additional text or hyperlink
information may be attached to graphic blocks. The program supports
the export of charts in HTML and MS Word formats. It is impossible to
download the ASCE software from the Adelard website on your own;
you must fill out a request for either a 30-day trial version or an
academic license, after which the request will be reviewed by the
company.

The next software tool is Astah GSN (Fig. 26.12) developed by
Change Vision company from Japan. The company was created in
2006. Astah GSN was developed as a part of the Astah Professional
toolkit, which is a media for complex systems modeling.

As the name suggests, this program supports only GSN. In
addition, it can create Mind Map diagrams. In the graphical editor, you
can attach text and hyperlinks to graphic symbols. Charts are saved in
the internal format of the program (*.agml). It supports the export of
diagrams in the form of figures, as well as in the XMI format (XML
Metadata Interchange).

Fig. 26.12 — Astah GSN program interface

358

26. Assurance Case for loT

You can download a trial version of the software from the Astah
GSN website. Supported operating systems are Windows, MacOS, and
Linux. The trial version will work 50 days. User manuals and video
demonstrations are also available on the site.

The software tool NOR-STA (Fig. 26.13) was developed by the
Polish company Argevide, which was founded by the staff of the
University of Gdansk. NOR-STA supports its own TRUST-IT notation
(Fig. 26.14), which complies with the provisions of the standard
ISO/IEC 15026. The difference is that, instead of a graphical
representation, the NOR-STA uses a structured hierarchical list.
Entities in hierarchical Assurance Case list are indicated by different
icons. To confirm compliance with the claim, the argumentation
strategy is used, and facts or observations, rationale, assumptions and
sub-claims are used as analogue of the evidence.

Unlike the two previous desktop applications, NOR-STA is used
online and supports distributed team work. For privacy purposes, you
can install NOR-STA on a dedicated server, and then the data
repository will be stored on it.

— [EETR =)
i noRsTa x

€ & @ @ hups//senices.argevide.com =

Ai Pt Edt View Repots help Projsct. Open PCA Pump Assurance Case Uzythownik

4[] Claim 2.2.A.1: Air in Line hazard has been mitigated « || Detals
4[] Suategy 2.2.A.1: Argue for mitigation of internal and external cau Assessment
v

acceptable
A3 h— : vy
2014-00-25_14-41 NOR-STA Report_Assurance_Case pdf - Adobe Reader - olER
Edp Widok OknoPomoc

44. Claim 2.2.B.2: Pump Exposed to Pathogens, Allergens, Hazardous
Substances Mitigated

\

Fig. 26.13 — NOR-STA program interface

359

26. Assurance Case for loT

Facts or
observations
4_

*

Assumptions

(L Top claim: There are no errors in software module
- %) Argumentation strategy: Argue by tests
_] Rationale: Tests are reliable
+ D Fact: Test report indicate there are no open errors
+ D Sub-claim: Tests cover module requirements

D Assumption: Test tools are reliable

Fig. 26.14 — Trust-IT notation and an example of its application

In the considered example (Fig. 26.1), the main goal is to demonstrate
the absence of errors in the software module. To this end, testing has been
chosen as the argumentation strategy. The rationale for the strategy is the
development and execution of reliable tests. The actual confirmation of
compliance is that the test report does not contain unresolved errors. An
additional sub-goal is to cover all the requirements for the software module
with tests. An own argumentation strategy can be developed for this purpose.
As an assumption we assume that the testing tools used are reliable.

Data can be presented as a GSN diagram, and you can also convert to
Word, Excel, PDF, and XML formats. At the request of the user, a 30-day
trial access can be provided on the NOR-STA website for using this
software.

26.3.2. Assurance Case structure for 10T systems

Fig. 26.15 represents ““a big picture” for IoT Green Assurance Case by
joining all elements of assessment. Firstly, Green ITs are directed to support
sustainable development. For that sustainability assurance part is included in
the Assurance Case to check an influence to resources, ecology, society, and
economy. Secondly, the main issues related with safety and security

360

26. Assurance Case for loT

requirements assurance and assessment shall be incorporated to the
Assurance Case. After that it makes a sense to submit above six Green IT

principles adopted for 10T.

Resources
Ecology
Sustainability Sodi
Assurance ociety
Economy
Operational
intelligence Safety & Security
Big Data Application Assurance
Artificial intellect Layer
Brvm
Clouds B Communications
Data Centers Service Power storages
Servers | Layer . . EIRenewable power
loT Green [.
B Algorithms & software
Assurance |
WSAN .
Network Case Green IT Trade off with
SANaas Layer principles | safety & security
Greerj Safity & |
Authentication Security Life Cyde
RFID Separation of
Brequirements and metrics
DVFS
| between 4 |oT layers
Micro-architecture Device
Distributed cores Layer Voltage
Temperature control Current
Signal processing Frequency
Power .
Product capacity

1 consumption

parameters

Switching short
circuit current

Leakage current

Fig. 26.15 — 10T Green Assurance Case

Power consumption parameters are also included as a part of the
Assurance Case since they provide a well-defined part of requirements to
loT-based system. For example, processor power consumption can be
calculated in accordance with the following equation:

P=A-C-VZ2-f+A -7V lsot- F+V - lieakage,

where the first item measures the dynamic power consumption caused
by the charge and discharge of the capacitive load at the output of each key,
which is equal to the product of the capacity — C, the square of supply

361

26. Assurance Case for loT

voltage — V, the processor’s frequency — f, and the coefficient A, which
characterizes the activity of the keys in the system; the second item is the
power expended as a result of short-circuit current, which takes place at the
time of switching the logical element; the third item are losses due to current
leakage.

The main specific part of Assurance Case includes specific
requirement to green features that should be implemented for each of
the four of 10T layers.

Device layer includes mainly field sensors and actuators as well as
programmable controllers in a form of on-boar computers. Device layer
is relatively simple and well defined, so for it we can describe common
green features with higher degree of certainty. One of the key
technologies applied at the device layer is techniques of identification
and authentication. For example, Radio Frequency Identification
(RFID) is widely used at the present in 10T systems. It is important to
specify device identification functions to meet Green IT principles.

After that Power Modes Management (PMM) with power-aware
scheduling based techniques shall be implemented at the device layer.
For example, Dynamic Voltage and Frequency Scaling (DVFS) is
widely used for embedded systems to alter the voltage and/or frequency
of a programmable component based on performance and power
requirements.

Micro-architecture solutions support saving energy in specific
components with dynamical reconfiguration. For example, there are
different techniques for buffering, memory compression, memory size
adjusting, cash providing for simultaneous reading / writhing access
etc. Use of distributed cores for calculation allows to manage multitask
environment and assign task to alternative programmable components,
such as Digital Signal Processors (DSP), Field Programmable Gates
Arrays (FPGA) and other. Tasks are assigned depending which
component is more appropriate from the point of view of energy
consumption. Temperature control techniques are used for devices
since a temperature mode affects longevity of components operation.

Finally, signals processing techniques are widely used at the
device layer, so power efficiency of signals processing algorithms and
software can noticeably decrease power consumption.

Wireless Sensor Networks (WSN) with different protocols and
topologies should be based on advanced communication technology

362

26. Assurance Case for loT

such as, for example, cognitive radio with autocorrecting of power
efficiency parameters or Multiple Input Multiple Output (MIMO) with
enforcement the capacity of communication channel. Since the same
sensors and networks can be used for different application, service
providers operate global and local WSN infrastructure which can be
considered as “Sensor Network as a Service” (SNaaS).

There are a lot of features to be implemented for green clouds
which serve as a platform for the service layer. Modern green data
centers and green servers are based on techniques using PMM,
advanced communications, and advanced power storages.

Successful operation of application layer depends on
implementation of power efficient algorithms in software. From this
prospective a business can be supported with operational intelligence
based on advanced technique of big data and artificial intellect.

26.4 Work related analysis

Existing standards in the area of the Assurance Case as well as
other important publications are considered in 26.1.2. In the present
subsection in addition to the many stories of successful use of the
Assurance Case, we discuss stories when the unsuccessful application
without proper analysis did not allow identifying problems and led to
accidents. As with any methodology, the mere fact of applying the
Assurance Case or any other security measures is not sufficient to
ensure that the hazards are eliminated and the risks are reduced. At the
same time, although the basic goals and philosophy of the Assurance
Case are fairly well defined, there is a limited understanding of how
best to put this methodology into practice.

Similar issues were discussed earlier by different researchers
[13-15]. The main problems, rather than those related to the Assurance
Case methodology, but to the general issues of security assurance and
evaluation, are as follows [14]:

— The “Apologetic Assurance Case”: the Assurance Cases which
avoid uncomfortable truths about the safety and security of systems in
production so that developers do not have to face the (often
economically and politically unacceptable) option of re-design (“X
doesn’t quite work as intended, but it’s OK because...”);

363

26. Assurance Case for loT

— The Document-Centric View: the Assurance Cases which have
as their aim to produce a document. The goal of the Assurance Cases
should not simply be the production of a document; it should be to
produce a compelling argument;

—The Approximation to the Truth: the Assurance Cases which
ignore some of the rough edges that exist. For example, the Assurance
Cases which claims in a Goal Structured Notation diagram that “All
identified hazards have been acceptably mitigated” and direct the reader
to the Hazard Log when, in reality, the mitigation argument is not so
straightforward;

— The prescriptive Assurance Cases: the Assurance Cases which
have become run-of-the-mill or routine or simply comprise a parade of
detail that may seem superficially compelling but fails to amount to a
compelling argument;

— The Assurance Case Shelf-Ware: the Assurance Cases which are
consigned to a shelf, never again to be touched. The Assurance Case
has failed in its purpose if it is “so inaccessible or unapproachable that
we are happy never to refer to it again”;

— Imbalance of skills: The skills are required of both someone to
develop the Assurance Case and someone to challenge and critique the
assumptions made. Too often, the latter skills are missing.

Based on the analyzed problems in evaluating the safety of
complex systems, an approach to their solution was proposed [13]. This
approach is formulated as a system of principles SHAPED, which
stands for short (“Succinct”), carried out under the control of the
operating organization (“Home-grown”), “Accessible” to all interested
parties, “Proportionate” in terms of focusing on the main dangers and
risks, “Easy-to-understand”, and “Document-lite”.

Thus, the Assurance Case is one of the integral tools for evaluating
and ensuring safety and security, and the effectiveness of its application
depends on the competencies of the specialists involved, the
organization of the process and the correct application of the
recommended principles.

Conclusions and questions

The Assurance Case is a structured set of arguments and
documentary evidence that justify the compliance of a system or
service with specified requirements. Thus, the Assurance Case is an

364

26. Assurance Case for loT

integral methodology for evaluating safety and security. That allows
building a clear structure of the products and processes artifacts
throughout the entire life cycle. Licensing and certification authorities
will check the Assurance Case, as an integral document proving
compliance with the entire set of requirements to safety and security.

The predecessor to the Assurance Case has historically been the
Safety Case. Regulatory documents requiring the use of the Safety Case
for hazardous industrial facilities appeared in the 1980s. With the
development of information technology and the emergence of cyber
threats, the Security Case began to be developed. As of today, the
Assurance Case usually means the justification of safety together with
security.

The Assurance Case should be developed by stages throughout the
life cycle, starting from the stage of concept and contract. Then, over
the stages of development, deviations from safety and security
requirements can be promptly identified and corrected at lower cost. At
the same time, assessment of the implementation of both requirements
to product processes is supported.

For graphical representation of the Assurance Case, semi-formal
notations such as Claim, Argument and Evidence (CAE) and Goal
Structuring Notation (GSN) are used. In addition, the Assurance Case
may be represented in a table view.

In order to better understand and assimilate the educational
material that is presented in this section, we invite you to answer the
following questions.

1. Define the Assurance Case methodology.

2. What is the history of the development of the Assurance Case
methodology?

3. What types of notations can be used to represent the
Assurance Case?

4. What standards and other regulatory documents govern the
application of the Assurance Case?

5. Give a description of the CAE notation.

What are additional criteria for CAE notation?

Define the Assurance Case Driven Design approach?
Give a description of the GSN notation.

What regulatory documents govern the GSN notation?

© N

365

26. Assurance Case for loT

10. What software tools are used to support the Assurance Case
methodology?

11. Which organizations are the most active in promoting the
Assurance Case methodology?

12. What are the main disadvantages and advantages of applying
the Assurance Case methodology?

13. What role does the human factor play in applying the
Assurance Case methodology?

14. What does the SHAPED system of principles mean for the
Assurance Case methodology?

15. What the basic structure of the Assurance Case for loT
systems?

References

1. Kelly T. Arguing Safety: A Systematic Approach to Managing
Safety Cases. PhD thesis. Univ. of York, 1998.

2. Toulmin S. The Uses of Argument. Cambridge University
Press, 1958.

3. Cullen W. The Public Enquiry into the Piper Alpha Disaster.
Department of Energy, London, HM Stationery Office, 1990.

4. ISO/IEC 15026, Systems and software engineering — Systems
and software assurance (in 4 parts), 2011-2015.

5. Structured Assurance Case Metamodel, v2.0. Object
Management Group, 2016.

6. GSN Community Standard, Version 1. Origin Consulting
(York) Limited, 2011.

7. Common position of international nuclear regulators and
authorised technical support organisations — Licensing of safety critical
software for nuclear reactors, 2015.

8. Safety Case Development Manual. European Organization for
Safety of Air Navigation (EUROCONTROL), 2006.

9. Denney E., Pai G. Safety Case Patterns: Theory and
Applications. Research report NASA/TM-2015-218492. NASA, 2015.

10.Weinstock C., Goodenough J. Towards an Assurance Case
Practice for Medical Devices, Technical Note CMU/SEI-2009-TN-018.
SEl, 2009.

11.Ye F., Cleland G. Weapons Operating Centre Approved Code
of Practice for Electronic Safety Cases. Adelard LLP, 2012.

366

26. Assurance Case for loT

12.Sklyar V., Kharchenko V. Green Assurance Case: Applications
for Internet of Things. Green IT Engineering: Social, Business and
Industrial Applications. Studies in Systems, Decision and Control, vol
171. Springer, Cham, 20109.

13.Haddon-Cave C. The Nimrod Review. An independent review
into the broader issues surrounding the loss of the RAF Nimrod MR2
Aircraft XV230 in Afghanistan in 2006. Crown Copyright, 2009.

14.Kelly T. Are Safety Cases Working? Safety Critical Systems
Club Newsletter, Vol. 17, n. 2, 2008.

15.Cknssp B.B. ObGecneuenne OezonmacHoct ACYTII B
COOTBCTCTBUU C COBPEMCHHLIMU CTaHAapTaMHU. — I/IH(l)pa—HHX(eHepI/I}I,
2018.

367

27. Security of 10T Based Blockchain Technology

27. SECURITY OF 10T BASED BLOCKCHAIN TECHNOLOGY

DrS. Prof. V. V. Yatskiv, Ass. Prof., Dr. N. G. Yatskiv (TNEU)

Contents
ADDIEVIATIONS ... s 369
27.1. Bases of blockchain technology and examples of application .370
27.1.1 The principle of the blockchain technologyccccccovvinnne 370
27.1.2 Block structure and MerKIe treeccocvevvvviievvsciennseen 372
27.1.3 Blockchain cryptography.........cccoceevveveieevciece e 375
27.2 Consensus algorithms in blockchain technology..........c............ 377
27.2.1 Proof of Work algorithmccccceiiinininieeccse 378
27.2.2 Proof of Stake algorithm...........cccooeiiiiiiiiiecce 381
27.3 Blockchain technology for the 10T SECUFitYccovvveieiiinine 384
27.3.1 Blockchain and the 10T ..o 384
27.3.2 Benefits of Integrating Blockchain with 10Tccccccceneee. 388
27.3.3 Main challenges of blockchain in 10Tccccoiviiiiiiiiine 390
27.4 Work related analysisccocooerereieiiniiiinesee e 394
Conclusions and QUESLIONS..........cceierierieieinisisie e 397
RETFEIBNCES ...t 399

368

27. Security of 10T Based Blockchain Technology

Abbreviations

PoW — Proof of Work

PoS — Proof of Stake

DPoS — Delegated Proof of Stake

LPoS — Leased Proof of Stake

Pol — Proof of Importance

dBFT — Delegated Byzantine Fault Tolerance

PoC — Proof of Capacity

PoA — Proof of Activity

PoB — Proof of Burn

POET — Proof of Elapsed Time

ADEPT — Autonomous Decentralized Peer-to-Peer Telemetry
GUID - Global Unique Identifier

ECDSA - Elliptic Curve Digital Signature Algorithm
IANA — Internet Assigned Numbers Authority

369

27. Security of 10T Based Blockchain Technology

27.1. Bases of blockchain technology and examples of
application

27.1.1 The principle of the blockchain technology

In 2008, the author or group of authors known under the
pseudonym Satoshi Nakamoto published the paper "Bitcoin: A Peer-to-
Peer Electronic Cash System" with a description of the concept and
principles of the payment system as a peer-to-peer network [22]. In
2009, the Bitcoin cryptocurrency protocol was submitted and the client
application was published. The key feature of the proposed concept was
that online payments between customers are carried out without a
central financial institution that serves as a trusted entity, using
cryptographic methods and a public financial transaction database
(distributed ledger), which consists of a chain of blocks (Blockchain)
[4].

Blockchain is a distributed data structure which consists of the
blocks sequence, each block typically contains a hash pointer as a link
to a previous block, thus forming a chain of blocks (Fig. 27.1).

Blockchain is a new information technology that has wide variety
of uses in many industries. The first and most famous example of the
use of the blockchain technology is the cryptocurrency Bitcoin [22].
Currently, cryptocurrency has become a recognized means of payment,
a virtual currency that is accepted by large and small enterprises,
corporations and services.

The first block in the chain (parent block, genesis block) is
considered as a separate case, since it does not have a previous block
(Fig. 27.1). Blockchain works as a distributed database that records all
transactions on the network. Operations have a timestamp and are
stored in blocks where each block is identified by its cryptographic
hash.

370

27. Security of 10T Based Blockchain Technology

Block 1 Block 2 Block 3
Header Header Header
-____-____ -____-—____
Hash Of Previous i Hash Of Previous i Hash Of Previous
Block Header Block Header Block Header
Merkle Root Merkle Root Merkle Root
A F Y A
1 1 1
Block 1 Block 2 Block 3
Transactions Transactions Transactions

Fig.27.1 — Simplified sequence of blocks

Blockchain is completely stored in each network node. Blockchain
does not require trust between the nodes of the network, since any node
can independently check whether its database copy coincides with
stored copies in other nodes. Let us consider blockchain technology
principle on example of Bitcoin. Cryptocurrency Bitcoin uses the
cryptographic hash function SHA-256 [4]. To verify the data integrity
in the block Merkle tree is used, which represents a special data
structure that contains information about performed transactions.

For this, a hash is calculated from each transaction, and then the
new hash of pair is calculated from each pair of hashes. This procedure
is repeated until only one hash remains. If the pair for the hash is
absent, then it is transferred to a new level without changes (Fig. 27.2).

The blockchain technology, like the Internet, has built-in error
tolerance. While storing information blocks that are identical
throughout the network, blockchain:

— is not able to be controlled by one person;

— does not have a single point of failure.

There are two types of blockchain [12, 21]:

— public blockchain is an open, supplementary database. This type
of block is used in the Bitcoin cryptocurrency. Each participant can
record and read data;

— private blockchain has a record / read data limitation. Only
specific, pre-chosen entities have the ability to create new transactions
on the chain.

Among the features of blockchain it should be emphasized:

371

27. Security of 10T Based Blockchain Technology

1) decentralization - there is no server in the chain. Each
participant is a server. It supports the work of the blockchain;

2) reliability - a blockchain nodes consensus is required to record
new data. This allows to filter operations and record only legitimate
transactions. It is impossible to change the hash.

3) transparency - information about transactions, contracts, and so
on is stored in open access. However, this data cannot be changed,

4) theoretical unlimited - theoretically, blockchain can be
supplemented by records to infinity. Therefore, it is often compared to a
supercomputer;

5) universality - blockchain technology can be applied not only in
the financial area, but it can be integrated into multiple areas
(personality authentification, jurisprudence, real estate, Internet of
Things, etc.).

27.1.2 Block structure and Merkle tree

The transaction group is recorded after the check in a special block
(Fig. 27.2). The block consists of a header and a list of transactions
(TrA, TrB, ...). The block header includes the block hash, previous
block hash (Previous Hash), transaction hash (Merkle Root), and
additional service information (Nonce, Timestamp) [22, 27].

Timestamp indicates when the block was created and provides
evidence that the data in the block existed at a specific time.

The following data is required to create a new block: hash of the
previous block in the chain; Merkle hash for transactions that must be
included in a block; time (Timestamp) and disposable code (Nonce),
selected in a pseudo-random manner. It is necessary to calculate the
hash of the header of the new block, which must begin with a given
number of zeros to confirm the correctness of the block. This task is
known as proof of work (proof of work), based on two principles: 1) to
make transaction confirmation costly in the form of computer
calculations to users of the network; 2) receive reward for transaction
verification.

The new block is accepted by other network nodes if the header
hash value is equal to or less than a given number, value of this number
periodically varies. When the result is computed, the generated block is
sent to other nodes that check it. If the check is successful, then the
block is added to the chain and the next block must include its hash.

372

27. Security of 10T Based Blockchain Technology

Block

Block header

Previous Hash Nonce

Merkle Root Timestamp

<

HashAB HashCD

‘HashA‘ ‘HashB‘ ‘HashC HHashD‘

‘TrAl ‘TrBl ‘Trc‘ ‘TrD‘

Fig. 27.2 — Structure of a block

The work, that nodes need to perform to create a new block
requires a lot of time and computational resources. This reduces the
probability that two blocks can be produced at the same time, but this
situation is still possible. When this happens, a temporary fork in
blockchain is created. In this case, nodes can build a chain on different
branches. To prevent this situation, each node tracks all branches, but
nodes will try to expand only the longest branch. In this case, the length
is determined not by the number of blocks, but by the total volume of
work spent on the creation of a branch, and is determined by the
number of zeros at the beginning of the block hash.

The computational complexity of transaction verification allows to
avoid dependence on the number of network nodes controlled by
attacker. Thus, only the total computational power of the nodes affects
the verification. Therefore, an attacker requires significant
computational resources to modify information in a block or to create
an incorrect block, which makes it virtually impractical.

Since blockchain copies are stored in distributed network nodes,
blockchain technology is resistant to problems with temporary or

373

27. Security of 10T Based Blockchain Technology

permanent disabling of nodes due to hardware or communications
failure, and also the connection of new nodes. The more nodes are in
the network, the more reliable the storage in blockchain. Blockchain
does not have a single point of failure, unlike a centralized system with
a single server, which ensures high reliability of data storage.

Merkle Tree is a data structure, also known as binary tree of hash
lists. In the case of the Bitcoin, the Merkle tree is constructed as follows
(Fig. 27.3) [4].

We start with three transactions, A, B, C, which form the leaves of
the Merkle tree, as shown in Figure 27.3.

MerkleRoot

Hapce
Hash{Hag+Hee)

Hap Hece

Hash({Ha+Hg) Hash{Hc+Hg)
/ :X S
Ha Hp He ' He '
L}
Hash(Tx A) Hash(Tx B) Hash(Tx C) "Hash(Tx C)y
_______ n

Fig.27.3 — Merkle tree

1. The transactions are not stored in the Merkle tree; rather, their data
is hashed and the resulting hash is stored in each leaf node as HA, HB, HC:
H~A~ = SHA256(SHA256(Transaction A)).

2. Consecutive pairs of leaf nodes are then summarized in a parent
node, by concatenating the two hashes and hashing them together.

That string is then double-hashed to produce the parent node’s hash:
H~AB~ = SHA256(SHA256(H~A~ + H~B~)).

3. Because the Merkle tree is a binary tree, it needs an even number of
leaf nodes. If there is an odd number of transactions to summarize, the last
transaction hash will be duplicated to create an even number of leaf nodes.
In our example transaction C is duplicated.

374

27. Security of 10T Based Blockchain Technology

4. The process continues until there is only one node at the top, the
node known as the Merkle root.

Using the Merkle tree in Blockchain allows to provide "genuineness”
of transactions in a block. If you change at least one transaction, then
Merkle root will also change. Therefore, the following situation is
impossible. For example, miner produced a new block and started sending
it over the network. At this time, the attacker intercepts the block and
removes some transaction from the block, and then sends the already
changed block.

It is enough to calculate the Merkle root and compare it with what is
written in the header block to check block integrity.

27.1.3 Blockchain cryptography

Cryptography is the core of the blockchain, which provides reliable
work of the system. The blockchain architecture suggests that the trust
among the network participants based on the mathematics principles, so, it
is formalized. Cryptography also guarantees security, based on
transparency and the ability to verify all transactions, rather than limitation
of the system visibility (perimeter security) [4].

Blockchain technology uses cryptography as a means of user
protection, ensuring transaction security and protecting all information.

Various cryptographic technologies can guarantee the invariability of
the blockchain transactions log file, resolve authentication tasks, and
control access to the network and data in the blockchain.

Cryptography in blockchain is based on three components: hash
functions, asymmetric encryption and digital signature.

Hashing is the process of converting the input data of any length into
a source string of fixed length. For example, a hash function can get a
string with any number of characters (one letter or a whole story), and
provide a string with a strictly defined number of characters as an output.

A reliable hash function provides collision protection (it is impossible
to get two identical hash values from different input data) and has the so-
called avalanche effect, when the slight change in input data completely
changes the output.

Public key cryptography. Public key cryptography or asymmetric
cryptography allows to share information using a public key that you
can share with anyone.

375

27. Security of 10T Based Blockchain Technology

Instead of using one key, separate key are used for encryption and
decryption (public key and private key) [17].

A combination of user’s public and private keys is used to encrypt
the information, while the recipient’s private key and the sender's
public key decrypt it. It is impossible to determine which private key is
based on the public key. Thus, user can send his public key to anyone,
without worrying that someone will have access to his private key. The
sender can encrypt files, and be confident that they will be decrypted
only by a specified party.

In addition, a digital signature which ensures the data integrity is
created while using public key cryptography. This is achieved by
combining a user's private key with the data that he intends to sign,
using a mathematical algorithm.

Since the actual data is part of the digital signature, the network
does not recognize them as valid, if any part of it is fake. Editing even
the small piece of data changes the shape of the entire signature,
making it wrong or obsolete. Due to this, blockchain technology can
guarantee that any recorded data is true, accurate and unchanged.
Digital signatures provide immutability for the data recorded in
blockchain.

Digital signature. The digital signature provides authentication and
authentication in the same way as conventional signatures, only in
digital form.

Digital signatures are one of the key factors in ensuring the
security and integrity of data recorded in blockchain. They are the
standard parts of the most blockchain protocols, mainly used for
transactions and transaction blocks protection, transfer of confidential
information, software distribution, contract management, and many
other cases where it is important to detect and prevent any external
interference. Digital signatures use asymmetric cryptography-this
means that information can be shared with anyone using a public key.

Digital signatures have three key advantages while using it for
information storage and transfer in blockchain. First of all, they
guarantee the integrity. Theoretically encrypted data that is transmitted
may be imperceptibly changed by a hacker. However, if this happens,
the signature will be also changed and become incorrect. Therefore,
data with a digital signature is not only protected from viewing, but also
allows you to find out whether it was faked.

376

27. Security of 10T Based Blockchain Technology

While using the blockchain technology, user has public and private
keys, both of them are strings of random numbers and letters. The
public key, also called public address, and it can be compared to an
email address. The private key must be written and stored in a secure
place. Ideally, it can be a piece of paper or a hardware wallet, because
it’s almost impossible to hack them.

There is no option "l forgot my private key" in Blockchain. If a
private key is lost, then everything encrypted with that key will be lost.

Digital signatures are unique and they are created using the
following three algorithms [4]:

— an algorithm for generating keys, which provides private and
public keys;

— a signature algorithm that combines data and a private key to
create a signature;

— an algorithm that verifies the signatures and determines whether
a message is genuine or not, based on the message, public key and
signature.

The key features of these algorithms are:

— it is absolutely impossible to work with a private key based on
the public key or data that it has encrypted;

— it ensures the authenticity of the signature on the basis of the
message and the private key which is verified using the public key.

27.2 Consensus algorithms in blockchain technology

Consensus is the decision-making process of group in which all
group members agree to support the decision in the interests of the
whole. The voting is deciding according to the majority of the votes,
without taking into account the interests of the minority, but on the
other hand, it guarantees the achievement of an agreement that benefits
the entire group.

The decision-making method is called the "mechanism of
consensus”. The consensus mechanism aims to achieve the following
objectives [21]:

1) agreement seeking - should bring about as much agreement
from the group as possible;

2) collaborative - all the participants should aim to work together
to achieve a result that puts the best interest of the group first;

377

27. Security of 10T Based Blockchain Technology

3) cooperative - all the participants shouldn’t put their own
interests first and work as a team more than individuals;

4) egalitarian - every vote has equal weightage;

5) inclusive - as many people as possible should be involved in the
CONSENSUS Process;

6) participatory - everyone should participate in the overall
process.

The consensus algorithm for blockchain represents a set of
mathematical rules and functions that allow to reach an agreement
between all participants and provide the network's performance. It
determines the order in which the transaction blocks will be included in
the chain. For instance, blockchain requires a consensus in order to
avoid double spending.

Among the existing consensus algorithms, let's consider two basic
types: Proof of Work and Proof of Stake. Each of them has its own
peculiarities, advantages and disadvantages.

27.2.1 Proof of Work algorithm

Proof-of-Work is one of the first and most widespread algorithms
for achieving consensus and distributing rewards for an generated block
among the network users.

The most commonly used functions used in proof of work systems
include:

Partial hash inversions. The most popular system in Hashcash [4]
uses partial hash inversions to send an e-mail. About 252 hash
calculations is needed for the header of one message, it must be counted
for each new message. At the same time checking of the computed code
correctness is fast because of the use of a one-time SHA-1 computation
with a pre-prepared timestamp.

Functions based on Merkle trees [4]. The most famous example is
the Bitcoin, where multi-level hashing is used as proof of work: each
block containing a hash of the previous block

There is thus no way to change the block without changing hashes
in all subsequent blocks. At the same time, the chain integrity
verification is limited by a one-time computation of the current and
previous block hash. Hash is considered true(verified) only if the hash
value of that block is less than the specific target value that determines
the complexity (difficulty) of Mining. It is necessary brute force search

378

27. Security of 10T Based Blockchain Technology

with the override of arbitrary values of the nonce value to find such
hash [17, 20, 26].

PoW has two characteristic features: to reach a consensus, user
must solve a computationally difficult problem; verification of the
result is done very quickly, unlike the solution.

Proof of Work peculiarities:

— consensus solves the main problem of anonymous networks —
the "Sybil attack". This is a situation when the attacker tries to surround
the victim's node, that is, to gain access to all the nodes next to it.
Having captured the channels of input and output information, he will
be able to pass the false information to the victim. In bitcoin built on
the PoW algorithm, this ability is leveled off, because the victim's node
chooses other nodes randomly, eliminating the complete victim's
environment;

- the proof is not transferred to other blocks, that is, it excludes the
possibility of its stealing (the proof is the computation result which
consumes the energy);

— proof cannot be obtained in advance. Each new block has a link
to the previous block, so you can compute new proof only with the
appearance of a new block;

— PoW ensures the honest distribution of the reward for a block
according to the power of the computer. If the power (hash rate) is 5%
of the network, then the miner creates a 5% block and receives 5% of
the reward;

— real computational resources are spent on proof obtaining
therefore, the miners lose the incentive to affect the nodes and transmit
false information because there is a risk of losing the invested money.

The main disadvantage of the PoW consensus algorithm is the
high computational cost.

High power consumption. The miners are consuming massive
amounts of electricity, but their calculations are used only for the
network needs, that leads to waste energy. Today there is no idea how
to use of the calculations results for any other purposes.

Environmental aspect. Energy consumptions forces to increase the
generation of electricity by burning a large amount of fuels, including
fossil and non-renewable fuels. It enhances environmental pollution.

Propensity to attack "51%". If the attacker controls 51% of the
network he can control the whole blockchain and perform transactions

379

27. Security of 10T Based Blockchain Technology

at wish. Attacker can interfere with the transactions, canceling them
and doing other manipulations, because its power is higher, and
therefore, it will be accepted "his" chain, and not legal. Today, such
attacks are unlikely due to the extremely high hash rate.

Let us consider the PoW algorithm as an example of Bitcoin
cryptocurrency. Each block in Bitcoin consists of two parts:

* block header of key parameters, including block creation time,
reference to the previous block and the Merkle tree root of the block of
transactions;

* block list of transactions.

To reference a specific block, its header is hashed twice with the
SHA-256 [4] function; the resulting integer value belongs to the
interval [0; 2256 —1]. To account for different possible
implementations, we will use a generic hashing function hash(-) with a
variable number of arguments and range [0; M]. For example,
arguments of the function can be treated as binary strings and merged
together to form a single argument that can be passed to the SHA-256
hashing function

The block reference is used in the proof of work protocol; in order
for a block to be considered valid, its reference must not exceed a
certain threshold [19]:

hash(B) < M/D, (27.2)
where D € [1, M]- is the target difficulty. There is no known way
to find B satisfying (27.1), other than iterating through all possible
variables in the block header repeatedly. The higher the value of D, the
more iterations are needed to find a valid block; the expected number of
operations is exactly D.
The time period T(r), for a miner with hardware capable of
performing r operations per second to find a valid block is distributed
exponentially with the rate /D [19]:

P{T(r) <t} =1—exp(-rt/D).
Consider n Bitcoin miners with hash rates r1, r2, ...,rn. The period

of time to find a block T is equal to the minimum value of random
variables T (r;) assuming that the miner publishes a found block and it

380

27. Security of 10T Based Blockchain Technology

reaches other miners immediately. According to the properties of the
exponential distribution, T is also distributed exponentially [19]:

P{T & min(Ty,...,T,)) <t} =1-— exp(—% T
P(T =T} =5

j=1

Ty

The last equation shows that the mining is fair; a miner with a share of
mining power p has the same probability p to solve a block before other
miners.

27.2.2 Proof of Stake algorithm

In proof of stake algorithms, inequality (27.1) is modified to depend
on the user’s ownership of the particular PoS protocol cryptocurrency and
not on block properties. Consider a user with address A and balance
bal (A). A commonly used proof of stake algorithm uses a condition as
[19]:

hash(hash(Byyey), A, t) < bal(A)M /D, (27.2)

where By,..,, — denotes the block the user is building on, ¢ —is the current
UTC timestamp.

For various reasons, some cryptocurrencies use modified versions of
(27.2) which we discuss in the corresponding sections.

Unlike (27.1), the only variable that the user can change is the
timestamp t in the left part of equation (27.2). The address balance is
locked by the protocol; e.g., the protocol may calculate the balance based
on funds that did not move for a day. Alternatively, a PoS cryptocurrency
may use unspent transaction outputs as Bitcoin does; in this case, the
balance is naturally locked. A proof of stake protocol puts restrictions on
possible values of t. For example, if t must not differ from the UTC time
on network nodes by more than an hour, then a user can attempt no more
than 7200 values of t. Thus, there are no expensive computations involved
in proof of stake.

Together with an address A and a timestamp ¢ satisfying (27.2), a user
must provide a proof of ownership of the address. To achieve this, the user
can sign the newly minted block with his signature; in order to produce a

381

27. Security of 10T Based Blockchain Technology

valid signature, one must have a private key corresponding to the address
A.

The time to find a block for address A4, is exponentially distributed
with rate bal(A4)/D. Consequently, the (27.2) implementation of proof of
stake is fair: the probability to generate a valid block is equal to the ratio of
user’s balance of funds to the total amount of currency in circulation. The
time to find a block for the entire network is distributed exponentially with
rate)., bal(a)/D.

Thus, if the monetary supply of the currency Y., bal(a)) is fixed or
grows at a predictable rate, the difficulty D should be known in advance
[19]:

D = — ¥, bal(a),

with T,, denoting the expected time between blocks. In practice, D needs
to be adjusted based on recent blocks because not all currency owners
participate in block minting.

The most well-known consensus method is proof of work (discussed in
27.2.1) which is used by bitcoin. However, due to its high computational and
bandwidth requirements, it does not seem to be practical for 10T networks.

Therefore, we present other existing consensus methods and discuss the
possibility of applying them to a blockchain based loT network [17, 21, 26].

1. Delegated Proof of Stake (DP0S). DPoS is a system in which a
fixed number of elected entities (called block producers or witnesses) are
selected to create blocks in a round-robin order. Block producers are voted
into power by the users of the network, who each get a number of votes
proportional to the number of tokens they own on the network (their stake).
Alternatively, voters can choose to delegate their stake to another voter,
who will vote in the block producer election on their behalf.

2. Leased Proof of Stake (LPoS). LPoS is an advanced version of the
Proof of Stake (PoS) algorithm. Traditionally in the Proof of Stake
algorithm, each node holds a certain amount of cryptocurrency and is
eligible to add the next block in to the blockchain. However, with Leased
Proof of Stake, users are able to lease their balance to full nodes. The
higher the amount that is leased, the better the chances are that the full
node will be selected to produce the next block. If the node is selected, the

382

27. Security of 10T Based Blockchain Technology

user will receive a percentage of the transaction fees that are collected by
the node.

3. Proof of Importance (Pol). Pol is a Blockchain consensus algorithm
that considers the overall productivity of users in the network. It was first
used by NEM (New Economy Movement) which is a Blockchain
technology company aiming to process transactions more efficiently and
introduces reputation to the cryptosystem.

4. Practical Byzantine Fault Tolerance (PBFT). PBFT is an algorithm
that optimizes aspects of Byzantine Fault Tolerance (in other words,
protection against Byzantine faults) and has been implemented in several
modern distributed computer systems, including some blockchain
platforms. These blockchains typically use a combination of pBFT and
other consensus mechanisms.

5. Delegated Byzantine Fault Tolerance (dBFT). Delegated Byzantine
Fault Tolerance is a sophisticated algorithm meant to facilitate consensus
on a blockchain. Although it is not in common use as of yet, it represents
an alternative to simpler proof of stake, proof of importance and proof of
work methods.

6. Proof of Capacity (PoC). POC is a consensus mechanism algorithm
used in blockchains that allows the mining devices in the network to use
their available hard drive space to decide the mining rights, instead of
using the mining device’s computing power (as in the proof of work
algorithm) or the miner’s stake in the cryptocoins (as in the proof of stake
algorithm).

7. Proof of Activity (PoA). PoA is one of the many blockchain
consensus algorithms used to ensure that all the transactions occurring on
the blockchain are genuine and all users arrive at a consensus on the
precise status of the public ledger. Proof of activity is a mixed approach
that marries the other two commonly used algorithms — namely, proof of
work (POW) and proof of stake (POS).

8. Proof of Burn (PoB). Proof of burn is one of the several consensus
mechanism algorithms implemented by a blockchain network to ensure
that all participating nodes come to an agreement about the true and valid
state of the blockchain network thereby avoiding any possibility of
cryptocoin double spending. Proof of burn follows the principle of
“burning” or “destroying” the coins held by the miners that grant them
mining rights.

383

27. Security of 10T Based Blockchain Technology

9. Proof of Elapsed Time (PoET). POET is a blockchain network
consensus mechanism algorithm that prevents high resource utilization and
high energy consumption, and keeps the process more efficient by
following a fair lottery system. In recent times, leading microchip
manufacturer, Intel has been working on its proprietary consensus
protocol. The new standard is an integral component of the Hyperledger
Sawtooth blockchain framework and is used to provide enclave in Intel’s
Software Guard Extensions (SGX). Table 27.1 summarizes the comparison
between various consensus algorithms [17].

Table 27.1 — Consensus Protocol Comparison.

BFT and Federated
PoW PoS POET Variants BFT
Blockchain | Permissi- Both Both Permissi- Permissi-
type onless oned onless
Tra_nsagtlon Probabilistic | Probabilistic Pr(.)b"f‘b" Immediate Immediate
finality listic
Transaction Low High Medium High High
rate
Token
needed? Yes Yes No No No
C:.O&.;t Of_ Yes Yes No No No
participation
Scalability
of peer High High High Low High
network
Trust model | Untrusted | Untrusted Untrusted | Semi-trusted | Semi-trusted

27.3 Blockchain technology for the 10T security

27.3.1 Blockchain and the loT

Blockchain technology would give better solution to the problems
faced by loT systems. In the growing scenarios of 10T systems, there
are more chances for having increased number of interacting things or
devices in it. This would lead to many hurdles because, in I0T systems,

384

27. Security of 10T Based Blockchain Technology

mostly the collected data is maintained in the central servers. If the
devices want to access the data, they have to interact using the
centralized network and the data flow will happen through the central
server, this process flow is clearly depicted in Fig. 27.3. In such large-
scale loT systems, the centralized server will not be an effective
approach [14, 20]. Most of the 10T systems, that are implemented as of
now are relaying on centralized server concept. For handling the huge
data processed in large scale 10T systems, there is a need for increasing
the internet infrastructure. One best way to solve this is to have
decentralized or distributed networks where “Peer-to-Peer Networking
(PPN), Distributed File Sharing (DFS), and Autonomous Device
Coordination (ADC)” functions could be capable [14].

Blockchain can carry out these three functions allowing the loT
systems to track the huge number of connected and networked devices.
Blockchain allows a peer to peer messaging in faster way with the help
of distributed ledger as shown in Fig. 27.4. The data flow process in
loT with Blockchain technology is different from only 10T system. In
IoT with BC, the data flow is from sensors-network-router-internet-
distributed blockchain-analytics-user. Here, the distributed ledger is
tamper proof which does not allow in misinterpretation, wrong
authentications in data. Blockchain complexly eliminates the Single
Thread Communication (STC) in loT making the system more trust
less. With the adoption of Blockchain in 10T, the data flow will become
more reliable and secure [14].

A blockchain-based, decentralized 10T can become a truly
revolutionary approach to transaction processing among devices (see
Fig. 27.5).

.,re.s“-; N (((‘T’))) — i ——

e
»
- =

N

Sensors Network Router Internet
=~ m‘. & P —
User Analytics Big Data Central Server

Fig. 27.3 — Data flow in Internet of Things [14]

385

27. Security of 10T Based Blockchain Technology

::=";';’ — (((('K)))) — _’(a—

Senp Network Router Internet
3 — m —§ s .' g ——
4
User L 3
Analytics 8 Big Data Distributed
’ blockchain Central Server

Fig. 27.4 — Data flow in Internet of Things with Blockchain
Technology [14]

It is important to note that while Bitcoin contains an escalating
difficulty in the blockchain mining process to restrict the issuance of
currency, no such restriction is necessary in our vision of blockchains
for the l1oT. For the ADEPT implementation of a blockchain-based 10T,
we chose the Ethereum protocol in its alpha version.6 Ethereum’s
improvements to the traditional blockchain approach of Bitcoin, the
Turing complete scripting languages it introduced and its ability to
create binding contracts were extremely compelling for our PoC [18].

The project for Autonomous Decentralized Peer-to-Peer Telemetry
(ADEPT) led by IBM and Samsung [18] aims to promote device
autonomy, and to this end they use blockchain technology to ensure
code execution on edge devices. ADEPT uses three protocols:
Telehash, Bittorrent and Ethereum, for messaging, file sharing and
blockchain, respectively. Blockchain technology provides
authentication, engagement, contracts and checklists.

When integrating blockchain, it needs to be decided where these
interactions will take place: inside the 10T, a hybrid design involving
loT and blockchain, or through blockchain [20].

Fog computing has also revolutionized the loT with the
inclusion of a new layer between cloud computing and IoT devices
and could also facilitate this integration. Below, these alternatives

386

27. Security of 10T Based Blockchain Technology

(shown in Fig. 27.6) are described together with their advantages
and disadvantages [20]:

OO0 00
: v v v

Register Authenticate Barter power with Run checklist for
new devices remote users other appliances automobile safety

& e

Fig. 27.5 — The blockchain functions as a distributed transaction ledger
for various loT transactions

loT-10T: this approach could be the fastest one in terms of latency,
and security since it can work offline. 10T devices have to be able to
communicate with each other, which usually involves discovery and
routing mechanisms.

Only a part of loT data is stored in blockchain whereas the loT
interactions take place without using the blockchain (Fig. 27.6 a).

* lIoT-Blockchain: in this approach all the interactions go through
blockchain, enabling an immutable record of interactions. This
approach ensures that all the chosen interactions are traceable as their
details can be queried in the blockchain, and moreover it increases the
autonomy of 10T devices. Nevertheless, recording all the interactions in
blockchain would involve an increase in bandwidth and data, which is
one of the well-known challenges in blockchain (Fig. 27.6 b). On the
other hand, all 10T data associated with these transactions should also
be stored in blockchain.

» Hybrid approach: lastly, a hybrid design where only part of the
interactions and data take place in the blockchain and the rest are
directly shared between the IoT devices. One of the challenges in this
approach is choosing which interactions should go through the
blockchain and providing the way to decide this in run time (Fig.
27.6 c).

387

27. Security of 10T Based Blockchain Technology

Blockchain Blockchain
Blockchain
B s \ uie
e

‘;Ja

a) b) C}

"“9

*

£y

Fig. 27.6 — Blockchain loT interactions

27.3.2 Benefits of Integrating Blockchain with 10T

There are many benefits of adopting blockchain with 10T, as
shown in Fig.27.7. These benefits can be summarized as follows [11,
12, 13, 20, 26, 28]:

1. Decentralization. Because of the decentralized architecture of
loT, blockchain is most suitable as a security solution in 10T. The shift
from a centralized architecture to a P2P distributed one will remove
central points of failures and bottlenecks [24]. The majority of
participants must verify the transactions in order to approve it and add
it to the distributed ledger. There is no single authority that can approve
the transactions or set specific rules to have transactions accepted.

Therefore, there is a massive amount of trust included since the
majority of the participants in the network have to reach an agreement
to validate transactions. Other benefits that come with the
decentralization of the architecture are an improvement of the fault
tolerance and system scalability. It would reduce the loT silos, and
additionally contribute to improving the 10T scalability and becomes
more robust to DoS attacks.

388

27. Security of 10T Based Blockchain Technology

Decentralization Publicity Identity Resiliency Reliability

Benefits of Blockchain with loT

Autonomy Security Speed Cost saving Anonymity

Fig. 27.7 — Benefits of integrating blockchain with loT

2. Publicity. All participants have the ability to see the all the
transactions and all blocks as each participant has its own ledger. The
content of the transaction is protected by participant’s private key [3,
12], so even all participants can see them, they are protected. The 10T is
a dynamic system in which all connected devices can share information
together and at the same time protecting users’ privacy.

3. Identity. Using a common blockchain system participants are
able to identify every single device. Data provided and fed into the
system is immutable and uniquely identifies actual data that was
provided by a device. Additionally, blockchain can provide trusted
distributed authentication and authorization of devices for loT
applications.

4. Resiliency. Each node has its own copy of the ledger that
contains all transactions that have ever made in the network. So, the
blockchain is better able to withstand attack. Even if one node was
compromised, the blockchain would be maintained by every other
node. Having a copy of data at each node in the loT will improve
information sharing needs. However, it introduces new processing and
storage issues.

5. Reliability. loT information can remain immutable and
distributed over time in blockchain. Participants of the system are
capable of verifying the authenticity of the data and have the certainty
that they have not been tampered with. Moreover, the technology

389

27. Security of 10T Based Blockchain Technology

enables sensor data traceability and accountability. Reliability is the
key aspect of the blockchain to bring in the loT.

6. Autonomy. Blockchain technology empowers next-gen
application features, making possible the development of smart
autonomous assets and hardware as a service. With blockchain, devices
are capable of interacting with each other without the involvement of
any servers.

7. Security. Information and communications can be secured if
they are stored as transactions of the blockchain. Each transaction,
before being sent to blockchain network, is signed by the node and
must be verified and validated by miners. After the validation, it’s
practically impossible to forge or modify transactions already saved in
the blockchain. This provides a proof of traceable events in the system.
Blockchain has the ability to provide a secure network over untrusted
parties which is needed in loT with numerous and heterogeneous
devices [12]. In other words, all 10T network nodes must be malicious
to perform an attack.

8. Speed: A blockchain transaction is distributed across the
network in minutes and will be processed at any time throughout the
day.

9. Cost saving. Existing IoT solutions are expensive because of
the high infrastructure and maintenance cost associated with centralized
architecture, large server farms, and networking equipment. The total
amount of communications that will have to be handled when there are
tens of billions of loT devices will increase those costs substantially
[11].

10. Anonymity: The nodes in blockchain are identified by their
public keys (or the hash of public keys). These pseudonyms don’t link
any information about the identity of the participating nodes. This
feature has been criticised as it increases the use of cryptocurrencies in
the illegal online market. However, it could be seen as an advantage if
used for other purposes, for example, electoral voting systems.

27.3.3 Main challenges of blockchain in 10T

Despite the blockchain’s benefits mentioned above, it is still some
challenges to be solved in order to adapt the blockchain technology in
loT. We enumerate the following challenges (Fig.27.8) [11, 12, 13, 20]:

390

27. Security of 10T Based Blockchain Technology

.
Computation Processing Storage Time latency | | Scalability
and storageissues | | Power andTime

/

Challenges of Blockchainwith loT

2
~ Naming Legal and Lack
and Discovery Compliance of skills
>y

Fig. 27.8 — Main challenges of blockchain in loT

1. Computation and storage issues. As most of 0T devices have
limited capabilities in terms of computation and storage resources, the
blockchain needs to be customized before its application as security
solution in loT. To address the problem of adaptability, one solution
may consist to add a new application level that hides the details of
blockchain implementation, namely the PoW. This solution allows the
resource-constrained loT devices to involve in the system without
computing the PoW.

2. Processing Power and Time. The processing power and time
needed to achieve encryption for all the objects included in a
blockchain system. 10T systems have different types of devices which
have very different computing capabilities, and not all of them will be
able to run the same encryption algorithms at the required speed.

3. Storage. One of the main benefits of blockchain is that it
eliminates the need for a central server to store transactions and device
IDs, but the ledger has to be stored on the nodes themselves. The
distributed ledger will increase in size as time passes and with
increasing number of nodes in the network. As said earlier, 10T devices
have low computational resources and very low storage capacity.

4. Time latency. In bitcoin blockchain, the validation of
transactions takes about 10 minutes, which creates a problem for real
time applications.

5. Scalability. Scalability issues in the blockchain might lead to
centralization, which is casting a shadow over the future of the

391

27. Security of 10T Based Blockchain Technology

cryptocurrency. The blockchain scales poorly as the number of nodes in
the network increases. This issue is serious as loT networks are
expected to contain a large number of nodes.

6. Bandwidth consumption. As loT devices generate a lot of
transactions, this includes an important problem if it is necessary to
validate each of those transactions that consume a lot of bandwidth.

7. The anonymity. Actually, blockchain doesn’t ensure a fully
anonymous transactions. Indeed, the peers are identified by
pseudonyms that can be tracked but they are still unlikable
(impossibility of extracting identity of the person from its pseudonym).

8. Naming and Discovery. The blockchain technology has not
been designed for the 10T, meaning that nodes were not meant to find
each other in the network. An example is the Bitcoin application in
which the IP addresses of some “senders” are embedded within the
Bitcoin client and used by nodes to build the network topology. This
approach will not work for the 10T as loT devices will keep moving all
the time which will change the topology continuously.

9. Legal and Compliance. The blockchain is a new technology
that will have the ability to connect different people from different
countries without having any legal or compliance code to follow, which
is a serious issue for both manufacturers and service providers. This
challenge will be the major barrier for adopting blockchain in many
businesses and applications.

10. Lack of skills. The blockchain technology is still new.
Therefore, a few people have large knowledge and skills about the
blockchain, especially in banking. In other applications, there is a
widespread lack of understanding of how the blockchain works [2]. The
loT devices exist everywhere, so adopting the blockchain with 10T will
be very difficult without public awareness about the blockchain.

27.3.4 Blockchain-based the 10T security solutions

Let us consider and summarize some of the intrinsic features of
blockchain that can be immensely useful for 10T in general, and loT
security in particular [12].

1. Address Space. Blockchain has a 160-bit address space, as
opposed to IPv6 address space which has 128-bit address space [4]. A
blockchain address is 20 bytes or a 160-bit hash of the public key
generated by ECDSA (Elliptic Curve Digital Signature Algorithm).

392

27. Security of 10T Based Blockchain Technology

With 160-bit address, blockchain can generate and allocate addresses
offline for around 1.46 *10* 10T devices.

The probability of address collision is approximately 10, which is
considered sufficiently secure to provide a GUID (Global Unique
Identifier) which requires no registration or uniqueness verification
when assigning and allocating an address to an 10T device.

With blockchain, a centralized authority and governance, as that of
the Internet Assigned Numbers Authority (IANA), is eliminated.
Currently, IANA oversees the allocation of global IPv4 and IPv6
addresses. Furthermore, blockchain provides 4.3 billion addresses more
than IPv6, therefore making blockchain a more scalable solution for
loT than IPV6.

Lastly, it is worth noting that many 10T devices are constrained in
memory and computation capacity, and therefore will be unfit to run an
IPV6 stack.

2. ldentity of Things (IDoT) and Governance. ldentity and Access
Management (IAM) for loT must address a number of challenging
issues in an efficiently, secure, and trustworthy manner. One primary
challenge deals with ownership and identity relationships of loT
devices. Ownership of a device changes during the lifetime of the
device from the manufacturer, supplier, retailer, and consumer.

The consumer ownership of an loT device can be changed or
revoked, if the device gets resold, decommissioned, or compromised.
Managing of attributes and relationships of an 10T device is another
challenge. Attributes of a device can include manufacturer, make, type,
serial number, deployment GPS coordinates, location, etc. Apart from
attributes, capabilities, and features, 10T devices have relationships. loT
relationships may include device-to-human, device-to-device, or
device-to-service. An loT device relationships can be deployed by, used
by, shipped by, sold by, upgraded by, repaired by, sold by, etc.

The approaches like TrustChain are proposed to enable trusted
transactions using blockchain while maintaining the integrity of the
transactions in a distributed environment.

3. Data Authentication and Integrity. By design, data
transmitted by loT devices connected to the blockchain network will
always be cryptographically proofed and signed by the true sender that
holds a unique public key and GUID, and thereby ensuring
authentication and integrity of transmitted data. In addition, all

393

27. Security of 10T Based Blockchain Technology

transactions made to or by an loT device are recorded on the
blockchain distributed ledger and can be tracked securely.

4. Authentication, Authorization, and Privacy. Blockchain smart
contracts have the ability to provide a de-centralized authentication
rules and logic to be able to provide single and multiparty
authentication to an loT Device. The smart contracts can spell out also
who has the right to update, upgrade, patch the loT software or
hardware, reset the 10T device, provision of new keypairs, initiate a
service or repair request, change ownership, and provision or re-
provision of the device.

5. Secure Communications. 10T application communication
protocols as those of HTTP, MQTT, CoAP, or XMPP, or even
protocols related to routing as those of RPL and 6LoWPAN, are not
secure by design [12].

With blockchain, key management and distribution are totally
eliminated, as each loT device would have his own unique GUID and
asymmetric key pair once installed and connected to the blockchain
network. This will lead also to significant simplification of other
security protocols as that of DTLS, with no need to handle and
exchange PKI certificates at the handshake phase in case of DTLS or
TLS (or IKE in case of IPSec) to negotiate the cipher suite parameters
for encryption and hashing and to establish the master and session keys.
Therefore, light-weight security protocols that would fit and stratify the
requirements for the compute and memory resources of 10T devices
become more feasible.

27.4 Work related analysis

The integration of blockchain with 10T have investigated in the
next papers.

Bin Yu et al. 2018 in [25] demonstrate the applicability of
blockchain to loT devices and data management with an aim of
providing end-to-end trust for trading. The authors first demonstrate
that Blockchain, which is designed to remove the trusted third-party in
a decentralized system, is an ideal solution to resolve the trust issue in
IoT ecosystems. They then describe how with the help of blockchain,
different parties can trust and verify the data and also the ownership of
loT devices and their related data can be traced.

394

27. Security of 10T Based Blockchain Technology

This paper of Nazri Abdullah et al. 2017 [1] presents drawbacks of
Kerberos implementations and identifies authentication requirements
that can enhance the security of Big Data in distributed environments.
The enhancement proposed by authors is based on the rising technology
of blockchain that overcomes shortcomings of Kerberos such as
numerous security issues, replay attacks, DDoS and single point of
failure are some examples.

Angelo Capossele et al. 2018 in [6] present a sustainable model for
fostering the creation of s-health applications, identify and discuss the
existing challenges, and explore the role of blockchain in overcoming
some of them. The authors explain how mobile s-health applications
can improve prediction, prevention, and prescriptive care, while
generating feedback that make cities smarter when accounting for and
adapting to individual needs and as a result, the constantly ongoing
societal challenge of improving individual life will receive additional
support.

The article of Blesson Varghese et al. 2018 [23] describes how
distributed-ledger technologies (such as blockchains) provide a
promising approach to support the operation of a marketplace and
regulate its behavior (such as the GDPR in Europe) and operation. The
authors describe two scenarios — smart cities and healthcare, that
provide context for the discussion of how such a marketplace would
function and be utilized in practice. Given this context, they described a
marketplace for services that can exist at the network edge.

In [8] Ferrer E. C. considers how the combination of blockchain
technology and swarm robotic systems can provide innovative solutions
to emergent issues, by using the robots as nodes in a network. Proposed
by author new security models and methods can be implemented in
order to give data confidentiality and entity validation to robot swarms,
therefore making them suitable for trust-sensitive applications.
Distributed decision making and collaborative missions can be easily
designed, implemented, and carried out by using special transactions in
the ledger, which enable robotic agents to vote and reach agreements.

In [20] it is provided an extensive description of the main
challenges that blockchain and 10T must address in order for them to
successfully work together, in particular, key points where blockchain
technology can help improve loT applications. The authors present

395

27. Security of 10T Based Blockchain Technology

possible ways of integration and platforms that are integrating loT and
blockchain in a general context.

Hany F. et al. 2018 in [11] provide an overview of the integration
of the blockchain with the 10T with highlighting the integration benefits
and challenges.

The authors conclude that the combination of blockchain and 10T
can provide a powerful approach which can significantly pave the way
for new business models and distributed applications.

Panarello A. et al. 2018 in [17] present a comprehensive survey on
blockchain and loT integration. In this paper analyzed the current
research trends on the usage of blockchain-related approaches and
technologies in an loT context and point out the main open issues and
future research directions.

Lee B., & Lee J. H. 2017 in [15] consider a secure firmware
update issue, which is a fundamental security challenge for the
embedded devices in an loT environment and propose a new firmware
update scheme that utilizes a blockchain technology to securely check a
firmware version, validate the correctness of firmware, and download
the latest firmware for the embedded devices.

In [5] is presented a decentralized, peer-to-peer platform called
BPIIoT for Industrial Internet of Things based on the Block chain
technology which enables peers in a decentralized, trustless, peer-to-
peer network to interact with each other without the need for a trusted
intermediary.

Liu B. et al. 2017 in [16] propose a blockchain-based framework
for Data Integrity Service, the relevant protocols and a prototype
system, conduct the performance evaluation of the implemented
prototype system and discuss the test results.

Christidis K., & Devetsikiotis M. 2016 in [7] consider smart
contracts-scripts that reside on the blockchain that allow for the
automation of multi-step processes. It is shown that the blockchain-loT
combination is powerful and can cause significant transformations
across several industries, paving the way for new business models and
novel, distributed applications.

Gantait A. et al. 2017 in [10] discuss the use of blockchain in 10T
solutions and explore how different industries are leveraging these two
technologies to build end-to-end automated and secured solutions. In

396

27. Security of 10T Based Blockchain Technology

[9] it is shown the use the IBM Watson loT platform and IBM
Blockchain service to build a sample use case.

There are some universities in the USA and EU (including ALIOT
project partners) which conduct research and implement MSc and PhD
educational modules related to Blockchain and connection of this
methodology with 10T protection. In particular, the following courses
and programs have been considered:

- IBM Blockchain Course - Blockchain for Developers [29];

- Linux FoundationX: Blockchain: Understanding Its Uses and
Implications [30];

- University of California at Berkeley. Blockchain Technology [31];

- University of Oxford: Oxford Blockchain Strategy Programme [32];

- Princeton university. Bitcoin and Cryptocurrency Technologies [34];

- University System of Georgia. Cybersecurity and the Internet of
Things [35].

- KTH University, Sweden: Master's programme in ICT Cloud
and network infrastructures (CLNI). It includes topics related to
blockchain in the cloud and network infrastructure [36].

Course is a new stage in digital evolution and focuses on the study
and blockchain technology usage in various areas including the Internet
of Things.

Conclusions and questions

The formation of a knowledge system of safety and security of
Internet of Things systems is becoming an important part of the process
of training specialists in the field of computer science.

The basics of blockchain technology and examples of
implementation in the Internet of things are discussed and the
consensus algorithms used in the blockchain technology are considered
in this section.

The principles of ensuring the Internet of things safety and security
using the blockchain technology are discussed.

The advantages and the existing problems of the blockchain
technology integration in the Internet of things are highlighted.

loT applications have to deal with security problems at different
levels, but with an additional complexity due to the lack of performance
and high heterogeneity of devices.

397

27. Security of 10T Based Blockchain Technology

The increasing number of attacks on loT networks, and their
serious effects, make it even more necessary to create an loT with more
sophisticated security.

Blockchain can enrich the loT by providing a trusted sharing
service, where information is reliable and can be traceable. Data
sources can be identified at any time and data remains immutable over
time, increasing its security. In the cases where the 10T information
should be securely shared between many participants this integration
would represent a key revolution.

However, one of the main challenges in the integration of the loT
with blockchain is the reliability of the data generated by the IoT.
Blockchain can ensure that data in the chain are immutable and can
identify their transformations, nevertheless when data arrives already
corrupted in the blockchain they stay corrupt. Corrupt loT data can
arise from many situations apart from malicious ones.

For effective usage of Blockchain technology in the loT should be
developed the Blockchain architecture that takes into account the
above-mentioned loT constraints and provides decentralized security
and confidentiality of data. In this section, the materials for module
PCM 3.4 of PC 3 course “Dependability and Security of IoT” are
presented. They can be used for preparation to lectures and self-
learning.

In order to better understand and assimilate the educational
material that is presented in this section, we invite you to answer the
following questions.

. What is Blockchain?

. Describe the block structure in Blockchain.

. What is a genesis block?

. What is a Merkle tree?

. What is a hash function?

. Explain the notion of collision for hash functions.
. Explain the avalanche effect of hash function.

. What is a consensus algorithm?

. Explain the principle of Proof of Work algorithm.
10. Explain the principle of Poof of Stake algorithm.
11. Explain the principle of the 51% attack.

12. Explain the principle of the Sybil attack.

OO ~NOoO Ok~ WwWwN -

398

27. Security of 10T Based Blockchain Technology

13. What is the process of mining?

14. What are the disadvantages of Proof of Work algorithm.

15. What are the alternative consensus algorithms.

16. How does the Blockchain technology ensure the reliability of
loT data?

17. How does the Blockchain Technology secure 10T?

18. How does the Blockchain Technology provides anonymity in
loT?

19. Describe the benefits of the integration of Blockchain with
loT.

20. Describe the existing challenges of integrating Blockchain
with 1oT.

References

1. N. Abdullah, A. Hakansson, E. Moradian. “Blockchain based
approach to enhance big data authentication in distributed
environment,” in Proc. 9th International Conf. Ubiquitous and Future
Networks (ICUFN), IEEE, 2017, P. 887-892.

2. A. Banafa. Internet: https://iot.ieee.org/newsletter/january-
2017/iot-andblockchain-convergence-benefits-and-challenges.html,
Febr. 12, 2019..

3. T. Ahram, A.Sargolzaei, S.Sargolzaei, J.Daniels, B. Amaba.
“Blockchain technology innovations,” in Proc. Technology &
Engineering Management (TEMSCON), 2017 IEEE Conference on,
2017, P. 137-141.

4. A.M. Antonopoulos. Mastering Bitcoin: Unlocking Digital
Crypto-Currencies. California, Sebastopol: O’Reilly Media, Inc., 2014.

5. A. Bahga, V. K. Madisetti. “Blockchain platform for industrial
internet of things™. Journal of Software Engineering and Applications,
vol.9(10), P. 533-546, 2016.

6. A. Capossele, A.Gaglione, M.Nati, M.Conti, R.Lazzeretti, P.
Missier. “Leveraging blockchain to enable smart-health applications,”
in Proc.2018 IEEE 4th International Forum on Research and
Technology for Society and Industry (RTSI), 2018, P. 1-6.

7. K. Christidis, M. Devetsikiotis. “Blockchains and smart
contracts for the internet of things,” IEEE Access, 4, 2016, P.2292-
2303.

399

https://iot.ieee.org/newsletter/january-2017/iot-andblockchain-convergence-benefits-and-challenges.html
https://iot.ieee.org/newsletter/january-2017/iot-andblockchain-convergence-benefits-and-challenges.html

27. Security of 10T Based Blockchain Technology

8. E.C.Ferrer. “The blockchain: a new framework for robotic
swarm systems,” in Proc. of the Future Technologies Conference.
Springer, Cham, 2018, P. 1037-1058.

9. A. Gantait, J.Patra, A. Mukherjee. “Implementing blockchain
for cognitive IoT applications,” Part 2: Use vehicle sensor data to
execute smart transactions in Blockchain. IBM DeveloperWorks, 9,
2017.

10. A. Gantait, J.Patra, A.Mukherjee. “Implementing blockchain
for cognitive loT applications,” Part 1: Integrate device data with smart
contracts in IBM Blockchain. IBM DeveloperWorks, 9, 2017.

11. H. F. Atlam, A.Alenezi, M. O.Alassafi, G. Wills. “Blockchain
with Internet of Things: Benefits, Challenges, and Future Directions”.
International Journal of Intelligent Systems and Applications (1JISA),
vol.10 (6), P.40-48, 2018.

12. M. A. Khan, K. Salah. “loT security: Review, blockchain
solutions, and open challenges”. Future Generation Computer Systems,
no.82, P.395-411, 2018.

13. D. E. Kouicem, A.Bouabdallah, H. Lakhlef. “Internet of things
security: A top-down survey”. Computer Networks. Elsevier, In press,
141, P.199-221, 2018.

14. N. M. Kumara, P.K.Mallickb. “Blockchain technology for
security issues and challenges in loT”. Procedia Computer Science,
132, P. 1815-1823, 2018.

15. B. Lee, J. H. Lee. “Blockchain-based secure firmware update
for embedded devices in an Internet of Things environment”. The
Journal of Supercomputing, vol.73(3), P. 1152-1167, 2017.

16. B. Liu, X. L.Yu, S.Chen, X.Xu, L. Zhu. “Blockchain based
data integrity service framework for loT data,” in Proc.Web Services
(ICWS), 2017 IEEE International Conference on, 2017, P. 468-475.

17. A.Panarello, N.Tapas, G.Merlino, F.Longo, A.Puliafito
“Blockchain and loT integration: A systematic survey”. Sensors,
vol.18(8), 2575, P.1-37, 2018.

18. B. S. Panikkar, S.Nair, P.Brody, V. Pureswaran. “ADEPT: An
loT Practitioner Perspective,” Internet:
http://pdf.yt/d/esMcC00dKmdo53- , 2015 Nov. 20, 2018..

19. “Proof of Stake versus Proof of Work”. White Paper, Internet:
https://bitfury.com/content/downloads/pos-vs-pow-1.0.2.pdf __Jan. 22,
2019..

400

http://pdf.yt/d/esMcC00dKmdo53-_

27. Security of 10T Based Blockchain Technology

20. A. Reyna, C.Martin, J.Chen, E.Soler, M. Diaz. “On blockchain
and its integration with IoT. Challenges and opportunities”. Future
Generation Computer Systems, vol. 88, P. 173-190, 2018.

21. M. Salimitari, M. Chatterjee. “An Overview of Blockchain and
Consensus Protocols for IoT Networks”. arXiv preprint
arXiv:1809.05613, 2018.

22. Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash
System”. Internet: https://bitcoin.org/bitcoin.pdf Dec. 12, 2018.

23. B. Varghese, M.Villari, O.Rana, P.James, T.Shah, M.Fazio,
R.Ranjan. “Realizing Edge Marketplaces: Challenges and
Opportunities”. IEEE Cloud Computing, vol.5(6), P. 9-20, 2018.

24. P. Veena, S.Panikkar, S.Nair, P. Brody. “Empowering the
Edge - Practical Insights on a Decentralized Internet of Things”. IBM
Institute for Business Online. Value, 17, Apr. 2015. Awvailable:
http://www-01.ibm.com/common/ssi/cgi-
bin/ssialias?infotype=PM&subtype=XB&htmlfid=GBE03662USEN#lo
aded Dec. 6, 2018..

25. B. Yu, J.Wright, S.Nepal, L.Zhu, J.Liu, R.Ranjan. “IoTChain:
Establishing trust in the internet of things ecosystem using blockchain”.
IEEE Cloud Computing, vol.5(4), P.12-23, 2018.

26. Z. Zheng, S.Xie, H. N.Dai, H.Wang. “Blockchain challenges
and opportunities: A survey”. Int. J. Web and Grid Services, vol. 14 (4),
P.352-375, 2018.

27. N.G.Yatskiv, S.V.Yatskiv “Perspectives of the Usage of
Blockchain Technology in the Internet of Things”. The Scientific
Bulletin of UNFU, vol. 26, n.8, P. 381-387, 2016. (In Ukrainian)

28. V.Yatskiv, N.Yatskiv, O. Bandrivskyi. ‘“Proof of Video
Integrity Based on Blockchain”, in Proc. Advanced Computer
Information Technologies (ACIT), 2019 IEEE 9th International
Conference on, 2019, P. 431-434.

29. IBM Blockchain Course- Blockchain for Developers.
https://developer.ibm.com/courses/all-courses/blockchain-for-
developers/ July 29, 2019..

30. Linux FoundationX: Blockchain: Understanding Its Uses and
Implications.
https://www.awinl.com/cread.php?awinmid=6798&awinaffid=427859
&clickref=ddblockchainlinux&p=https%3A%2F%2Fwww.edx.org%2F

401

https://developer.ibm.com/courses/all-courses/blockchain-for-developers/
https://developer.ibm.com/courses/all-courses/blockchain-for-developers/
https://www.awin1.com/cread.php?awinmid=6798&awinaffid=427859&clickref=ddblockchainlinux&p=https%3A%2F%2Fwww.edx.org%2Fprofessional-certificate%2Flinuxfoundationx-blockchain-for-business
https://www.awin1.com/cread.php?awinmid=6798&awinaffid=427859&clickref=ddblockchainlinux&p=https%3A%2F%2Fwww.edx.org%2Fprofessional-certificate%2Flinuxfoundationx-blockchain-for-business

27. Security of 10T Based Blockchain Technology

professional-certificate%2Flinuxfoundationx-blockchain-for-business
July 29, 2019..

31. University of California at Berkeley. Blockchain Technology.
https://www.edx.org/course/blockchain-advancing-decentralized-
technology July 29, 2019..

32. University of Oxford: Oxford Blockchain Strategy Programme.
https://www.sbs.ox.ac.uk/programmes/oxford-blockchain-strategy-
programme July 29, 2019..

34. Princeton university. Bitcoin and Cryptocurrency
Technologies. https://www.coursera.org/learn/cryptocurrency July 30,
2019..

35. University System of Georgia. Cybersecurity and the Internet
of Things. https://www.coursera.org/learn/iot-cyber-security July 30,
2019..

36. KTH University, Sweden: Master's programme in ICT Cloud
and network infrastructures (CLNI)
https://www.kth.se/en/studies/master/ict-innovation/introduction-
1.609472 July 30, 2019..

402

https://www.awin1.com/cread.php?awinmid=6798&awinaffid=427859&clickref=ddblockchainlinux&p=https%3A%2F%2Fwww.edx.org%2Fprofessional-certificate%2Flinuxfoundationx-blockchain-for-business
https://www.edx.org/course/blockchain-advancing-decentralized-technology
https://www.edx.org/course/blockchain-advancing-decentralized-technology
https://www.sbs.ox.ac.uk/programmes/oxford-blockchain-strategy-programme
https://www.sbs.ox.ac.uk/programmes/oxford-blockchain-strategy-programme
https://www.coursera.org/learn/cryptocurrency
https://www.coursera.org/learn/iot-cyber-security
https://www.kth.se/en/studies/master/ict-innovation/introduction-1.609472
https://www.kth.se/en/studies/master/ict-innovation/introduction-1.609472

28. Basic concepts and approaches to development and implementation of 10T systems

PART VIII. DEVELOPMENT AND IMPLEMENTATION OF
IOT-BASED SYSTEMS

28. BASIC CONCEPTS AND APPROACHES TO
DEVELOPMENT AND IMPLEMENTATION OF IOT SYSTEMS

Prof., DrS. I. S. Skarga-Bandurova,
Ph.D. Student A. Y. Velykzhanin (EUNU)

Contents
ADDIEVIALIONS ...o.viiecic e 404
28.1 loT-based system development ProCessc.ccoerveveereeienennens 405
28.1.1. Phases and deliverables of an lIoT technical strategy 405
28.1.2 The 10T development Strategiescocvvvevveveiieveceese s 408
28.2 Strategies to planning 10T architecturesccoecevveveeicieennene, 413
28.3 The base components of the 10T SyStems..........cccceeeveiviiniinnne 419
28.3.1 Major types of technological offerings from IoT 419
28.3.2 10T device classification...........ccceevvivvireviniiie e 421
28.3.3 10T device design flowWccccevveiiviiici e 423
28.3.4 Relationship between Sensor Networks and 10T 424
28.4 The loT development boards and platforms for prototyping.....426
28.5 The loT platforms: types and selection criteria.........cc.ccocveneee. 429
28.6 Work related analysiscccooevereiiiiiiiienese e 431
Conclusions and QUESLIONS..........ccecveieieeeeie e e 432
RETEIBNCES ...t 433

403

28. Basic concepts and approaches to development and implementation of 10T systems

Abbreviations

C2C — Cloud-to-Cloud

CPU — Central Process Unit

D2D — Device-to-Device

D2S - Device-to-Server

FPGA — Field-Programmable Gate Array
GPU — Graphics Processing Unit

I/0 — Input/Output

10T — Industrial Internet of Things

0T — Internet of Things

IT — Information Technology

M2C — Machine-to-Cloud

M2M — Machine-to-Machine

MEMS — Micro Electromechanical System
OT — Operational Technology

PCB - Printed Circuit Board

RFID — Radio Frequency ldentifier

S2S — Device-to-Server

SN — Sensor Network

TCP — Transmission Control Protocol
ThingML — Internet of Things Modelling Language
UDP — User Datagram Protocol

404

28. Basic concepts and approaches to development and implementation of 10T systems

28.1 l0T-based system development process

Internet of Things (loT) industry has following three key
characteristics [1]:

— being a driver for customer-facing innovation it is developed by
an associations and government more then by market;

— it has complicated and diverse industrial chain without a unique
subject of responsibility;

— it requires the coordination of the development processes as
well as interacting with humans to learn from his intelligence and
provide more accurate analytics;

— itis in need of new standards, highly professional developers,
highly exclusive products.

In these conditions, it is essential to perform careful thinking about
how to promote loT solution and how to hold it out. Moreover, further
development of IoT is close related to the public welfare, ability and
willingness of people to use it. This means that rapid challenge the
traditional development process, ways to collect fees form customers
loT as well as wide application of new strategies for operation and
integration platforms.

28.1.1. Phases and deliverables of an 10T technical strategy

In many areas, product developments processes take a lot of time
to fully mature. The rapid growth of the 10T and Industrial Internet of
Things (lloT) raises another incarnation of the product development
process. The loT market is the highly integrated and flexible system
with the open and scalable architectures for integration of relatively
cheap sensors, processors, new connectivity protocols, and power
supply sources. In this context, development processes should take into
account a vide variety of custom solutions, different types of hardware
and software platforms, possible adoption of hardware development
environments, and provide the best solution to robust 10T design.

The process of development and implementation of loT-based
systems is a sequence of related activities, starting with the project
definition phase where objectives and information needs are considered
and ending with the dissemination of the information product for use by

405

28. Basic concepts and approaches to development and implementation of 10T systems

communities, scientists and decision-makers. The structure of loT
technical program includes the following elements (Fig. 28.1):

— obijective settings;

— preliminary surveys and resource estimation;

— loT solution strategy;

— choosing 10T reference architecture;

— solution design;

— monitoring design;

— system implementation;

— quality-assurance procedures;

— data management and product development.

The component connection framework indicates of the phases and
deliverables of an 10T technical strategy under each of the elements are
described. These components and their connection links need to be
adequately considered during the planning process of an loT system.
The planning process conveniently can be classified into the following
three main subsequent phases.

The first phase “Project definition” includes defining the needs and
establishing the objectives of 10T (such as in support of monitoring or
research and policy) and what issues are to be addressed. With the
objectives defined, it can then be decided what data are needed and how
they will be used. Then IoT solution strategy, 10T reference architecture
and technology platforms, are defined. 10T reference architecture
provides a set of architectural patterns, standards, and best practices for
use in developing loT solutions [2]. Detailed technical reference
architecture can be created only after obtaining a clear understanding of
the 10T solution ecosystem.

The second phase ‘“Project development” comprises the
developing phase, which should consider and include:

— the solution design with data specification, defining device
capabilities, prototyping, platform finalization and performing risk
analysis;

— the planning of a monitoring network with the choice of
location for the sampling operations, supported by preliminary
investigations (inventories and surveys) needed before the program is
started, so that issues, problems and risk factors can be clearly
identified and evaluated;

406

28. Basic concepts and approaches to development and implementation of 10T systems

Objective settings
Business objectives
Team
Success criteria
Data sources
Users, partners and stakeholders

loT Solution Strategy

Objectives
Owners

Information needs

Deliverables

Governance model

Preliminary survey
Snapshot surveys

Data variability, data volume
Types of parameters
Technical feasibility

Institutional setting
Legislation and policies
Administrative settings

Communication between
stakeholders

Resource estimation
Field stations and wells
Laboratory facilities
Transport
staffing

loT reference architectures
Strategy to manage device vendors and
10T platform vendors
Operational management

Solution design

Monitoring Design

Data specification
Device capability Network
Finalize platform Station number
Security solution Station location
Prototyping Sampling frequency

Variables
Priorities
Users
Data sources

Data gathering methods
In situ measurements

Physical, chemical, biological
laboratory analysis

Refine architecture
Risk analysis

Solution implementation

Deploy devices, network, software

Deploy apps and analytics

Integrate solution

Test solution

Data management

Data handling

Quiality assurance

Fieldwork

Laboratories
Quality control

Real-time data and near real-time analysis

Recommended actions
Management policies

Reliable and prediction operations
Scale-up

Monitoring
Measuring
Reporting
Dissemination

Fig. 28.1 — Phases and deliverables of an 10T technical strategy

407

28. Basic concepts and approaches to development and implementation of 10T systems

— the selection of physical, chemical or biological variables, i.e.
which variables to monitor for different uses and in relation to different
data sources;

— the definition of sampling procedures and operations, such as in
situ measurements with different devices, manual or automated
measurements, for sampling appropriate media, sample pre-treatment
and conservation, identification and shipment;

— the planning of field measurements (frequency) — in appropriate
cases;

— the definition of the resources required for the realization of an
loT program, e.g. the available national facilities, the inventory of field
stations, equipment and instruments, vehicles and other transportation
means, office and field staff involved in complex loT activities, human
resources development and training required, internal and external
communication needs and, finally, the estimated costs of the program.

The third phase “Project implementation” comprises the actual
operations (implementation) of the program, with:

— the setting up of a quality-assurance system at the
strategic/organizational, tactical and operational levels, essential for
ensuring the reliability of information obtained by monitoring, covering
field and laboratory analysis, data management, data handling, real-
time and near real-time analysis, and the application of IoT standards
and indices;

— the policies management, implementation reliable and
prediction operations and development of products, leading to the
reporting and dissemination of results and findings.

28.1.2 The 10T development strategies

It is assumed that implementation of IoT system intends the use of
different languages, namely, Python, Java, SQL queries, etc., hardware
and software components, execution on external devices as well as
active interaction with third-party APIs.

There are two main strategies when developing 10T systems,
namely, mashup-driven and model-driven [3]. Mashup-driven strategy
assumes that 10T system is developed by combination or mashing up
existing services and typically based on familiar web development tools
and approaches (e.g. prototyping). Thus, this strategy is often

408

28. Basic concepts and approaches to development and implementation of 10T systems

applicable for designing personalized, customized, short-lived and non
business-critical applications [4].

Model-driven methodology assumes that loT system is described
on a higher level of abstraction permitting an expressive systems
modeling possibly with code generation [3].

Model-driven methodology for the development of loT-based
systems.

The model-driven approach for the design and development of
loT-based systems was proposed in [3, 5], there are some e.g. Internet
of Things Modelling Language (ThingML) [6] that provides a
customizable code generation framework which can be customized to
specific languages, middleware, operating systems, libraries and
systems [7]. In [5], Mezghani et al. identified two main phases of
model-based methodology: (1) Requirements Identification and (2)
Requirements Formalization (Fig. 28.2).

Models Methodology Processes & Design Patterns
7
\ i
Collaborative/Iterative Process g =
g2
|2 e
ML e Software Homain o 12T
e = Engineer Experts 2 85
diagram g 23
Non-functional Functional = § 13 E
Requirements ..~ Requirements = 3lZ
— —T g5 v
K3
(1) Processes Management) &g 2
1
Processes C (Wisdom) g
*Smart manageability gle |
* Extensibility Cognitive Predictive Prescriptive Autonomic a g I
* Maintainability Monitoring Cognitive Cognitive Cognitive g F) |
Pattern Pattern Pattern Pattern sz :
UML Class . = — T 2 i
= O 4
&j”uﬂ'“ | Knowledge | S
liagrams Pattern & |
(2) Semantic Management Lo N
le =
+ 30
Semantic Integration Semantic Knowledgs ! 2 2
& i i =y
IN ®
> . '8
Interoperability i (‘; B3 2
*integrabifity | IR o sk s e s = s P 18 3
ik Atitsdl AN i i 37
= W 2 V] — |
Ontologies — Sensory || Context | Procedural __r— l
Knowledg Knowledge Knowledge |
Knowledge |
* Scalability - d Engineer |
* System Performance :
LU cost e (3) Big Data Management' |
|
Big Data & Scalability Management |
UML Class |
&Sequence — Big Data Stream Big Data Analytic |
diagrams Detection Pattern Predictive Pattern |
| i
. ooy I
Cognitive Capabilities |
v

Fig. 28.2 — A model-driven methodology for the design
of loT-based system [5]

409

28. Basic concepts and approaches to development and implementation of 10T systems

The first phase “Requirements identification” is grounded on
consultations and discussions with the domain experts to gathering
information about the system functionality and identification of the
non-functional requirements. This process is an iterative, where the
functional requirements can be represented using the UML diagrams
that describe the functions of the loT system.

The second phase “Requirement formalization” is targeted on
structuring requirements and development of models for describing the
relationship of system processes.

Within this phase, it is possible to detach the sub-levels with
specific challenges related to the design of 10T systems such as the
coordination, integration, big data management, etc.

A main advantage of model-driven approach is the platform
independent modeling, which enables code generation for specific loT
platforms.

Mashup-based methodology for the development of 10T systems.

Mashup tools make it possible to perform very quick prototyping
and leverage converting, transforming, and combining the data from
one or multiple services to meet the project goals. They also enable
connecting different services to create new processes. In addition, some
mashup tools e.g. Clickscript [8], WotKit [9], Paraimpu [10] can
provide simulation means and support interoperability between
different platforms. They could be quite efficient in describing system
architecture, message flow (like activity diagrams), and deployment.

The main phases of mashup-based methodology may include:

Phase 1: Exploring the development landscape to identify the most
suitable tools currently available to satisfy loT project goals.

When choosing the tool it is crucial to take in consideration
following requirements. The good solution should:

— use the most widely used platforms;

— be open-source and relies on open standards;

— be deployed locally;

— support several programming languages.

Phase 2: Choosing platform for integration between services and
remote platforms.

For example, this phase can be performed using Jupyter Notebook
an open-source computational notebook that enables to combine code,

410

28. Basic concepts and approaches to development and implementation of 10T systems

text and visualization in a single document whose underlying structure
is JSON [11].

Phase 3: For the development of an emerging industry, it is very
important to have standards. The development of 1l0T also needs much
more standardization.

Phase 4: Data processing and manipulation.

In 10T projects, data collection process consists of loT data
acquisition and conventional data acquisition directed on supporting
legacy systems. In turn, loT data acquisition may involve five
alternative 10T session layer protocols namely AMQP, CoAP, DDS,
MQTT, and XMPP. Depending on the application one or more
protocols for IoT communication can be selected for the target system.
More detail information about protocols and standards for data
collection and transferring can be found in Chapter 29. The detailed
feature diagram given in Fig. 28.3 can be further extended with respect
to specific project requirements.

Data processing features mainly depend on the application type
and include Image/ Video processing, data mining, data logging, and
decision-support features. One or more features might be used at the
same time. Depending on the application requirements these features
can be extended to use different processing features.

Data visualization consists of monitoring and mapping functions.
Monitoring consists of environment monitoring and yield monitoring
functions. Mapping includes vyield, soil type, and light mapping
features. System management includes sensor control, actuator control,
system control features such as device identification, node discovery,
and directory and naming services.

Sensor control consists of several sub-features such as soil sensing,
light sensing, weather sensing, and water sensing. Also, system control
includes vehicle control and UAV/Drone control features. Finally,
external services feature contains externally communicated systems
such as weather forecast, finance services, and other external systems.

Mashup tools typically provide a graphic editor for interconnection
of services in one application as well as modeling message flow
between the components. Components can be sensors, 10T gateways,
external Web-services, etc. In this context, mashup methodology can be

411

28. Basic concepts and approaches to development and implementation of 10T systems

seen as specific forms of end-user programming that is limited to the
specific model.

loT Data Acquisition

Data Acquisition

Conventional Data
Acquisition

Image/Video
Proocessing

Data Mining

Data Processing

Decision Support

Data Logging

loT Project

Monitoring

Data Visualization

Mapping

Sensor Control

System Actuator Control
Management
System Control
External services Weather forecasts

Fig. 28.3 — Data processing in 10T project

412

28. Basic concepts and approaches to development and implementation of 10T systems

As it mentioned in [3], mashup tools can benefit from concepts in
model-based approaches. Also, model-driven approaches can fit better
to the 10T and provide easy to use tools.

28.2 Strategies to planning loT architectures

There are many variations of the architectural layers, components
and interactions among them. In this section we discuss IoT reference
architectures and features of Industrial 10T System Architecture.

While planning 10T system architecture it is necessary to guarantee
uninterrupted service of all components and fusion the physical and
virtual assets. To reach this goal, the loT systems have to be
dependable, adaptable, highly-scalable, human-centric and secure. The
overall IoT System Architecture is presented in Fig. 28.4.

Analytics Service Dashboards
Layer

Event Processing Web Portal

Network Layer

. . . Sensing Layer
Device Device Device g ay

Fig. 28.4 — 10T layers

The Sensing Layer includes sensing devices such as sensors,
actuators, embedded systems, and Radio Frequency Identifier (RFID).

413

28. Basic concepts and approaches to development and implementation of 10T systems

The Network Layer includes the gateway and the routes for the
data transmission from gateways to different application users.

The Service Layer provides information services according to the
user and system requirements. The Service Layer may include powerful
data centers and different data servers for the data mining, analysis,
processing, storage, and applications.

Geber A. [12] compared different architectures for several loT
applications. An example of reference architecture shown in Fig. 28.5
(a) contains the drivers with embedded sensors and actuators, the
gateway, the loT integration middleware where the processing logic is
executed and the application that uses the data from the previous layer.

Hence, the simplest reference architecture includes three layers:
sensor, network and application. More sophisticated structure could
contain from five to seven levels: device, network, processing,
application, business, management and security.

Application

i Business Layer

Y

—»{ [0T Integration Middleware L
Application Layer

A
Y

Gateway Processing Layer

-
2
-
% g
— ©
c -
Q
£ 2
E s
o) >
c (&)
c (]
<)
=

Device Network Layer

Device Layer

| Sensor | |Actuator|
(a) (b)

Fig. 28.5 — The two types of 10T architectures: the 10T reference
architecture (a) [12] and the IoT 7-layer architecture (b) [13, 14]

414

28. Basic concepts and approaches to development and implementation of 10T systems

The architecture (shown in Fig. 28.5 (b) was proposed in [13]. It
gives a similar overview of the loT layers.

The device layer consists of sensors, actuators, embedded systems
and physical devices. The main task of this layer is to identify and
collect data and specific information obtained from environment by
sensors and loT-devices. These data is transferred to the network layer.
The network layer is dedicated for networking connectivity and further
transporting data. An alternative name of this layer is transport layer.
The main requirements beside time and quality include providing
secure transmitting data gathered from sensors to the procession layer.
The transmission can be wired and/or wireless.

The procession layer is responsible for service management and
consists of functionality for setting up and taking down of the
association between the 10T connection points. Most of standards and
protocols supporting operation of this layer use the Transmission
Control Protocol (TCP) or the User Datagram Protocol (UDP) for
transport. However, they have different architectures and characteristics
for various purposes.

Feature diagram of procession layer communication protocols of
loT is given in Fig. 28.6. There are three types of source-target
relations available in procession layer protocols: Device-to-Device
(D2D), Device-to-Server (D2S), Device-to-Server (S2S).

In some studies, these features are respectively: Machine-to-
Machine (M2M), Machine-to-Cloud (M2C), Cloud-to-Cloud (C2C).

10T Integration
Middleware

Protocol Type | Source target | | Transport Type | | Architecture |
[cowr] [] | [o5] /\ /\
| p2s | | e | | ubp | Publish- Request-

AMQP Sunscribe Reply

Fig. 28.6 — Feature diagram of procession layer communication
protocols of 10T [14]

415

28. Basic concepts and approaches to development and implementation of 10T systems

There are many criteria to select the right protocol for loT
processing layer. Further information on the selection of the proper 10T
session layer protocol could be found in [16].

Procession layer protocols are similar to the ones in the network
layer. For all communication protocols, the transport layer could be
either the UDP or TCP. Some protocols like DDS support both UDP
and TCP.

Another important process is the selection of network layer
protocol since using TCP and/or UDP changes the characteristics of the
communication from performance and security perspectives. As it
mentioned above, the loT devices have different functionality and
transmission range. For low power devices and networks adoption of
TCP in the network layer is less feasible. Instead, the UDP protocol has
to be used. On the other hand, UDP does not provide common security
protocols (SSL/TLS) that why TCP is required for supporting security
in loT system. From this perspective, the processing layer protocols can
be either publish-subscribe or request-reply. In publish-subscribe
architecture, sensors send data to a topic on which cloud software that
are registered to this topic read data. Interesting feature that in this
architecture publishers and subscribers do not need to know each other,
and do not need to be operating at the same time.

This type of communication is well suited for data that must flow
from one producer to many consumers. On the other hand, for the
request-reply architecture, senders and receivers do need to know each
other. The requester sends a request message and waits for the
response. When the sensor receives the request, it responds with a reply
message. The session layer protocols of IoT generally use publish-
subscribe architecture except in the case of CoAP in which a request-
reply pattern is adopted.

The application layer consists of different loT services and
manages the system using the data from the processing layer.

The business layer defines business logic and workflows it takes
care of the ownership and is responsible for the application
management. This layer is dedicated to management of all 10T systems,
services and applications within the domain.

The security layer is a side-car layer relating to the other five
layers and provides the security functionality.

416

28. Basic concepts and approaches to development and implementation of 10T systems

Complexity is one of the biggest challenges during planning loT
solutions due to they involve many loT devices that communicate with
each other and with cloud services and applications producing a huge
amount of data. 10T devices can be connected either directly to a
network or through a gateway (Fig. 28.7), which enables the devices to
communicate with each other and with cloud services and applications
[15].

Full
Capability =]
IoT

Business
Applications

Constrained

Capability
IoT §§\§

—> &

Constrained /

Capability
IoT

Analytics

Fig. 28.7 — Simplified 1oT System Architecture

Industrial 10T system architecture presented in Fig. 28.8 includes
IT (Information Technology) and OT (Operational Technology).

OT conditionally divided on two levels and has the following
characteristics: Triggered by event, Changing data, low latency real
time; Use of MQTT, COAP (D2S, ~10ms, collect) or, DDS (D2D,
~0.1ms, distribute).

The first level of edge processing (low latency) involves:

— real time connectivity with data aggregation, device
management, device security, communication gateway and processing;

— support low latency industrial real time process management
and event generation;

— connects actuators, analyzers, drives, vision, video, controllers
and robotics.

417

28. Basic concepts and approaches to development and implementation of 10T systems

Private

2'nd level of 2'nd level of
Edge processing Edge processing

Industr1a1
Hub

Device Dev1ce

Actuators

Fig. 28.8 — Industrial IoT System Architecture

The second level of edge processing (medium latency) supports
medium latency industrial process management, alarm generation,
storage. Existing plant field is connected with sensors, data
management, advanced analytics, decision making, people, and
automation. This level allows enterprise to control and communicate to
field assets.

Essential differences between 10T and general class of 10T are:

— alarge number of nodes;

— controlled latency at various levels of hierarchical data
processing;

— keep existing plant field running.

The main benefits of 1l0T architectures are:

— asset optimization;

— process optimization;

— business Optimization.

Industrial 10T requirements:

— existing manufacturing field industrial I/0O devices including
sensors, actuators, analyzers, drives, vision, video, and robotics;

— accommodate large number of nodes;

— controlled latency at various levels of hierarchical processing;

418

28. Basic concepts and approaches to development and implementation of 10T systems

— high reliability, high availability, safe & resilience to failure;

— provides smarter services (monitoring, alarm management);

— non-invasive IT integration with OT.

IT is top down designed from business point of view and is a well-
defined level while OT is defined bottom up with different vendor
proprietary equipment:

— communication network system that works in presence of
internet, intermittent internet or, independent and connects to edge
nodes for real time processing;

— high access security and provision;

— human interaction.

Talking about the overall architectures (Fig. 28.5), we refer to the
reference architectures. It should be mentioned that reference
architectures vary depending on the application domain; however, most
loT reference architectures describe the following common capabilities:

— managing devices and their data;

— connectivity and communication layers;

— analytics and applications.

Typically, loT design & implementation teams are cross-
functional in nature and have specialists from different layers (HW,
firmware, networking, data scientists and so on). The 10T expert should
have practical exposure in all the layers and should combine an end-to-
end solution together.

28.3 The base components of the 10T systems
28.3.1 Major types of technological offerings from loT

From previous chapters we define five main components that
support the Internet of Things. Depending on levels of complexity they
include: things (sensors, actuators, smart devices, and embedded
systems), l0T gateways or simple hubs, cloud or integrating hubs, and
enhanced services. Moving up, the components become more complex
and their connectivity increases [17]:

1. Sensors, actuators, smart devices, and embedded systems are the
components of the sensing layer. They collect data from different
physical, human, and natural environments in an intelligent and

419

28. Basic concepts and approaches to development and implementation of 10T systems

collaborative way, and temporarily store these data. Their connectivity
enables two key capabilities: gathering and analyzing data from the
environment.

2. loT gateways (Simple hubs) are the devices that connect
endpoints to broader networks. When integrated into products such as
vehicle engines; washing machines; or home heating, venting, and air
conditioning (HVAC) systems, the computing intelligence and storage
embedded in a simple hub allows these products to adapt over time to
the user’s behavior and to optimize for efficiency.

3. Integrating hubs connect simple hubs and provide a diverse
array of services that fit more or less seamlessly together.

4. Network and cloud services provide the infrastructure for
functioning loT. They can either be public (accessible to the population
at large) or private (protected behind an organization’s firewall). These
services deliver the seamless and transparent connection to the Internet
that hubs require, along with the cloud computing power needed to
collect, store, and analyze vast amounts of data from myriad endpoints.
They can also provide the infrastructure needed to build or connect to
social networks, so that users of the 10T can compare experiences and
share data.

5. Data centers, services and analytics this category comprises the
most technologically sophisticated components of the IoT. Enhanced
services enable to collect and analyze data from different platforms and
deliver broad interactive functions.

These five technological options, from endpoints to enhanced
services, provide a menu of diverse opportunities for companies
building loT businesses. There are several technological options (levels
of complexity) on the road of developing loT ecosystems (Table 28.1).

Depending on complexity levels they may include all major types
of technological offerings from loT: loT devices, simple hubs,
integrating hubs, and enhanced services.

420

28. Basic concepts and approaches to development and implementation of 10T systems

Table 28.1 — Technological options for developing IoT solutions [17]

Levels of complexity

Tasks Smart devices 10T gateways / Int ting Hub Services
and Sensors Simple Hubs ntegrating Fubs Analytics
Optimiz Industrial platforms for
ation interconnecting analytics engines
and business operations
Large-scale digital city systems
Adaptat | Stand-alone Auto insurance | Protocol-based Emerging
ion GPS navigation | telematics systems | platforms allowing | systems for
devices Smartphone apps | diverse devices in | setting
that use location | a building to | insurance
tracking interconnect to one | rates based
another and | on health
internet and driving
behavior
Control | Motion- or light | Internet-connected | Systems for | Potential
responsive systems for | controlling lights | connected
alarms and | heating, cooling, | and appliances | car traffic
controls and ventilation through remote or | manageme
Bluetooth-enabled | mobile devices nt systems
object
identification
sensor systems
(iBeacon, Estimote
Beacon)
Monitor | Simple Fitness activity | Medical wearables
ing thermostats and | sensors and hub | that feed data to

motion sensors

systems

online diagnostic
platforms

28.3.2 10T device classification

Devices are the base components of 10T infrastructure; they can be
classified in many ways based on the type of data they handle such as,
environmental, medical, financial, etc. or the economical sector where
they are used such as, manufacturing, transportation, retail, consumer
and home.

421

28. Basic concepts and approaches to development and implementation of 10T systems

Geber et al. [15] characterize 10T devices on their high-level
capabilities:

— data acquisition and control;

— data processing and storage;

— connectivity;

— power management.

Another classification for 10T devices based on the potential risks
and impact on living beings during their operating is proposed in [18].
According to this view, 10T devices classified on three types:

Type A: If the loss of one or all of the security objectives causes
severe physical, economic or social harm to the living thing. For
example, malfunction of wireless pacemaker, a vehicle brake system, or
a farm irrigation system.

Type B: If the loss of one or all of the security objectives causes
minor physical, economic or social harm to the living thing5. For
example, malfunction of one of the components of a heating,
ventilation and air conditioning (HVAC) control system may cause heat
exhaustion to humans and animals.

Type C: If the loss of one or all of the security objectives causes
very minor or no harm to the living thing. For example, a cash register
cannot process financial transactions online.

Table 28.2 — Examples of 10T devices and their types as it proposed in [18]

Type B Type C
Medical pumps, HVAC control Alarms, cameras,
monitors, implants, | systems, traffic lights. | dishwashers, lights,
connected cars. garage openers.

The selection of any type of 10T is a risk-based decision that
should take into account other factors unique to the IoT system goals.
In this case, developers can expand each type with “subtypes” to offer
further sub-classification and granularity or create an 10T risk index.

For example, Type A(1) = Life support system, Type A(2) = stand-
alone wireless blood pressure monitor.

422

28. Basic concepts and approaches to development and implementation of 10T systems

28.3.3 10T device design flow

loT device design consists of software development for Central
Process Unit (CPU) implementation, interface drivers, and, when
application demands dictate, hardware design for custom accelerators,
CPU customization, and board-designs. Typical 10T device design
flowchart is depicted in Fig. 28.9.

Many IoT applications begin with prototyping both hardware and
software on existing platforms. To minimize design and development
costs, it is possible to reuse existing platforms. In this case, initial
prototypes are typically designed on existing CPU-based platforms.
With the initial implementation, designers can evaluate performance
and quality to determine whether a CPU-only, Graphics Processing
Unit (GPU)-based, or Field-Programmable Gate Array (FPGA)-based
platform is necessary to achieve goals [19].

To minimize time-to-market, software and hardware are often
developed at the same time. A software team is concentrating on
software features, embedded compilation, drivers and device
integration with cloud computation services. In parallel, the hardware
team performs system-level modeling, component selection, design
implementation, integration and verification. Despite the generally
parallel development processes, the software and hardware design
flows influence each other; software algorithm demands may alter
hardware performance objectives, and hardware implementation
choices can influence how software is designed and implemented.

Prototyping/
Emulation

Software-hardware co-development

Fig. 28.9 — Typical 10T device design flowchart [19]

423

28. Basic concepts and approaches to development and implementation of 10T systems

When designing 10T device, it is necessary to solve a number of
issues related to the implementation of the following set of required
components:

— devices and/or sensors for measuring the selected parameters;

— the method of placement of sensors that will be constantly in
contact with the object of monitoring;

— power supply sources;

— data transmission facilities;

— housing for installation and protection of measuring
instruments and accessories;

— tools to protect the station from possible interference and the
environment.

Indeed, if a hardware implementation is created, there may be no
need for design and optimization of the software version.

28.3.4 Relationship between Sensor Networks and 10T

The sensor networks are the second essential component of the
loT-based system. The 10T comprises sensors and actuators. The data is
collected using sensors. Then, it is processed and decisions are made.
Finally, actuators perform the identifiable system operations (Fig.
28.10).

Fig. 28.10 — Interaction structure by means of sensor and actuator

The differences between Sensor Network (SN) and the loT are
largely unexplored and blurred. We can elaborate some of the
characteristics of both SN and loT to identify the differences (Fig.
28.11).

424

28. Basic concepts and approaches to development and implementation of 10T systems

SN comprises of the sensor hardware (sensors and actuators),
firmware and a thin layer of software. The 10T comprises everything
that SN comprises and further it comprises a thick layer of software
such as middleware systems, frameworks, APIs and many more
software components. The software layer is installed across
computational devices (both low and high-end) and the cloud.

‘e ‘o

loT Services loT Services

o

Internet/Cloud Internet/Cloud

Actuator

(a) (b)

Fig. 28.11 — Two approaches for device connection: direct network
connection (a) and connection through the gateway (b)

From their origin, SNs were designed, developed, and used for
specific application purposes.

In the early days, sensor networks were largely used for
monitoring purposes and not for actuation. In contrast, 10T is not
focused on specific applications, instead 10T can be considered as a
general purpose sensor network.

425

28. Basic concepts and approaches to development and implementation of 10T systems

During the stage of deploying sensors, the 10T would not be
targeted to collect specific types of sensor data, rather it would deploy
sensors where they can be used for various application domains. For
example, company may deploy sensors, such as pressure sensors, on a
newly built bridge to track its structural health. However, these sensors
may be reused and connect with many other sensors in order to track
traffic at a later stage. Therefore, middleware solutions, frameworks,
and APIs are designed to provide generic services and functionalities
such as intelligence, semantic interoperability, context-awareness, etc.
that are required to perform communication between sensors and
actuators effectively.

Sensor networks can exist without the loT. However, the loT
cannot exist without SN, because SN provides the majority of hardware
(e.g. sensing and communicating) infrastructure support, through
providing access to sensors and actuators. There are several other
technologies that can provide access to sensor hardware, such as
wireless ad-hoc networks. However, they are not scalable and cannot
accommodate the needs of the loT individually, though they can
complement the 10T infrastructure.

28.4 The 10T development boards and platforms for
prototyping

In many cases, 10T development process includes prototyping
using a single platform or their combinations that matches the desired
target as closely as possible. 10T development boards contain standard
communications, sensor interfaces, and general purpose /O
connections so that the user can easily integrate sensors, actuators,
communications, and Micro Electromechanical System (MEMS) to
prototype their system.

Although these prototypes will not be used for production releases,
they play an important role in demonstrating a proof-of-concept and
evaluating overall feasibility. Prototypes may have limited modeling
fidelity to the final product characteristics, yet even rough estimates of
size, power/energy, performance, and reliability can be represented as
expected product feasibility [19].

426

28. Basic concepts and approaches to development and implementation of 10T systems

For prototyping certain 10T project an existing CPU boards, GPU
boards, or FPGA boards can be used, as shown in Fig. 28.12.

e

\ 5
o
! = s

Fig. 28.12 — Examples 10T development boards [19]

The most popular loT platforms for prototyping are Arduino,
Raspberry Pi, ESP8266 and Spark Core. Table 28.3 summarizes
information about these platforms to understand their capabilities and
limitations.

The Raspberry Pi is ideal for study server-based 10T projects. It
can connect to both LAN and Wi-Fi networks. However, it is not
recommend using the Raspberry Pi for projects where there is a custom
made Printed Circuit Board (PCB) or to integrating Raspberry Pi into a

finished product.
Arduino is ideal for logging sensor data and controlling actuators
via commands posted on the server by another client.

Table 28.3 — Comparison of 10T platforms for prototyping

Prototyping | Connecting to Features Advantages | Disadvantages
platform the Internet

Arduino Arduino Yun Device - easy to use - all Arduino
has built-in capabilities vary | - has a huge boards, apart
capability to across the community from Yun, need
connect to Wi- | official Arduino | for technical | an external
Fiand LAN models, and support. module so as to
networks, between the - easy to connect to the
others rely on dozens of third- | create a internet.
the Wi-Fi shield party compatible | prototype
and Ethernet
shield boards.

Raspberry Wireless or via High storage - don’t need - not easy to set

Pi an Ethernet space, RAM, extra shields | up and code
cable. powerful or hardware | apps

Processor. to connectto | - cannot be

427

28. Basic concepts and approaches to development and implementation of 10T systems

Supports many | the internet. | easily

programming - automatic integrated into a

languages to connecting to | product

create server- wi-fi or - numerous OS

side apps LAN, so long | _ ot easy to
?ﬁatthﬁa;outer decide on the
DHCP best OS for the
configured. devige you are
- ahuge creating.
Raspberry Pi
community.

ESP8266 Self-contained Preprogramd AT | - plug and - lack of SPI
Wi-Fi module commands that play Wi-Fi communication
that can provide | enable to hook it | module. and support of
any onto Arduino -don’tneed | SSL.
microcontroller | board and use to write huge | - doesn’t have
with accessto | Wi-Fi chunks of 5V to 3V lodic
Wi-Fi networks | capabilities. code to get level shifting

Easy connecting | started. - lacks of
to Arduino - very cheap, voltage
board or another | - easy to [)equlator on-

. . oard
microcontroller integrate the - sometimes
oA | S5 | s

; of current (the
be integrated - perfect for | Arduino cannot
with application | building supply).
specific devices | prototypes - need to use
and sensors an external 3.3v
easily through voltage
its GP10s. regulator.
- harder to use
in comparing to
other platforms

Spark Core Wi-Fi enabled TM32F103CB gasy to it is linked to
10T ARM 32-bit integrate on a | the Spark
development Cortex M3- PCB as the platform, which
platform. based Spark Photon | you have no
The back end of | microcontroller | Chip. itis control over
the Spark Core | and CC3000 easy to use,

- . C has a good
is a website Wi-Fi module online
platform cloud community
that allows to and comes
send and connected to
receive data. a cloud
platform.

428

28. Basic concepts and approaches to development and implementation of 10T systems

There are some instances where Arduino boards are used for
server functions such as hosting a simple web page.

The ESP8266 is best used in client applications such as data
logging and control of actuators from online server applications.

The Spark Core platform is ideal for both server and client
functions. It can be used to log sensor data onto the Spark.io cloud or
receive commands from the cloud. Spark cloud is available for free.

28.5 The loT platforms: types and selection criteria

An loT platform plays an important role in the lIoT architecture.
When building an 10T project or system, connected devices send data to
cloud platforms. These platforms store data and use it to build charts.

Table 28.4 — Type of services

Tg?:tgrﬁ-r Overview Example
End-to-End Provide the hardware, software, Particle
connectivity, security, and device
management tools to handle millions of
concurrent device connections
Connectivity Low power and low cost connectivity Mulesoft
Management management solutions through Wi-Fi and Hologram
Platforms cellular technologies Sigfox
10T Cloud Monitor and tack millions of simultaneous | Google Cloud
device connections. loT,
Salesforce
Cloud loT
Data Platform Combine different tools to route device Clearblade
data and manage / visualize data analytics | Azure,
ThingSpeak

An 1oT platform is an integrated service that offers us the things
we need to bring physical objects online and provides the following
services:

— rapid application development and deployment;

— device management;

— integration;

— data storage;

429

https://www.particle.io/
https://www.mulesoft.com/integration-solutions/api/iot
https://hologram.io/
http://sigfox.com/
https://cloud.google.com/
https://cloud.google.com/
https://www.salesforce.com/
https://www.salesforce.com/
https://www.clearblade.com/
https://www.microsoft.com/en-us/internet-of-things/azure-iot-suite
https://thingspeak.com/

28. Basic concepts and approaches to development and implementation of 10T systems

— dashboard creation;

— security services.

The relative importance of these capabilities will vary from project
to project and depend on the use case.

There are hundreds of loT platforms available from a range of
vendors. Before starting new project you should to assess your business
needs and analyze how will your needs change over time.

There are following selection criteria for choosing the right
Internet of Things platform for your project [20, 21]:

— connectivity: the type of connectivity (a Wi-Fi or cellular
solution) for 10T system;

— type ofservice: some services are purely connectivity
platforms, while others are end-to-end solutions that offer the hardware,
software, and connectivity;

— solution lifetime: how long has the loT platform been in
business? The IoT platform offering services for 4+ years is a good
solution;

— geographic coverage: does the IoT platform cover the regions
your business needs?;

— data plan: does the vendor offer a fair data plan, for example if
you decide to pause or suspend your data services at any time as well as
the ability to control amount of data that is used. It is essential to
achieve a vendor/technology agnostic solution which is easily
transferable to someone else in case such needs arise;

— security / privacy: assess how loT platform combats security
issues. The Gateways of your cloud platform should offer SSL or
DTLS encryption;

— managed integrations / API Access: how does the vendor
integrate cellular modems, sim-cards, device diagnostics, firmware
updates, cloud connections, security, application layer, RTOS, etc., into
a simple package;

— redundancy and disaster recovery: does your cloud platform
provider have a dedicated infrastructure to handle your data? How often
is the data backup taken?;

— 10T ecosystem: the relationships between the services the loT
platform;

430

28. Basic concepts and approaches to development and implementation of 10T systems

— data access: does the service match you needs in integrating the
data acquired through the 10T platform with current cloud service?;

— hardware: does the vendor offer any off-the-shelf applications,
developer Kits, or starter packages for the specific use case you are
targeting?;

— device management: how does the vendor allow your to
monitor, segment, and manage IoT devices that are out in the field?;

— edge intelligence: 10T platform needs to be able to extend itself
seamlessly from cloud to fog and even mist and support new topologies
for decentralized computing;

— OTA firmware updates: how does the vendor allow you to send
updates and fix bugs on your devices remotely? It is a simple or
complex process?

28.6 Work related analysis

Approaches to design and development of l10T-based systems has
been proposed for several applications in software development life-
cycle for the Internet-of-Things [7], designing autonomic systems and
investigating their ability to support 10T challenges [22], identification
of design challenges and developing a model-driven methodology for
the loT-Based Systems [5, 7], using Computational Notebooks for loT
Development [23].

Our partners from EU universities are actively involved in research
and development for loT-based systems, applying new knowledge in
business and the educational process. For example, the University of
Coimbra suggests several courses in this topic, namely, “Intelligent
Sensors”, “Emergent Internet services”. The objectives of course on
Emergent Internet services are the knowledge about telematics
applications fundamentals, Internet applications and emerging Internet
services.

School of Engineering at Newcastle University focuses on a broad
range of communications, sensors and signal processing. One of their
courses EEE8009 “Wired and Wireless Network Technologies”
introduces a broad coverage of modern communication networks and
network technologies, transmission and switching; to provide students
with knowledge of the issues relating to modern telecommunications
systems, protocols, flow and error control. Another one is “Embedded

431

28. Basic concepts and approaches to development and implementation of 10T systems

Systems and Internet of Things” (ES-10T) delivers an understanding of
Embedded Systems and Internet of Things and their enabling
technologies. It is industrially focused, tailored to the demands of
companies that design and manufacture mobile electronic [24]. This
course gathers five fields of knowledge which work well together:
tools, techniques and design of Embedded Systems and Internet of
Things (ES-10T) and subsystems; scientific and engineering principles
and practices of Computing Science and Electronic Engineering;
embedded computer systems architecture; networking and
communication systems; computer programming.

Conclusions and questions

In this chapter, the materials for module PCM4.1 “Basic concepts
and approaches to development and implementation of IoT systems” of
PhD course “Development and implementation of IoT-based systems”
are presented. They can be useful for preparation to lectures and self-
learning for lecturers, PhD-students, 10T developers, etc.

In field of 10T solutions, research challenges are distributed in
almost all aspects of their development and implementation, ranging
from the enabling devices to the top level business models. So the
research space for a complete IoT solution shows a cross-layer and
multidisciplinary pattern

We intend to raise a series of research problems about the loT
architectures, device architectures and system integration to obtain an
efficient loT system. Also, we discussed an effective research approach
to resolve an essential challenge in nowadays research on the IoT — the
lack of basic technology, standards, and practical business
requirements.

To develop a comprehensive solution for a particular application,
developers must integrate multidisciplinary knowledge of ICT,
management, business administration, and the target application.
Moreover, to obtain good solution, the specific knowledge of the target
area and application is essential. This chapter is directed on encourage
readers on continue investigating the design methodologies and system
models as well as development new applications.

432

28. Basic concepts and approaches to development and implementation of 10T systems

In order to better understand and assimilate the educational
material that is presented in this section, we invite you to answer the
following questions.

22. What are the key characteristics of 10T industry?

23. Phases and deliverables of an 10T technical strategy?

24. What are the main strategies for developing IoT systems?

25. What are the differences between mashup-driven and model-

driven approaches?

26. What methodology best fits to quick prototyping?

27. What are the main phases of mashup-based methodology?

28. How many layers can 10T architecture consist of?

29. What are the requirements for network layer?

30. What is the reference architecture?

31. What are the main benefits of IloT architectures for

enterprises?

32. What are the major types of technological offerings from 1oT?

33. Which technological options provide diverse opportunities for

companies building 10T businesses?

34. What types of 10T devices are known?

35. What are the differences between sensor network (SN) and

the 10T?

36. What are selection criteria for choosing the right Internet of

Things platform for your project?

References

1. Y. Zhang and J. Yu, "A Study on the Fire IOT Development
Strategy", Procedia Engineering, vol. 52, pp. 314-319, 2013. DOI:
10.1016/j.proeng.2013.02.146.

2. "Defining your loT governance practices”, IBM Developer, 2019.
[Online]. Available: https://developer.ibm.com/articles/iot-governance-01/.
[Accessed: 25- Feb- 2019].

3. C. Prehoferand and L. Chiarabini, "From Internet of things mashups to
model-based development”. 1EEE 39" Annual Computer Software and
Applications Conference, pp. 499-504, September 2015.
https://doi.org/10.1109/COMPSAC.2015.263

4, M. Blackstock and R. Lea "loT mashups with the WoTKit", IEEE 3"
International Conference on the Internet of Things (I0OT 2012), pp. 159-166,
October 2012. https://doi.org/10.1109/I0T.2012.6402318

433

https://doi.org/10.1109/COMPSAC.2015.263

28. Basic concepts and approaches to development and implementation of 10T systems

5. E. Mezghani, E. Exposito, K. Drira, "A Model-Driven Methodology for
the Design of Autonomic and Cognitive loT-Based Systems: Application to
Healthcare”, IEEE Transactions on Emerging Topics in Computational
Intelligence, Vol. 1 (3), pp. 224-234, June 2017.
DOI: 10.1109/TETCI.2017.2699218

6. F.Fleurey and B. Morin, "ThingML: A Generative Approach to Engineer
Heterogeneous and Distributed Systems". IEEE International Conference on
Software Architecture Workshops (ICSAW), pp. 185-188, April 2017. https:
//doi.org/10.1109/ICSAW.2017.63

7. J. Dias and H. Ferreira, "State of the Software Development Life-Cycle
for the Internet-of-Things", Arxiv.org, 2019. [Online]. Available:
https://arxiv.org/pdf/1811.04159. [Accessed: 25- Feb- 2019].

8. D. Guinard, V. Trifa, E. Wilde, "A resource oriented architecture for the
web of things", Internet of Things (IOT), November-December 2010.
DOI: 10.1109/10T.2010.5678452

9. M. Blackstock and R. Lea, "loT mashups with the WoTKit", 3rd
International Conference on the Internet of Things (10T), pp. 159-166, October
2012. DOI: 10.1109/10T.2012.6402318

10. A. Pintus, D. Carboni, A. Piras, "Paraimpu: a platform for a social web of
things", 21st International conference companion on World Wide Web. ACM, pp.
401-404, April 2012. [Online]. Available: https://mww2012.universite-
lyon.fr/proceedings/companion/p401.pdf [Accessed: 01- Oct- 2018].

11. A. Rule, A. Tabard, J. Hollan, "Exploration and Explanation in
Computational Notebooks". CHI Conference on Human Factors in Computing
Systems - CHI ’18, paper No. 32, April 2018. DOI:10.1145/3173574.3173606

12. J. Guth, U. Breitenbiicher, M. Falkenthal, F. Leymann, L. Reinfurt,
"Comparison of loT Platform Architectures: A Field Study based on a Reference
Avrchitecture". IEEE Conference on Cloudification of the Internet of Things (CloT),
pp. 1-6, November 2016.

13. M. Wu, T. Ly, F. Ling, J. Sun, H. Du, "Research on the Architecture of
Internet of Things". 3rd International Conference on Advanced Computer Theory
and Engineering (ICACTE). Vol. 5, pp. 484-487, August 2010.

14. . Koksal and B. Tekinerdogan, "Avrchitecture design approach for 1oT-
based farm management information systems", Precision Agriculture, 2018.
Available: 10.1007/s11119-018-09624-8 [Accessed 25 January 2019].

15. A. Geber, "Simplify the development of your loT solutions with loT

architectures”, IBM Developer, 2019. [Online]. Available:
https://developer.ibm.com/articles/iot-Ip201-iot-architectures/. [Accessed: 25
January 2019].

16. O. Koksal and B. Tekinerdogan, "Feature-driven domain analysis of
session layer protocols of Internet of Things". IEEE International Congress on

434

28. Basic concepts and approaches to development and implementation of 10T systems

Internet of Things, ICIOT, pp. 105-112, June 2017.
https://doi.org/10.1109/IEEE.ICIOT.2017.19.

17. F. Burkit, "A Strategist’s Guide to the Internet of Things", [Online].
https://www.strategy-business.com/article/00294?gko=a9303 [Accessed: 25- June-
2019].

18. F. Uribe, "The Classification of Internet of Things (loT) Devices Based
on Their Impact on Living Things", SSRN Electronic Journal, 2018. DOI:
10.2139/ssrn.3350094.

19. D. Chen, J. Cong, S. Gurumani, W.-m. Hwu, K. Rupnow, Z. Zhang
"Platform choices and design demands for loT platforms: cost, power, and
performance tradeoffs”, Journal IET Cyber-Physical Systems: Theory &
Applications, pp. 1-8, 2016.

20. J. Lee, "How to Choose the Right 10T Platform: The Ultimate Checklist".
[Online]. Apr. 25, 2018. https://hackernoon.com/how-to-choose-the-right-iot-
platform-the-ultimate-checklist-47b5575d4e20 [Accessed: 25- June- 2019].

21. "Top 10 selection criteria to choose your loT platform" [Online].
https://iotify.io/top-10-selection-criteria-for-your-iot-cloud-platform/ [Accessed:
25- June- 2019].

22. C. Vidal, C. Ferndndez-Sanchez, J. Diaz, J. Pérez, "A model-driven
engineering process for autonomic sensor-actuator networks," International Journal
of Distributed Sensor Networks, vol. 2015, p. 18, 2015.

23. F. Corno, L. De Russis and J. Saenz, "Towards Computational
Notebooks for loT Development”, Extended Abstracts of the 2019 CHI
Conference on Human Factors in Computing Systems - CHI EA '19, 2019. DOI:
10.1145/3290607.3312963.

24. "Embedded Systems and Internet of Things MSc - Postgraduate -
Newcastle University", Ncl.ac.uk, 2019. [Online]. Auvailable:
https://mww.ncl.ac.uk/postgraduate/courses/degrees/embedded-systems-internet-
of-things-msc/#profile. [Accessed: 25- June- 2019].

435

https://doi.org/10.1109/IEEE.ICIOT.2017.19
https://www.strategy-business.com/article/00294?gko=a9303
https://hackernoon.com/how-to-choose-the-right-iot-platform-the-ultimate-checklist-47b5575d4e20
https://hackernoon.com/how-to-choose-the-right-iot-platform-the-ultimate-checklist-47b5575d4e20
https://iotify.io/top-10-selection-criteria-for-your-iot-cloud-platform/

29. Models for loT-based devices and technologies for data processing and transfer

29. MODELS FOR IOT-BASED DEVICES AND
TECHNOLOGIES FOR DATA PROCESSING AND TRANSFER

Prof., DrS. Yu. P. Kondratenko, Ass. Prof., Dr. G.V. Kondratenko,
Ass. Prof., Dr. le.V. Sidenko, Ph.D. Student M.O. Taranov (PMBSNU)

Contents
ADDIEVIATIONS ...c.eiiiceie e e 437
29.1 loT-based devices: models and network communication protocols
... 438
29.1.1 Types of models for 10T-based devicCes........c.ccevvveveveirennnne. 438
29.1.2 Tools and means for the development of information models441
29.1.3 Network communication protocols for 1oT-based devices.....445
29.2 Technologies for data processing in loT-based systems 447
29.2.1 Technologies for data collection and analysis from loT devices
... 447
29.2.2 Technologies for data processingccccevevvveveveeeesieseenenns 451
29.2.3 Methods of management and forecasting............cc.cceeevveennene. 453
29.3 Protocols and standards for data transfer between loT-based
HBVICES ..ttt st 456
29.3.1 Protocols for data transfer...........ccoeeiiienene v 456
29.3.2 Standards for data transfer...........ccocevvvieveniiie e 458
29.3.3 Cybersecurity of 10T-based deViCesScccvvvvvverveveresrennn, 461
29.4 Work related analysSisc.cccecvevieiieeiine i 464
Conclusions and QUESLIONS..........ccererierieieieisesie e 466
RETEIENCESviceeee et 467

436

29. Models for loT-based devices and technologies for data processing and transfer

Abbreviations

CARP — Common Address Redundancy Protocol
CoAP — Constrained Application Protocol

DDS - Data Disturbing Service

DODAG — Destination Oriented Directed Acyclic Graph
DSL — Dictionary Specification Language

IEEE - Institute of Electrical and Electronics Engineers
0T — Internet of Things

LPWAN — Low-Power Wide Area Network

MQTT — Message Queuing Telemetry Transport

NFC — Near Field Communication

OFDM - Orthogonal frequency-division multiplexing
PBCC — Packet Binary Convolutional Coding

QR — Quick Response Code

RFID — Radio Frequency IDentification

RPL — Routing over Low Power and Lossy Networks
STOMP — Simple (or Streaming) Text Oriented Message
Protocol

UDP — User Datagram Protocol
WLAN — Wireless Local Area Network
XMPP — Extensible Messaging and Presence Protocol

437

29. Models for loT-based devices and technologies for data processing and transfer

29.1 loT-based devices: models and network communication
protocols

29.1.1 Types of models for l0T-based devices

A special role in the technology of the "Internet of Things"” (IoT) is
played by measuring instruments that provide the transformation of
information about the external environment into data for further
processing by 10T devices (loT-based devices). At present, a wide
range of measuring devices is used, from elementary sensors (eg,
temperature, pressure, illumination), consumption accounting or
metering devices (such as smart meters) to complex integrated
measuring systems. Within the framework of the concept of the
"Internet of Things", it is fundamental to combine measuring devices in
the network (such as wireless sensor networks, measuring complexes),
which enables the construction of interoperability systems [1, 2].

Nowadays, the 10T device is considered to be any device that can
receive indications (data) from the environment and transfer them to a
database, where they can be saved and, in some cases, analyzed.
Therefore, the necessary condition is to connect devices to the
computer network one way or another [1].

There is a sufficient number of classifications of IoT devices
created by different manufacturers of both hardware and software. For
example, Google has developed its classification of 10T devices for its
own Google Smart Assistant platform [3].

To simulate the interaction between the 10T device and the 10T
platform, you need to create an abstract description of the device, or so-
called information model. On the basis of an information model, a code
can be generated in the programming language required for the
platform [1].

The information model of the loT-device should be understood as
the model of the object, which is presented in the form of information
describing the essential parameters for this object and variables, the
links between them, inputs and outputs, and allows you to simulate
possible states of an object by submitting input data to the model [3].
Also, the term information model can be regarded as a set of
information that characterizes the essential properties and states of the
object, process, phenomenon, as well as the relationship with the

438

29. Models for loT-based devices and technologies for data processing and transfer

surrounding world. The existence of Internet technology is impossible
without the existence of information models of 10T devices that need to
be linked to the network [1].

One of the open source software tools that can be used to create
information models is Eclipse Vorto (Fig. 29.1). This is an open source
software tool that allows you to create and manage technologies that are
compatible with other systems as well as information models.
Information models, in the context of the software for their creation, are
understood as a description of the attributes and capabilities of a real
device. These models can be managed and shared in Vorto Information
Model Repository which are repositories for information models. Also,
Vorto allows you to integrate devices on different platforms [4].

VO rtO Platform
‘ Vendor ‘
loT Tool Set Meta Information
Model
E‘E |

Device)
Manufacturer provides

Platform specific
Code Generator

Information Model
describes Repository

Information
creates Model

...................

v is de:cnbed-by browses -+

i
_________________ 1
<+
< ’
integrates Solution invokes b
Device Developer P

uses

Fig. 29.1 — The structure of the Eclipse Vorto and its components [4]

The benefits of the Eclipse Vorto software are that with the help of it
there can be solved the following tasks [5]:

1. Development of information models of devices (description of
devices and their purpose).

Interoperability is one of the most important criteria in loT. It is
fulfilled with the help of loT-platforms that are able to integrate devices
and create an infrastructure for interoperability. It is important for device
providers to enable platform vendors to integrate their devices without

439

29. Models for loT-based devices and technologies for data processing and transfer

much effort. A device that can be integrated on different platforms can be
used in different scenarios. The Eclipse Vorto toolkit lets one create
abstract, technological descriptions of devices. These descriptions are read
and, thus, can be converted into the formats required to integrate into a
particular platform. By providing such a description of the device, the
device vendor makes it easy to integrate devices into platforms for which
there are Vorto code generators [5].

In order to create an information model using Eclipse Vorto, you
need to take the following steps [4]:

a) download Eclipse Vorto Perspective;

b) open Model Repository Browser;

c) select model and generator (s), for example, Constrained
Application Protocol (CoAP).

2. Creating platforms.

There are plenty of smart devices in the market. The client should
not be restricted by the devices of specific vendors, for example, the
platform which its loT environment is based on may not support other
devices. At the same time platform vendors should integrate as many
different types of loT devices on their platform. Eclipse Vorto allows you
to create a platform-specific code generator that transforms information
models into the formats required to integrate into a specific platform. After
implementing an appropriate code generator, it is easy to integrate the loT
devices that are available in the Eclipse Vorto repository [1, 4, 5].

3. Developing solutions.

Decision makers that integrate 10T devices into specific platforms
must write the code using information about the corresponding 0T device.
The Eclipse Vorto software code generator infrastructure lets one do this
automatically, which greatly reduces the programmer’s or developer’s time

[5].

The process of constructing the information model of an loT device
includes the definition of the sources of personal data and their formats, the
construction of a model and data structure and their further analysis (Fig.
29.2).

The corresponding technology of the independent abstraction of the
loT device creates a standard: the information model can be transformed
into different formats, that is, the specific components of the model serve
as a base for integration into different platforms.

440

29. Models for loT-based devices and technologies for data processing and transfer

P
Personal

data sources
-)

evelopment Development Analysis of
of data model of data structure data structure
EEEEE—
Personal

data formats
T)

Fig. 29.2 — Scheme of the process of creating an information model of
the IoT device

29.1.2 Tools and means for the development of information
models

There are a large number of resources available on the market of
software tools and means that allow the development of information
models, track and process information from loT devices. Most of them
have some of the following features [2]:

— adding an informational model;

— displaying received data in real time in the form of diagrams;

— realization of data transmission using the Message Queuing
Telemetry Transport (MQTT) protocol.

The corresponding resources which have this feature are ThingBoard
(Fig. 29.3), Ubodots IloT dashboards (Fig. 29.4), Node-Red-Ul,
freeboard.io, and others [6].

Smart Meter A Smart Meter B

VOLTAGE FREQUENCY VOLTAGE FREQUENCY
236.72V 50.77 Hz 234.55V 50.08 Hz

Fig. 29.3 — The ThingBoard Web Application Interface [6]

441

29. Models for loT-based devices and technologies for data processing and transfer

These software tools enable adding information models to loT
devices and visualizing received data in real time, but they do not use
the means of data mining (means of intellectual data analysis).

L
ses ubidots

.

Preventive Maintenance
temperature (°C) Vibration status Humidity status |ubrication
or
89.60
0 100

Today's avg temp. Today's avg lubrication Today's avg humidity Current vibration (rpm)

87.79. 834.28 4339 F | [l [l i]|
1600 “ HHLAANE I

Current temperature Current lubrication Current Humidity HRHRL ‘l | ‘\” L \x Hi
1,400 | 1] |
U R 11l
| | | [| ! | ‘ [|

89.60. 839.60 44.80 5. . . |1

2

Fig. 29.4 — Ubidots loT dashboards web application interface [6]

The Eclipse Vorto software tool is a tool for creating information
models for a variety of IoT devices and generating the code of the
relevant models for different types of loT platforms [5].

Vorto solves the problem of describing loT devices from different
manufacturers in the form of information models. Such models are
described at the abstraction level, thus they are not connected with any
technological platform (Fig. 29.5).

For each functional block, the set of operations which it can
perform and the set of events it processes is determined. The
information model of functional blocks is created using the Dictionary
Specification Language (DSL) [1, 4].

The convenience of using Vorto components is that users are not
restricted to the formats of 10T devices or 10T platforms. Vorto offers
mechanisms that let users use code generators that can convert the
description of Vorto loT-devices to various formats [5]. Available

442

29. Models for loT-based devices and technologies for data processing and transfer

formats include programming languages, such as Java and C ++, as
well as formats for documentation purposes. It is also possible to
transform models into formats defined by standardization organizations
and industry consortia.

Eclipse Vorto Device

loT Tool Set Metamodel | describss [| | @
% EEE =
ik ools for id
'
- { Def of

Code Generator

Infrastructure
Java
] > - = Java »
Information Model Repository —o

;
b b ~—
/ o
— by —
Information model A Information model B — =
G // =X X Maven
i project

Fig. 29.5 — The scheme of the process of creating an information model
by Eclipse Vorto

oxl s

The information model of the Vorto 10T device contains various
types of functional blocks, data types, and transfer units (Fig. 29.6).

A functional block provides an abstract view of the necessary
functions of the loT device for using with a specific application. Thus,
it is a consistent set of functions. The corresponding set can be
associated with a specific component of the device, for example, a
battery, a global sensor, or a switch. Functional blocks have properties
(attributes) and behavior patterns (operations). To ensure compatibility
between different resources, the description of the functional block
should be as abstract as possible. Functions which are specific to the
device and cannot be modeled abstractly can be encapsulated, for
example, in the functional unit of the device [4, 5].

Data types and conversion units are the smallest units of the
model. They represent the states or properties of the model elements.

Information models are well structured and standardized but have
some limitations. For instance, as the impossibility of implementing the
logic of data transmission over protocols and receiving commands from

443

29. Models for loT-based devices and technologies for data processing and transfer

a server or monitoring system. Consequently, these models have only
informational character.

Information
model

Functional
block 3

Functional
block 2

Functional
block 1

Data Data
type 1 type 2
) Usual
Conversion|
data type

Fig. 29.6 — Structure scheme of the information model

Below is an example of the information model of the 10T device
developed for controlling the indoor climate using the Eclipse Vorto.

Functional temperature sensor unit:
functionblock TemperatureSensor {

status {
mandatory currentTemperature as float with {
measurementUnit : TemperatureUnit.Celsius
"Indicates the current temperature in Celsius."
}
}

444

29. Models for loT-based devices and technologies for data processing and transfer

Generated Data Types (Listing):
description "Enum containing temperature measurement units."
enum TemperatureUnit {
Celsius "Measurement unit: degree celsius.",
Fahrenheit "Measurement unit: degree fahrenheit."

}

The information model of the device for obtaining the data of the

environment conditions of the room:
infomodel EnvironmentState {
functionblocks {
humiditysensor as HumiditySensor
temperaturesensor as TemperatureSensor

29.1.3 Network communication protocols for 10T-based devices

After completing the stage of creating the information model of
the 10T device and generating the code for the selected 10T platform, it
is necessary to determine the protocols for connecting IoT devices to
the network [1, 2].

Consider the following protocol options for connecting devices on
the network [7, 8]:

1. MQTT.

The message queuing telemetry transport protocol [2] was created
about 15 years ago to monitor distant sensor nodes and was designed to
save both energy and memory. The relevant protocol is based on the
Publish-Subscribe communication model, in which the intermediary is
responsible for transmitting messages to the clients of MQTT. It allows
multiple clients to post messages and receive updates on various topics
from the central server. It looks like subscribing to the YouTube
channel, where you get a notification each time a new video is
published.

Using the MQTT, the connected loT device can subscribe to any
number of topics that are hosted by the MQTT. Whenever another
device publishes data on any of these topics, the server sends messages
to all connected users of these topics, warning them of newly available
data. The MQTT protocol works on embedded devices and mobile

445

29. Models for loT-based devices and technologies for data processing and transfer

platforms at the same time being connecting to scalable web servers
over wired or wireless networks. It is useful for connections with
remote embedded systems where network bandwidth is low or the
connection is unpredictable. It is also ideal for mobile applications that
work with small amounts of transmitted information. For example, the
high performance and reliability of the MQTT protocol are
demonstrated by Facebook Messenger, Amazon loT (AWS-10T), IBM
Node-Red and others that use it to serve millions of people every day
[3].

2. CoAP.

Constrained application protocol is the Internet Protocol for
restricted devices (defined in RFC 7228). The CoAP is intended for
application between devices in the same limited network, between
devices and shared nodes on the Internet, and between devices on
various constrained networks which the Internet connects to. This is an
application layer protocol that is designed for network restricted 10T
devices, such as nodes of network sensors. It can work on most devices
that support User Datagram Protocol (UDP) or an analog of UDP. It
implements the architectural style of Representational State Transfer
(REST), which can be transparently mapped to HyperText Transfer
Protocol (HTTP). However, CoAP also provides features that go
beyond HTTP, such as national push notifications and group
communication. Unlike MQTT, CoAP does not require the work of a
broker server. On the implementation side, the Eclipse Californium
project covers the implementation of the Java CoAP protocol, including
Datagram Transport Layer Security (DTLS) security support. There is
also a MicroCoAP project that provides the implementation of the
COoAP for Arduino [2, 9].

3. Bluetooth and Bluetooth Low Energy (BLE).

The Bluetooth protocol provides wireless communication through
the radio frequency (2.4 GHz spectrum in the ISM band) using the
standard that was originally used to exchange files between mobile
phones. Bluetooth, as a rule, is divided into two categories [2].

Bluetooth Classic is designed to work on high-speed loT devices,
for example, streaming audio data wirelessly [3].

Bluetooth Smart or Low Energy/BLE is designed for low-battery
loT devices that carry small volumes of packet data.

446

29. Models for loT-based devices and technologies for data processing and transfer

Currently, Bluetooth should be understood as a complex network
protocol developed specifically for the loT. It provides a stable
connection with a low power consumption. An obvious example is a
connection between Bluetooth and BLE smartphone and fitness tracker.
With a constant connection and a small amount of battery tracker,
wireless data transmission is at a high level [10, 11].

So, today there are many different protocols and industry standards
for connecting 10T devices, such as the above and Wi-Fi WebSockets,
ZigBee, LoRA, Simple RF, Extensible Messaging and Presence
Protocol (XMPP), Radio Frequency IDentification (RFID), Near Field
Communication (NFC), etc. Nevertheless, the choice must be based on
the requirements of the 10T system. For example, the MQTT protocol is
extremely powerful and will be effective in developing corporate 10T
systems. In the case of CoAP, a developer can create their own limited
network environment and transfer information to the Internet through a
proxy server. If the system does not provide Internet connection or
large volumes of data transmitted, then Bluetooth Low Energy might be
a better choice [12].

29.2 Technologies for data processing in 10T-based systems

29.2.1 Technologies for data collection and analysis from loT
devices

Data transmission (data exchange, digital transmission, digital
communication) is a physical process of data transfer (digital bit
stream) in the form of signals from point to point or from point to
multiple points. As a rule, this is done by means of telecommunication
through the data transmission channel, for further collection and
processing by means of computer facilities [2, 3].

Data-capturing Device is a physical device that has read/write
functions and the ability to interact with physical things. The interaction
may be carried out indirectly by means of data transfer devices or
directly by data carriers connected to physical objects. A general
purpose device has built-in processing and communication capabilities
and can exchange data using wired or wireless technologies [1].

The unique aspect of 10T, compared to other network systems, is
obviously the presence of a plurality of physical things and devices

447

29. Models for loT-based devices and technologies for data processing and transfer

other than computing devices and data processing devices. Fig. 29.7,
adapted to the recommendations of Y.2060, depicts the types of devices
in the ITU-T model. The model considers the 10T as a network of
devices closely related to things. Sensory and actuating devices interact
with physical things in the environment. Data acquisition devices read
or write data on physical things by interacting with data transfer devices
or data carriers [1].

Corporate network
or Internet

A

v

Communication network

Sensor/execution unit { Data acquisition device General purpose device
A A A '
v
ij t\riz::nsfcr Data carrier
evice
A 4
Physical things Physical things Physical things

Fig. 29.7 — Model for collecting and processing data in 10T networks

Recommendation Y.2060 states that technologies used to interact
between data acquisition devices and data transfer devices or data carriers
include radio frequency, infrared, optical and galvanic innervation [2, 12]:

— RFID;

— infra-red labels used for military purposes, medical and other
environments where you need to track the location and movement of
personnel. It also reflects the infrared labels (stripes) on the military form,
which work with the help of batteries and emit identification information.
Remote controls used at home or in other environments for controlling
electronic devices can also be easily integrated into the 10T;

448

29. Models for loT-based devices and technologies for data processing and transfer

— barcodes and Quick Response (QR) codes can serve as examples
of optical data storage media;

— an example of galvanic innervation can be medical implants that
use electrically conductive properties of the human body [9]. In the course
of communication between the implant and the surface of the body, the
galvanic pair transmits signals from the implant to the electrodes. This
circuit requires very little energy, which reduces the size and complexity of
the implanted device.

The last type of device in Fig. 29.7 is general purpose devices. They
have the ability to process data. A good example is the "smart home"
technology, which can integrate virtually any device in the 10T network for
centralized or remote control [12, 13].

Within the computer or the communication device, the distances
between the different units are too short. Thus, the normal practice is to
transfer data between subdivisions using a separate wire. There are parallel
and serial (consecutive) data transfer modes. The parallel operation mode
results in minimal delays when transmitting each signal. The graphic
representation of parallel transmission can be seen in Fig. 29.8. In the case
of a parallel transmission, all data bits are transmitted simultaneously to
separate lines of communication n lines are used to transmit n bits. Thus,
every bit has its own line. All n bits of the same group are transmitted with
each clock pulse from one device to another, that is, several bits are sent
with each clock pulse. A parallel transmission is used for short-term
communication. As shown in Fig. 29.8, for the transmission of 8-bit data
from the sender to the receiver, there are used eight separate channels [2,3].

Wires

7

Sender Receiver

Olalo - oo~ -

Parallel transmission

Fig. 29.8 — Parallel data transmission

449

29. Models for loT-based devices and technologies for data processing and transfer

The advantage of parallel transmission is the fast way of data
transmission since several bits are transmitted simultaneously with one
clock pulse [2].

A disadvantage is an expensive way of transmitting data since it
requires n rows to transmit n bits simultaneously [2, 6].

During the consecutive data transfer between two separate devices,
especially if the distance is more than a few kilometers, for cost
reasons, it is more economical to use one pair of lines. Data is
transmitted as one bit at a time, using a fixed time interval for each bit
[6]. In a serial transmission, different bits of data are transmitted
serially one after another. To transmit data from the sender to the
receiver, only one communication line is required, not n lines. Thus all
bits of data are transmitted through one line in series. Only one bit is
sent in a single-pulse serial transmission. As shown in Figure 29.9, we
assume that the 8-bit data 11001010 must be sent from source to
receiver. Then the smallest significant bit (LSB) 0 will be passed rather
to the first, then the other bits. The most significant bit (MSB), i.e. 1,
will be transmitted at the end through one link line. The internal
circuitry of the computer transmits data in parallel. Therefore, in order
to convert these parallel data into consecutive data, there are used
converter devices. These devices convert the parallel data into
consecutive data on the sender's side so that they can be transmitted
through one line. On the receiver side, the received consecutive data are
again converted into a parallel form [1].

Ms8 Ls8 >

o 1 100 1 010 Serial to

Converter
Single Communication Line

Denation End
Seral transmisson

Fig. 29.9 — Consecutive data transmission

450

29. Models for loT-based devices and technologies for data processing and transfer

The advantage of a consecutive transmission is the use of a single
line of communication. It reduces the cost of the transmission line
compared to the parallel transmission.

Among the shortcomings of the successive transfer there are the
following ones [6]:

— the use of conversion devices at the initial and final stages can
lead to an increase in the total cost of transmission;

— this method works slower in comparison to parallel
transmission since bits are serially transmitted one after another.

29.2.2 Technologies for data processing

Currently, there is a small amount of data processing technology
from loT devices. All of them are one way or another integrated into
specific data processing devices or platforms.

Let's consider several well-known data processing technologies.

IBM's Watson Internet of Things is one of the most prominent
technologies for cognitive processing of data from 10T devices.
Developed by scientists, IBM technology of the Internet of things has
unique capabilities in the field of machine learning and automatic
processing of data coming from several sensory devices. It enables
complex analysis and provides an appropriate automatic response in
accordance with the aims of the object [14]. The Japanese corporation,
Panasonic has announced their plans to use Watson's cloud-based loT
platform and is now examining options for integrating its sensors and
smart devices with this platform. The connection of the video
surveillance system, glass breakdown sensors, windows and doors
opening, motion, etc. to IBM's cognitive computing system will
optimize and make smart Panasonic homes even more intelligent. For
example, the security system will not react if neighboring children get
into the courtyard to fetch their own ball, while it will still be effective
in case of an intruder penetration [15].

North Star BlueScope Steel, a manufacturer of rolling steel for the
construction industry, will begin using the Watson Internet of Things
cognitive technology and native devices to create innovative solutions
to protect workers in extreme conditions. Employees working in
difficult industrial conditions are exposed to various risks on a daily
basis: thermal, chemical and toxic influences, open fire, mechanical

451

29. Models for loT-based devices and technologies for data processing and transfer

contact with industrial equipment. In 2017, there were registered almost
3 million industrial injuries. At the same time, there are no practical
ways to check the mandatory safety and personal protective equipment
used in potentially hazardous conditions. The use of native devices that
collect information about different metrics, combined with Watson
processing, allows you to transfer relevant information in real time to
the company's management when potentially dangerous conditions
arise. For example, a company may receive a combination of body
temperature, accelerated pulse rate and real estate within minutes,
which may indicate a heat shock with a possible lethal outcome. The
same indicators may seem insignificant if taken separately [3].

In many loT-systems, a distributed network of 10T devices can
generate large volumes of data. For example, oil fields and refineries
can generate up to terabytes of data daily. An airplane can generate
several terabytes of data per hour. Instead of storing all of these data
permanently (or at least for a long time) in a centralized repository
accessible to loT applications, it is often more appropriate to perform
most of the data processing closer to 10T devices. Therefore, the task of
the level of peripheral computing (edge computing level) is the
transformation of network data streams into information, suitable for
storage and higher-level processing. Processing elements at this level
can deal with large volumes of data and carry out data conversion
operations, which result in a much lower volume of storage. Published
Cisco document on the IWF model [1, 3] contains the following
examples of operations (processing) at the level of peripheral
computing:

— analysis of data on criteria of belonging to processing at a
higher level;

— reformatting data for the same high-level processing;

— processing of cryptographic data with an additional context;

— reduction and/or summarization of data for further high-level
processing.

The processing elements at this level correspond to general
purpose devices in the ITU-T model (Fig. 29.7). As a rule, they are
physically deployed on the edge of the IoT network, that is, next to
sensors and other data generation devices. Thus, part of the basic

452

29. Models for loT-based devices and technologies for data processing and transfer

processing of large volumes of data is removed from the application
programs of loT which are located centrally.

Processing at the peripheral level is sometimes called fuzzy
calculations (Fog Computing). Fuzzy calculations and fuzzy services
are expected to become an excellent feature of the loT. Fuzzy
calculations represent a trend in modern network technologies, the
opposite of cloud computing. In cloud computing, a large amount of
centralized storage and data storage resources is available to distributed
users through cloud-based network structures for a relatively small
number of users. In the fog computing, a large number of individual
intellectual objects communicate with fuzzy network structures that
perform computations and store resources, along with peripherals in the
loT. Fog Computing solves the problems that have appeared as a result
of the operation of thousands or millions of "smart" devices, including
security, privacy, network constraints, and delays. The term "Fog
Computing" is chosen because the fog spreads over the earth, while the
clouds are high in the sky [2, 3, 6].

29.2.3 Methods of management and forecasting

Forecasting is the process of making predictions of the future
based on past and present data and most commonly by analysis of
trends. A commonplace example might be estimation of some variable
of interest at some specified future date. Prediction is a similar, but
more general term. Both might refer to formal statistical methods
employing time series, cross-sectional or longitudinal data, or
alternatively to less formal judgmental methods. Usage can differ
between areas of application: for example, in hydrology the terms
"forecast" and "forecasting" are sometimes reserved for estimates of
values at certain specific future times, while the term "prediction” is
used for more general estimates, such as the number of times floods
will occur over a long period [1].

Qualitative forecasting techniques are subjective, based on the
opinion and judgment of consumers and experts; they are appropriate
when past data are not available. They are usually applied to
intermediate- or long-range decisions. Examples of qualitative
forecasting methods are informed opinion and judgment, the Delphi
method, market research, and historical life-cycle analogy [2].

453

29. Models for loT-based devices and technologies for data processing and transfer

Quantitative forecasting models are used to forecast future data as
a function of past data. They are appropriate to use when past numerical
data is available and when it is reasonable to assume that some of the
patterns in the data are expected to continue into the future. These
methods are usually applied to short- or intermediate-range decisions.
Examples of quantitative forecasting methods are last period demand,
simple and weighted N-Period moving averages, simple exponential
smoothing, poisson process model based forecasting [2] and
multiplicative seasonal indexes. Previous research shows that different
methods may lead to different level of forecasting accuracy. For
example, GMDH neural network was found to have better forecasting
performance than the classical forecasting algorithms such as Single
Exponential Smooth, Double Exponential Smooth, autoregressive
integrated moving average (ARIMA) and back-propagation neural
network [3].

Limitations pose barriers beyond which forecasting methods
cannot reliably predict. Many events and values cannot be forecast
reliably. Events such as the roll of a die or the results of the lottery
cannot be forecast because they are random events and there is no
significant relationship in the data. When the factors that lead to what is
being forecast are not known or well understood such as in stock and
foreign exchange markets forecasts are often inaccurate or wrong, as
there is not enough data about everything that affects these markets for
the forecasts to be reliable. In addition, the outcomes of the forecasts of
these markets change the behavior of those involved in the market
further reducing forecast accuracy [6].

Uprise of 1oT have revolutionized major industries that
includes industries, agriculture and healthcare and have expanded its
scope not only to build smart cities but also to accurate forecasting of
weather. Weather forecasting itself has its direct or indirect influence
on various sectors of economy like Energy, transportation and other
business and thereby, making this forecasting as a key element in an
economy’s growth. Remote sensing technology have opened the gates
for real time analysis of weather data and have transformed the way
that was used to collect and analyse weather data and build a strong
database for reliable weather forecasts [3].

454

29. Models for loT-based devices and technologies for data processing and transfer

Let’s discuss few means by which atmospheric data is collected.
loT enabled weather systems are designed to collect data from various
vehicles on the road, vehicles moving on the road will wirelessly
communicate the weather and road condition data that is inclusive of air
temperature, barometric pressure, visibility or light, motion and other
data needed. This data helps to build more accurate forecast and
provide flexible real time monitoring at different time horizon. Sensors
are installed on windshields, wipers and tyres of car. These sensors in
integration with 10T help in collecting weather data which is further
pooled in cloud for analysis [3].

Companies like IBM, Rainmachine and others are working
towards expansion of 10T enabled weather forecasting [2].

As mentioned earlier, accuracy of weather forecasting directly or
indirectly influences other sectors of economy to a great extent, it thus
raises the need of a system that facilitates higher accuracy of real time
monitoring and future weather prediction. Below you can have a look at
key sectors that are benefited with loT weather forecasting technology.
Agricultural process i.e. preparation of soil, sowing, irrigation,
harvesting and storage of crops is directly dependent on weather
condition leaving farmers vulnerable to weather hazards. Development
and expansion of 10T technology for weather forecasting will deliver
vital weather prediction to farmers and accordingly farmers may use the
intelligence to improve their crop fertility and cost along with taking
essential steps to diversify weather hazards. Timely and accurate
delivery of weather forecast will ensure higher productivity and lower
the risk of weather hazard. We are well aware about uncertainty of
unpleasant weather and risk factor attached to it in transportation. On
successful installation of remote sensors on every vehicle moving on
road. It would communicate every minor detail for analysis of weather
change allowing the real time weather monitoring and forecasting
report to cover even minute details like temperature, fog, road
condition, light, flood, stormy and other condition that would add up to
reliability and accuracy of the report [2, 6].

455

29. Models for loT-based devices and technologies for data processing and transfer

29.3 Protocols and standards for data transfer between 10T-
based devices

29.3.1 Protocols for data transfer

Protocols for the exchange (transmission) of data between loT
devices are divided into groups depending on the area of the network
on which they are used. There are the following areas: sensor node
(Data Disturbing Service (DDS) protocol), sensor node-server (COAP,
MQTT, XMPP, Simple (or Streaming) Text Oriented Message Protocol
(STOMP) protocols), server-server (Advanced Message Queuing
Protocol (AMQP)). Consider some data transfer protocols between loT
devices over the Internet [1].

The DDS protocol implements a publication-subscription template
for sending and receiving data, events, and commands among end
nodes. Sender nodes create a "topic" (for example, information about
temperature, location, pressure) and publish templates. DDS delivers
created templates to nodes interested in relevant topics. UDP is used as
a transport protocol. Also, DDS allows one to manage quality of service
(QoS) parameters [2].

The CoAP protocol from the user's perspective is similar to the
HTTP protocol but has a small header size that is suitable for networks
with restricted capabilities. It uses client-server architecture and is
suitable for conveying the state of the site to a server (GET, PUT,
HEAD, POST, DELETE, CONNECT). As a transport protocol, UDP is
used [3].

The XMPP protocol has long been used on the Internet for real-
time messaging. The eXtensible Markup Language (XML) format is
suitable for usage in 10T networks. It works on the publisher-subscriber
and client-server architecture. It is also used to address devices in small
networks (addressing the look "name@domain.com™) [2].

The MQTT protocol collects data from a plurality of nodes and
transmits it to the server. It is based on a publisher-subscriber model
using an intermediate server-broker. Transmission Control Protocol
(TCP) is used as a transport protocol. On the basis of MQTT, there was
created a specialized protocol MQTT-SN for sensor networks [3].

Routing protocols. This section there are described some standard
and non-standard protocols which are used to route data to loT

456

29. Models for loT-based devices and technologies for data processing and transfer

applications. It should be noted that there is a conditional division of
the network layer into two sublevels: a routing layer that processes
packet transfers from source to destination, as well as an encapsulation
layer that generates packets [6].

Routing over Low Power and Lossy Networks (RPL) is a protocol
that can support various data transfer protocols. It creates a Destination
Oriented Directed Acyclic Graph (DODAG) that has one route from
each end node to the base node. First, each node sends a message about
the information model of the loT device, representing the base node.
This message is distributed over the network, and the entire DODAG
graph is being gradually built. During the broadcast, the node transmits
to all information about its location on the network (DAO). This DAO
message is actual for the base node that makes a decision on the place
of departure, depending on the destination. When a new node wants to
connect to a network, it sends a request and the base node answers with
a confirmation message. The RPL nodes may be without states, which
is the most common practice, or they can be with states [2].

The CORPL (cognitive RPL) protocol is positioned as an
extension of the RPL developed for cognitive networks and uses the
generation of the DODAG topology, but with two new modifications.
CORPL uses conditional sending for the packet forwarding by selecting
multiple conveyors (a set of conveyors) and coordinates between the
nodes to select the next best step for forwarding the packet. DODAG is
built in the same way as in RPL [14].

Common Address Redundancy Protocol (CARP) is a distributed
routing protocol designed for underwater communications. It can be
used for 10T because of its light packs. It takes into account the quality
of communication, which is calculated on the basis of a successful
transfer of data collected from neighboring sensors. There are two
scenarios: network initialization and data transfer. In the network
initialization, the HELLO packet is transmitted from the host to all
other nodes in the network. During data redirection, the packet is
transmitted from the sensor to the host in hop-by-hop-fashion mode.
Each next step is determined by itself. The main problem of CARP is
that it does not support the multiple uses of previously collected data.
The improvement of CARP was done in E-CARP, allowing the host to

457

29. Models for loT-based devices and technologies for data processing and transfer

store previously received data. When new data is needed, E-CARP
sends a ping packet that matches data from sensor nodes [15].

29.3.2 Standards for data transfer

Currently, there are several standards for data transmission in loT
networks. Let's examine some of them in detail.

The Wireless USB Standard is a wireless data standard developed
by the Wireless USB Promoter Group. In September 2010, the Wireless
USB 1.1 specification was completed. It involves increasing data rates,
as well as the support of higher frequencies - up to 6 GHz and above. In
the development, much attention was paid to improving energy
efficiency. Devices made in accordance with specification 1.1, use less
power in idle mode. Wireless USB 1.1 supports NFC technology,
which simplifies the configuration and operation of Wireless USB
devices.

Wireless USB Standard is intended to become a replacement for
traditional USB drives. Typical devices include a keyboard, a mouse, a
camera, a printer, external drives, etc. Wireless USB can also be used to
easily shared usage of printers that do not have a standard network
interface or are not connected to a print server [16-18].

The transmission parameters correspond to the standard USB
version 2.0, but the bandwidth depends on the distance between the
devices. At a distance of up to 3 meters, the data rate can theoretically
reach 480 Mbps. At a distance of 10 meters - only up to 110Mbps
(under optimum conditions). Wireless USB is designed for operation in
the frequency range from 3.1 GHz to 10.6 GHz. Data transmission is
encrypted with the help of AES-128 / CCM [6].

The Narrow Band Internet of Things Standard (NB-1oT) is a
mobile communication standard for telemetry devices with low
volumes of data exchange. It was designed by the 3GPP consortium in
the framework of working on the standards of mobile networks of the
new generation. The first working version of the specification was
presented in June 2016. It was made for connecting a wide range of
stand-alone devices to a digital communications network, for example,
medical sensors, meters of resources consumption, devices of a smart
home, etc. [12]. NB-1oT is one of the three 10T standards developed by
3GPP for mobile communications: eMTC (enhanced machine-type

458

29. Models for loT-based devices and technologies for data processing and transfer

communication), NB-loT, and EC-GSM-IoT [2]. The eMTC standard
has the highest bandwidth and is based on LTE equipment. The NB-loT
standard can be used both on LTE mobile devices and separately,
including GSM. The EC-GSM-IoT standard provides the lowest
bandwidth and extends beyond the GSM network. Among the benefits
of NB-1oT there are the following ones [17]:

— flexible power management of devices (up to 10 years in a
network of a battery with the capacity of 5 W*h);

— huge capacity of the network (hundreds of thousands of
connected 10T devices per base station);

— low cost of 10T devices;

— optimized for increasing the sensitivity of signal modulation.

A comparative analysis of some data transmission standards is
given in Table 29.1.

Table 29.1 — Comparative analysis of LTE Cat 0, eMTC, NB-IoT,
EC-GSM-IoT data transfer standards

LTE Cat0 eMTC NB-loT EC-GSM-loT
Downlink Peak . . . 474 kbit/s or
Rate 1 Mbit/s 1 Mbit/s 250 kbit/s 2 Mbit/s
. . . 250 kbit/s or | 474 kbit/s or
Uplink Peak Rate 1 Mbit/s 1 Mbit/s 20 kbit/s 2 Mbit/s
Latenc not deployed 10ms- 1.6s-10s 700ms-2s
Y ploy 15ms :
Number of
Antennas 1 1 1 1-2
Full or
Duplex Mode Full or Half Half Half Duplex Half Duplex
Duplex D
uplex
Device Receive 1.4 -
Bandwidth 20 MH2z 1.4 MHz 180 kHz 200 kHz
Receiver Chains 1 1 1 1-2
Device Transmit 23 dBm 20123 1 sopp3dBm | 23/33 dBm
Power dBm

There is envisaged a great popularity of loT devices with the
ability to use mobile communication. In this case, the cost and
maintenance costs become critical. One way to save money is not to

459

29. Models for loT-based devices and technologies for data processing and transfer

install a physical SIM card. The GSMA consortium in 2016 adopted the
specification of Embedded SIM (eSIM) / Remote SIM Provisioning
(RSP) for that purpose. The eSIM standard allows one to integrate the
SIM card functional into the electronics of the modem, and the RSP
describes the infrastructure and algorithms for interoperating trusted
emission centers of SIM parameters, the mobile operator and the
communication service user [18].

The Low-Power Wide Area Network (LPWAN) is a standard
wireless low-bandwidth data transmission technology developed for
distributed telemetry, inter-engineer interconnection networks, and IoT.
LPWAN is one of the wireless technologies that provides a data
collection environment for various equipment: detectors, meters, and
sensors [1]. The LPWAN standard focuses on loT systems that require
guaranteed low data transmission, the ability of network 10T devices to
last long using standalone power sources, and a large area coverage of
the wireless network. The main areas of application of LPWAN are
wireless sensor networks, automation of data collection on accounting
devices, industrial monitoring and control systems [3].

For wireless data transmission, the following characteristics, such
as efficiency, fault tolerance, adaptability, possibility of self-
organization, play an especially important role in the 10T. The main
interest then is Institute of Electrical and Electronics Engineers (IEEE)
802.15.4, an access control for the organization of energy efficient
personal networks, and is the basis for such protocols as ZigBee, WiFi,
Bluetooth, 6LOWPAN. IEEE 802.11 is a set of standards for
communication in the Wireless Local Area Network (WLAN) of the
frequency ranges 2.4, 3.6 and 5 GHz. They have been developed and
supported by the LAN / MAN (IEEE 802) Standards Committee of the
IEEE, which determine the interaction of wireless computer networks.
The basic version of IEEE 802.11 (2007) has undergone the additions.
These standards provide the basics of wireless network products that
use the Wi-Fi brand. Let's consider some of them [2, 7]:

— IEEE 802.11ais a wireless LAN standard based on wireless
data transmission in the 5 GHz range. The range is divided into three
non-overlapping channels. The maximum data transfer rate is 54 Mbps,
with speeds of 48, 36, 24, 18, 12, 9 and 6 Mbps also available;

460

29. Models for loT-based devices and technologies for data processing and transfer

— |EEE 802.11b+ is an upgraded version of the 802.11b standard
that provides increased data rates. It differs from the original version of
the Packet Binary Convolutional Coding (PBCC), doubling the
maximum speed (up to 22 Mbit/s). Also announced solutions to
productivity, increased to 44 Mbps;

— |EEE 802.11g is a WLAN standard based on 2.4 GHz wireless
data transmission. In order to increase the data rate at a channel width
similar to 802.11b, an Orthogonal frequency-division multiplexing
(OFDM) method, or a PBCC method, is used;

— IEEE 802.11e (QoS) is an additional standard that ensures a
guaranteed quality of data exchange by rearranging the priorities of
different packages; it is required for such stream services as Voice over
Internet Protocol (VVolP) or Internet Protocol Television (IPTV);

— |EEE 802.11nis a modern wireless LAN standard based on
wireless 2.4 GHz data transmission. The 802.11n standard significantly
exceeds the previous 802.11b and 802.11g standards by providing data
rates at Fast Ethernet level. The main difference from the previous
versions is the addition of the MIMO protocol (multiple-input-multiple-
output) to the physical layer (PHY). The theoretical speed can be 150
Mbps;

— |EEE 802.11ac is a new standard for wireless local area Wi-Fi
networks at frequencies of 5-6 GHz. If both IoT devices support this
technology, data transfer speed may be greater than 1 Gbit/s (up to 6
Gbit/s 8x MU-MIMO). The standard requires up to 8 MU-MIMO
antennas and 80 or 160 MHz channel extensions;

— IEEE 802.11ax is a follower of the 802.11ac standard. The
operating ranges of the standard are 5 GHz and 2.4 GHz. The standard
is still being developed and has the goal of providing a bandwidth of 10
Gbit/s.

29.3.3 Cybersecurity of 1oT-based devices

The development of secure loT-systems includes several levels
that combine important loT-security architectures at four different
levels: device level, communication layer, cloud level, and life-cycle
management level [19-21].

The device level refers to the hardware level of the 10T system, that
is, the physical product. The ODMs and OEMs of loT devices

461

29. Models for loT-based devices and technologies for data processing and transfer

increasingly integrate security features into their hardware and software
of the device to enhance security directly at the loT device level. Some
manufacturers introduce trusted platform modules (TPMs) that act as a
guarantor of trust, protecting confidential information and credentials
(without releasing encryption keys on the chip). Even physical
protection (for example, a full metal shield that covers all internal
circuits) can be used to protect against interference.

The level of communication refers to the technologies of
connection of 10T devices in the loT-network, that is, the environment
in which data is reliably transmitted/received. Confidential data is
passed through physical level (e.g., WiFi, 802.15.4 or Ethernet),
network level (eg IPv6, Modbus, or OPC-UA) or application level (eg
MQTT, CoAP or web connectors). Unsafe communication channels
can be susceptible to intruders, such as "men-in-the-middle"”. Data-
oriented loT-security solutions provide secure encryption of data during
transmission. Even if they are intercepted, they will be useless for
everyone, except for users (ie, people, devices, systems or applications)
that have the correct encryption key. Firewalls and intrusion prevention
systems are designed to analyze specific traffic flows (such as non-loT
protocols) which are embedded in I0oT devices. They are increasingly
used to identify unwanted intrusions and prevent harmful connection at
the communications level [20].

The cloud level refers to software support for the loT solution,
which means that data coming from devices is analyzed and interpreted
to generate statistics and perform actions. Security has always been one
of the main topics for discussion when assessing the risk of using cloud
and built-in solutions. Cloud providers are expected to provide secure
and efficient cloud services by default, and protection from severe data
breaches or solving problems with idle mode are becoming normal
[21].

Important cyber security features in 10T [2]:

— the information stored in the cloud must be encrypted in order
to avoid attack;

— checking the integrity of other cloud platforms or third-party
programs that are connected with your cloud services;

— digital certificates for authentication;

462

29. Models for loT-based devices and technologies for data processing and transfer

— monitoring activity for tracking, registering and detecting
suspicious activity;

— loT devices and applications require regular security patches to
protect against new threats.

Intruders can intercept or change the behavior of smart Home loT
devices in many ways. Some methods require physical access to the
device, which makes the attack more difficult to carry. Other attacks
can be done via the Internet from a remote location. The following is a
different attack level scenario based on the access level.

An attacker who has access to a local home network may perform
various attacks on the loT device. There are, as a rule, two common
access modes: through the cloud and direct connection. Depending on
the function, the loT device can use any of these methods to receive
commands [19].

In the case of a cloud attack, a smart home device is constantly
connected to the cloud. The device checks the cloud server to see if
there are any commands to execute and then downloads its current
state. In this case, the attacker will have to execute the Man in the
middle (MITM) attack. In order to achieve this, one needs to try to
redirect network traffic with network-level attacks, for example by
changing Address Resolution Protocol (ARP) or Domain Name System
(DNS) settings. A fake certificate can help attackers intercept HTTPS
connections. Unfortunately, some loT devices do not check if the
certificate is trusted and belongs to the vendor, they only confirm the
connection through HTTPS. Additionally, most devices do not perform
mutual SSL authentication, and completely ignore certificate
cancellation lists, allowing an attacker to use keys that were received
due to data breaches [6].

Some loT devices use direct connections to communicate with a
hub or application on the same network. For example, a mobile
application can scan a local area network for new devices and find them
by sensing each IP address for a particular port. Another way is to use
the Simple Service Discovery Protocol / Universal Plug and Play
(SSDP / UPnP) to detect devices. This means that an attacker can do
the same thing to find the right device. The most common mistake is
the use of unencrypted network communications. Lack of encryption
raises serious data privacy issues. Devices can transmit personal data,

463

29. Models for loT-based devices and technologies for data processing and transfer

registration data or tokens in plain text, allowing the intruder to
intercept them [3].

The most common way for users to interact with 10T devices is to
use a web browser or smartphone application. More powerful devices
have a small web server and allow a user to apply a web interface to
send commands. Other devices offer their own program interface (API)
which the user can interact with. If a user wants to control devices
remotely when they are not at home, they should be able to open the
incoming port on the router. This can be done using the UPnP request
or can be manually fulfilled by a user [21].

A smart home iT device can include cloud-based services,
depending on the device category. Other cloud systems allow remote
control of 10T devices, such as bulbs or boilers. Some vendors even
force a user to connect to their server cloud system and do not allow
users to locally manage their devices. Companies either provide access
to cloud services through an application for smartphones or a web
portal where users can log in.

Most services do not block users in their accounts after several
login attempts. At the same time, some servers of cloud services do not
provide the possibility of two-factor authentication.

Malicious software installed on any IoT device which is connected
to the home network may be able to interact with smart home devices
and allow hackers to make larger-scale attacks.

For now, there have been no large-scale malware attacks on an loT
device. In addition, malicious programs and cyber-security violations of
loT devices attacking routers, and similar devices have been
successfully detected several times.

29.4 Work related analysis

The issues discussed above can be supplemented by an analysis of
the existing works of European partner universities of the ALIOT
project on the topic of the section [22]. Models for l10T-based devices
and technologies for data processing and transfer are considered in
different university-partners, besides University of Coimbra, Leeds
Beckett University, Consiglio Nazionale delle Recerche - Instituto di
Scienza e Technologie dell' Informazione "A.Faedo" (ISTI-CNR),

464

29. Models for loT-based devices and technologies for data processing and transfer

Royal Institute of Technology (KTH) and Newcastle University. So,
let’s consider the following projects.

An loT application, such as real-time flood forecasting [6] and
warning, requires the integration of machine and social sensors data to
provide complementary and corroborative information. This aggregate
data can be semantically tagged to generate and distribute events of
interest (to particular subscribers).

Also important it is to consider the IEEE 802.11 medium access
control protocol uses the distributed coordination function that supports
asynchronous data transfer and an optional point coordination function
that supports connection-oriented time-bounded data transfer [7].
Cooperative communication has been shown as an effective way to
exploit spatial diversity to improve the quality of wireless links. The
key feature of cooperative transmission is to encourage single-antenna
devices to share their antennas cooperatively such that a virtual and
distributed antenna array can be constructed, and, as a result, reception
reliability can be improved and power consumption can be reduced
significantly [9]. Due to broadcast transmission and unattended nature,
and hostile environments a variety of denial of service (DoS) attacks
are possible in both Wireless Sensor Networks (WSNs) and ad-hoc
networks. Authors developed a formal framework which can
automatically verify different wireless routing protocols against DoS
attacks exhaustively [19]. Also this paper [12] presents some of the
main application requirements for IoT, characterizing architecture, QoS
features, security mechanisms, discovery service resources and web
integration options and the protocols that can be used to provide them
(e.g. CoAP, XMPP, DDS, MQTT-SN, AMQP). As examples of lower-
level requirements and protocols, several wireless network
characteristics (e.g. ZigBee, Z-Wave, BLE, LoRaWAN, SigFox, IEEE
802.11af, NB-loT) are presented [8, 13]. WSNs leverage battery-
powered embedded devices to sense from and act on the environment.
Their characteristics are at odds with the lifetime requirements in
monitoring of civil structures. In this paper [17] authors briefly describe
the challenges at stake and how to address them, drawing from recent
literature and our own real-world experience [18].

This paper [20] presents a quantitative architecture analysis
method for the study of architectures of wide-area monitoring and

465

29. Models for loT-based devices and technologies for data processing and transfer

control systems focusing primarily on the interoperability and
cybersecurity aspects. Also this paper [21] presents a distributed
intrusion detection system (DIDS) for supervisory control and data
acquisition (SCADA) industrial control systems, which was developed
for the CockpitCl project.

In this paper [4] an approach to deal with these issues is presented.
It makes use of the device description framework Eclipse Vorto. Using
Vorto's capabilities to generally describe devices and interfaces and
generating code, a proof of concept has been implemented where a
smart home platform is connected to an electric vehicle in order to
integrate the vehicle as part of a smart home platform. The paper
discusses the challenges, introduces the proposed concept and gives
some details on the implementation of the exemplary use case [5].

Conclusions and guestions

In this section, the materials for module PCM4.2 “Models for IoT-
based devices and technologies for data processing and transfer” of
PhD course “Development and implementation of 10T-based systems”
are presented. They can be used for preparation to lectures and self-
learning for lecturers, PhD-students, 10T developers, etc.

Recently, the direction associated with the development and
implementation of 10T devices has become very popular and effective.
This gave rise to such areas as neural network technologies, cloud and
fog computing, control systems, computer vision, etc.

This chapter discusses the basic principles of constructing
information models of loT-based devices and tools for their creation, in
particular Eclipse Vorto [5]. Also analyzed network communication
protocols for loT-based devices. In addition, an important component
of the 10T network is the choice of technologies for data processing in
loT-based systems and methods of management and forecasting. Also
considered the main protocols and standards for data transfer between
loT-based devices. Some attention is paid to cybersecurity in 10T [21].

The considered information models, data transfer protocols and
standards, forecasting methods are widely used in all applications of the
loT, for example, home automation, climate control, environmental

466

29. Models for loT-based devices and technologies for data processing and transfer

monitoring, production automation, agriculture, medical applications,
smart transportation, smart traffic, etc [1-3, 6].

In order to better understand and assimilate the educational
material that is presented in this section, we invite you to answer the
following questions.

What is an information model?

What is the purpose of the instrumental tool “Eclipse Vorto”?

What is the advantage of “Eclipse Vorto™?

What is not a component of the process of creating an
information model in “Eclipse Vorto”?

What components are not included in the information model?

How the MQTT protocol is decrypted?

What is the frequency of data transfer by Bluetooth?

What does the RFID mean in the Y.2060 recommendation?

What is not included in the model for collecting and
processing data in loT networks (Y.2060
recommendation)?

10. Which data transmission has its own line for each bit?

11. Which method is not a qualitative forecasting method?

12. What is the Wireless USB Standard?

13. What is the basic version of IEEE 8027

14. What is the standard still being developed and has the goal of

providing a bandwidth of 10 Ghit/s?
15. How many levels does I0T cybersecurity include?

el NS

©ooN O

References

1. D. Uckelmann, M. Harrison, and F. Michahelles, Architecting the
Internet of Things. Berlin: Springer-Verlag, 2011.

2. M. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke,
"Middleware for Internet of Things: A Survey," in IEEE Internet of Things
Journal, vol. 3, no. 1, 2016, pp. 70-95.

3. F. Hussain, Internet of Things: Building Blocks and Business Models.
Cham: Springer, 2017.

4. J. Laverman, D. Grewe, O. Weinmann, M. Wagner, and S. Schildt,
"Integrating Vehicular Data into Smart Home loT Systems Using Eclipse
Vorto," IEEE 84th Vehicular Technology Conference (VTC-Fall), pp. 20-26,
September 2016.

467

29. Models for loT-based devices and technologies for data processing and transfer

5. "Vorto Introduction,” Eclipse Vorto, 2016, [online] Available:
https://www.eclipse.org/vorto/documentation/overview/introduction.html.

6. R. Ranjan, O. Rana, S. Nepal, M. Yousif, P. James, Z. Wen, S. Barr, P.
Watson, P. Jayaraman, D. Georgakopoulos, M. Villari, M. Fazio, S. Garg, R.
Buyya, L. Wang, A. Zomaya, and S. Dustdar, "The Next Grand Challenges:
Integrating the Internet of Things and Data Science,” in IEEE Cloud
Computing, vol. 5, no. 3, 2018, pp. 12-26.

7. N. Natchimuthu and A. Sajeev, "A communication protocol using a
Markov type function for stations in a wireless local area network," The 8th
International Conference on Communication Systems, pp. 829-833, November
2002.

8. A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.
Ayyash, "Internet of Things: A Survey on Enabling Technologies Protocols
and Applications," in IEEE Commun. Surv. Tutorials, vol. 17, iss. 4, 2015, pp.
2347-2376.

9. I. Morns, O. Hinton, A. Adams, and B. Sharif, "Protocols for sub-sea
communication networks,” Conference Proceedings on MTS/IEEE Oceans
2001, pp. 2076-2082, November 2001.

10. C. Gomez and J. Paradells, "Wireless home automation networks: A
survey of architectures and technologies,” in IEEE Communications Magazine,
vol. 48, no. 6, 2010, pp. 92-101.

11. Z. Sheng, K. Leung and Z. Ding, "Cooperative wireless networks: from
radio to network protocol designs," in IEEE Communications Magazine, vol.
49, no. 5, 2011, pp. 64-69.

12. L. Novelli, L. Jorge, P. Melo, and A. Koscianski, "Application
Protocols and Wireless Communication for loT: A Simulation Case Study
Proposal,” The 11th International Symposium on Communication Systems,
Networks & Digital Signal Processing (CSNDSP), pp. 372-378, July 2018.

13. F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-
Segui, and T. Watteyne, "Understanding the Limits of LoRaWAN," in IEEE
Commun. Mag, vol. 55, no. 9, 2017, pp. 34-40.

14. N. Huynh, V. Robu, D. Flynn, S. Rowland, and G. Coapes, "Design
and demonstration of a wireless sensor network platform for substation asset
management,” in Open Access Proceedings Journal, vol. 1, 2017, pp. 105-108.

15. M. Gursu, M. Vilgelm, W. Kellerer, and E. Fazli, "A wireless
technology assessment for reliable communication in aircraft,”" IEEE
International Conference on Wireless for Space and Extreme Environments
(WISEE), pp. 51-57, December 2015.

16. H. Ogai and B. Bhattacharya, "Experiments of Wireless Transfer
Technology for Communication,” in Pipe Inspection Robots for Structural

468

29. Models for loT-based devices and technologies for data processing and transfer

Health and Condition Monitoring. Intelligent Systems, Control and
Automation: Science and Engineering, vol. 89, 2017, pp. 61-78.

17. L. Mottola, T. Voigt, I. Gonzalez Silva, and R. Karoumi, "From the
desk to the field: Recent trends in deploying Wireless Sensor Networks for
monitoring civil structures,” IEEE SENSORS Proceedings, pp. 62-65, October
2011.

18. M. Massink, D. Latella, and J. Katoen, "Model checking dependability
attributes of wireless group communication,” International Conference on
Dependable Systems and Networks, pp. 711-720, June 2004.

19. K. Saghar, W. Henderson, D. Kendall, and A. Bouridane, "Applying
formal modelling to detect DoS attacks in wireless medium,” The 7th
International Symposium on Communication Systems, Networks & Digital
Signal Processing, pp. 896-900, July 2010.

20. M. Chenine, J. Ullberg, L. Nordstrom, Y. Wu, and G. Ericsson, "A
Framework for Wide-Area Monitoring and Control Systems Interoperability
and Cybersecurity Analysis,” in IEEE Transactions on Power Delivery, vol.
29, no. 2, 2014, pp. 633-641.

21. T. Cruz, L. Rosa, J. Proenca, L. Maglaras, M. Aubigny, L. Lev, J.
Jiang, and P. Simoes, "A Cybersecurity Detection Framework for Supervisory
Control and Data Acquisition Systems,” in IEEE Transactions on Industrial
Informatics, vol. 12, no. 6, 2016, pp. 2236-2246.

22. V. Kharchenko, D. Maevsky, E. Maevskaya, C. Phillips, and L.
Vystorobska, "Employers' requirements-oriented assessment of loT
curriculum: The projects CABRIOLET and ALIOT," 9th International
Conference on Dependable Systems, Services and Technologies (DESSERT
2018), pp. 677-681, May 2018.

469

30. Intelligent methods and approaches for management and learning of loT-based systems

30. INTELLIGENT METHODS AND APPROACHES FOR
MANAGEMENT AND LEARNING OF IOT-BASED SYSTEMS

Prof., DrS. Yu. P. Kondratenko, Ass. Prof., Dr. G. V.
Kondratenko, Ass. Prof., Dr. le. V. Sidenko, Ph.D. Student M. O.

Taranov (PMBSNU)
Contents
ADDIEVIALIONS ... s 471
30.1 Management systems and 10T platforms...........ccoceeeverciininnnnne 472
30.1.1 Types and capabilities of management systems and loT
PIALFOIMS ... 472
30.1.2 Multi-criteria approach for choosing the loT platform........... 475

30.1.3 Soft computing for the selection of specialized IoT platform 480
30.2 Multi-agent approach for development and management of loT

SYSEEIMS ...ttt 482
30.2.1 Types and characteristics of agentscccccevevveveieieennn, 483
30.2.2 Communication agents with the external environment 486

30.2.3 Data transfer techniques between agents in loT systems 488
30.3 Methods and approaches for learning of 10T-based systems.....490
30.3.1 General principles of M2M learning and self-learning systems

... 491
30.3.2 Technologies and applications of M2M learning 493
30.3.3 Neural networks for learning of 1oT-based systems............... 495
30.4 Work related analysiscccoevveiiiiieiiieiic e 497
Conclusions and QUESLIONS..........cc.ecveieieeecie e 498
RETEIENCES ... e 500

470

30. Intelligent methods and approaches for management and learning of loT-based systems

Abbreviations

ACL — Agent Communication Language

Al — Artificial Intelligence

ANFIS — Adaptive Neuro-Fuzzy Inference System
AWS — Amazon Web Services

CUDA — Compute Unified Device Architecture
DL — Deep Learning

DM — Decision Maker

FIPA — Foundation for Intelligent Physical Agents
GPU — Graphical Processing Units

GRASP — Greedy Randomized Adaptive Search Procedure
GSA — Genetic Swarm Algorithm

loT — Internet of Things

IT — Information Technology

KIF — Knowledge Interchange Format

KQML - Knowledge Query and Manipulation Language
LT — Linguistic Term

M2M — Machine-to-Machine

MAC — Medium Access Control

MAS — Multi-Agent System

MCDM — Multi-Criteria Decision Making

PaaS — Platform as a Service

RB — Rules Base

RL — Reinforcement Learning

SA — Simulated Annealing

471

30. Intelligent methods and approaches for management and learning of loT-based systems

30.1 Management systems and 10T platforms

30.1.1 Types and capabilities of management systems and loT
platforms

Internet of things (loT) management system (software) helps
manage strategies involving the connectivity of smart devices, as well
as smart packaging, and their impact on business [1]. loT refers to the
wireless communication between devices and their ability to send,
receive, and create data based on user activity and environmental
factors. 10T management systems help businesses monitor and take
action on the communication from and between registered devices, as
well as control the devices from a remote interface on a desktop or
mobile device when necessary. These systems log and store data from
connected smart devices that provide real-time insights to help
businesses uncover trends and become more efficient. IT teams within
various organizations use loT software to centralize activity and
analytics related to a smart device network, receive alerts when
performance is interrupted, and export relevant information to other IT
infrastructure or analytics programs [1].

To qualify for inclusion in the IoT management category, a system
must:

— sync with and monitor the activity of smart devices;

— provide tools for controlling, updating, and retrieving data from
synced devices;

— allow actions to be taken based on data received from devices;

— provide dashboards and analytics for devices.

loT management systems (software) are often understood as loT
platforms [2]. Let's consider in more detail the main types and
capabilities of the loT-platforms.

The 10T describes a network of interconnected smart devices,
which are able to communicate with each other for a certain goal. But
how easy is the process of realization which 10T platform is right for
you? The market for 10T platforms is rapidly evolving. With an ever-
increasing number of available platforms to choose from, the authors
decided it would be helpful to lay out their features and capabilities for
easy comparison using different methods of multi-criteria decision
making [1, 3].

472

30. Intelligent methods and approaches for management and learning of loT-based systems

The development of the market of services and opportunities for
information technologies leads to the emergence of the 10T concept.
The 10T principle implies the interaction of familiar (for us in everyday
life) things with the help of high-speed computer networks. In addition,
loT is a closer integration of physical devices and people among
themselves to achieve specific goals. The desire of users to feel
themselves in the role of 10T systems developers has pushed some
companies to develop the special programmable platforms (loT
platforms). Such platforms allow coping with various tasks in the field
of communications, information safety during data transmission,
visualization of 10T systems performance, etc. [2, 3].

First of all, it is proposed to consider the possibilities (criteria)
which have modern platforms.

Device management is one of the most important criteria expected
from any loT platform. The loT platform should maintain a list of
devices connected to it and track their operation status; it should be able
to handle configuration, firmware (or any other software) updates and
provide device-level error reporting and error handling. At the end of
the day, users of the devices should be able to get individual device
level statistics [1].

Integration level is another important criterion expected from an
loT platform [2]. The API should provide access to the important
operations and data that needs to be exposed from the 10T platform.

The level of safety and reliability measures required to operate an
loT platform is much higher than general software applications and
services. Millions of devices being connected to an IoT platform means
that we need to anticipate a proportional number of vulnerabilities.
Generally, the network connection between the 10T devices and the loT
platform would need to be encrypted with a strong encryption
mechanism [1, 3, 4].

Another important criterion which needs attention is the types of
protocols for data collection used for data communication between the
components of an loT platform. An IoT platform may need to be scaled
to millions or even billions of devices (nodes). Lightweight
communication protocols should be used to enable low energy use as
well as low network bandwidth functionality [2, 4, 5].

Variety of data analytics. The data collected from the sensors
connected to an loT platform needs to be analyzed in an intelligent

473

30. Intelligent methods and approaches for management and learning of loT-based systems

manner in order to obtain meaningful insights. There are four main
types of analytics which can be conducted on loT data: real-time, batch,
predictive, and interactive analytics [3, 5].

Visualization enables humans to see patterns and observe trends
from visualization dashboards where data is vividly portrayed through
line-, stacked-, or pie charts, 2D- or even 3D-models [1, 3, 5].

Database functionality. Scalable storage of device data brings the
requirements for hybrid cloud-based databases to a new level in terms
of data volume, variety, velocity, and veracity. Requirements for this
criterion is an attempt to restore order in the processing and transfer of
data from, for example, different platforms or even to other information
systems [4, 5].

Consider some of the well-known platforms according to the main
features and possibilities.

Amazon Web Services (AWS) loT Platform. According to Amazon,
their 10T platform will make it a lot easier for developers to connect
sensors for multiple applications ranging from automobiles to turbines
to smart home light bulbs [2]. The main features of AWS loT platform
are the registry for recognizing devices; software development kit for
devices; device shadows; secure device gateway; rules engine for
inbound message evaluation [4].

Kaa loT Platform. Kaa is provided with open source code, which
makes it easy to integrate into projects with "smart house" technology.
This allows developers to create their own intelligent 10T systems much
faster. In addition, it makes it possible to configure the corresponding
loT systems, or to combine them among themselves [3]. Main features
of Kaa loT platform perform real-time device monitoring; perform
remote device provisioning and configuration; collect and analyze
sensor data; analyze user behavior deliver targeted notifications; create
cloud services for smart products [5].

IBM Watson loT Platform. You can try out their sample apps to
get a feel for how it all works. You can also store your data for a
specified period, to get historical information from your connected
devices. IBM Watson also offers some great security possibilities based
on machine learning and data science [2]. Users of IBM Watson get
device management; secure communications; real-time data exchange;
data storage; recently added data sensor and weather data service [3].

474

30. Intelligent methods and approaches for management and learning of loT-based systems

Microsoft Azure 10T Platform. Representatives of Microsoft have
cloud storage, machine learning, 10T services, and have even developed
their own operating system for 10T devices [3]. Main features of Azure
loT platform are device shadowing; a rules engine; identity registry;
information monitoring [4, 5].

Bosch loT Suite - MDM 10T Platform. Bosch cloud offers its
customers complete safety and reliability while storing the data on its
secure server in Germany. The company hosts the cloud in Stuttgart,
Germany. Using Platform as a Service (PaaS) the company can offer its
service at fairly reasonable rates [2]. The main features of Bosch loT
platform are the PaaS; remote manager; analytics; cost-effective; ready-
to-use [4].

30.1.2 Multi-criteria approach for choosing the 10T platform

Estimating and choosing a rational loT platform is a rather
complicated process for many reasons, including: multi-factor
evaluation in the platform selection; complexity of preliminary
consideration of all possible stages of decision making; lack of
awareness of the peculiarities of modern information technology
development and loT services market; insufficient technical and
material base and so on [6, 7].

In most cases, the choice of the 10T platform for the development
of the loT systems comes to the comparative analysis of their
capabilities and taking the pricing policy for the services provided by
the developers of their own loT platforms into account. Besides, IoT
developers often give preference to the well-known loT platforms,
without considering the criteria (factors) that in the future may affect
the development, maintenance, updating, reliability, safety, and scaling
of the developed loT systems [4]. The study [2] noted that the
following features and features of platforms should be taken into
account when choosing an loT platform: orientation toward the hybrid
application environment; the ability to receive data and prepare it for
the analysis; a statement of the owner of the cloud infrastructure;
reliability and data safety; peripheral processing and data control.

One of the approaches to selecting an 10T platform is based on the
defining a reference platform architecture that includes the benefits and
capabilities of the existing modern loT platforms [3]. Later on, a

475

30. Intelligent methods and approaches for management and learning of loT-based systems

comparative analysis of the selected platforms with the reference one is
carried out and the best 10T platform is determined.

At the present time, there are several known methods of expert
evaluation and selection of IoT platforms [11, 12], in particular, the
analytic hierarchy process, the Delphi method and the decision making
methods based on fuzzy sets and fuzzy logic [8-10]. The considered
methods and approaches have some limitations and peculiarities of
application. For example, the necessity of calculation of the expert
judgment consistency; the limited number of levels of the hierarchy and
the dimension of the paired-comparison matrix; the constant contact
with experts for conducting the questionnaires; the need to update the
structure of the model when changing the number of criteria and
alternatives, etc. [4-10, 13].

Decision making process involves selecting one of the possible
variants of decisions according to the criteria under deterministic and/or
uncertain conditions. These possible variants of decisions are called
alternatives. For the problem of selecting decisions, it is necessary to
have at least two alternatives. When there are many alternatives, a
decision maker (DM) cannot take enough time and attention to analyze
each of them, so there is a need for means to support the choice of
decisions. There is also a need of such facilities when the number of
alternatives is small. In such problems, the number of alternatives, from
the consideration of which the choice begins, is relatively small.
However, they are not the only ones possible. Often, on their basis, new
alternatives arise during the selection process. Primary basic
alternatives do not always suit participants in the selection process.
However, they help to understand what exactly is missing in the
alternatives under consideration in this situation [6, 7]. This class of
problems is called problems with constructed alternatives. In the
modern theory of decision making, it is considered that the variants of
decisions are characterized by different indicators of their attractiveness
for DM. These indicators are called features, factors, attributes, or
quality measures [7]. They all serve as the criteria for selecting a
decision. In the vast majority of real problems, there are many criteria.
The complexity of the decision making tasks is also affected by the
number of criteria. With a small number of criteria (for example, for
two), the task of comparing the two alternatives is fairly simple and
transparent, the values of the criteria can be directly compared and a

476

30. Intelligent methods and approaches for management and learning of loT-based systems

preferred alternative can be developed. With a large number of criteria,
the problem becomes immense for the DM. Fortunately, with a large
number of criteria, they can usually be combined into groups with a
specific semantic meaning. Such groups of criteria are, as a rule,
independent. The identification of a structure on a set of criteria makes
decision-making process meaningful and effective [6].

The traditional approach to operations research assumes the
existence of a single criterion for assessing the quality of the decision
[7]. However, the expansion of the field of application of operational
research methods led to the fact that analysts began to face problems in
which the existence of several criteria for assessing the quality of the
solution is essential [6, 7].

The analysis of many real practical problems naturally led to the
emergence of a class of multi-criteria problems. Most of the methods of
multi-criteria decision making (MCDM) provide transformation of a
multi-criteria problem into the one-criterion, which greatly simplifies
the decision making process [6, 7, 10, 13].

The task of selecting the 10T platform is formulated as an MCDM
problem and has the following form (decisions matrix):

Q(E) Q(E) - Q(E)
Q(E)=| 2(B) Q(E) - QEa) e cgi(iz12.,mj=12...n), (30.0)

Q () Q.(E) - Q. (E,)

where Q(E;) is a vector criterion of quality for i-th alternative; Q, (E,)
is the j-th component of the vector criterion of quality Q(E;).
The evaluation of the i-th alternative by the j-th criterion Q, (E))

have a certain scale of assessment and is presented by experts based on
their experience, knowledge and experimental research in the field of
specialized 10T platforms [10].

To solve the 10T platform selection problem, it is necessary to find
the best alternative E” € E using data (30.1):

E" = ArgMax(Q(E,)),E €E,i=12,.,m. (30.2)

i=1..m

477

30. Intelligent methods and approaches for management and learning of loT-based systems

The solution of the corresponding problems is found through the
use of such methods as the selection of the main criterion, the linear,
multiplicative and max-min convolutions, the ideal point method, the
sequential concessions methodology, the lexicographic optimization [6,
7]. For some of them, it is necessary to determine the weight
coefficients of the criteria, which sometimes is difficult with a large
number of criteria [8-10].

Let’s consider one of the existing multi-criteria decision-making
methods, for example, ideal point method to solve the corresponding
task of multi-criteria selection of the loT platform [6].

The ideal point method implements the principle of an ideal
decision. It postulates the existence of an “ideal point” for solving a
problem in which the extremum of all criteria is achieved. Since the
ideal point in most cases is not among the existing solutions, then there
is a problem finding the "nearest" to the ideal permissible point. It
would have been nice if there was a single objective notion of
"distance", but it was not. If on a Cartesian two-dimensional subspace it
is possible to apply the Euclidean metric, then, for example, the shortest
path on the surface of a sphere is an arc, and not a straight line [6, 7,
10].

Thus, for solving the multi-criteria task using the ideal point
method, it is necessary above all:

— determine the coordinates of the ideal point;

— select a metric which you can measure the distance to the ideal
point.

To determine the coordinates of the ideal point you need to solve
n one-criterion tasks for each of the optimization criteria:

Q,(E)=MaxE €E;(i=12,.,m j=12,..,n). (30.3)

Optimal values of the criteria for each of the one-criterion
problems

Q = Max}Qj(Ei);EieE;(i:l,Z,...,m;j:1,2,...,n), (30.4)

ie{L,2,...m

where Q] is the optimal value of the j -th criterion;

478

30. Intelligent methods and approaches for management and learning of loT-based systems

will be the coordinates of the ideal point in the criteria space
Q =(Q.QQ), (30.5)

where Q" is the ideal point; Q/,Q,,...Q, are optimal values of n
criteria (coordinates of the ideal point).

If the ideal point Q" is permissible (but this happens very rarely),
then the decision E* is considered to be obtained. Otherwise, it is
necessary to determine the distance d, (E;),(i=12,..,m) to the ideal
point Q". To do this, it is necessary to choose a metric and finally to

solve a one-criterion task of finding a point from the set of admissible
decisions, which is closest to the ideal one [6].
Thus, the optimization problem takes the following form:

d,(E)=p(Q(E)-Q)= Min;E €E;(i=12...,m), (30.6)

where d_ (E,) is a distance from ideal point Q" to i-th alternative
Q(E;); p isametric for measure the distance to the ideal point Q".

If the Euclidean metric [7] is chosen, then the criterion (30.6) takes
the form:

Y(Q(E)-Q)) = MinE e E;(i=12...m:] =12,..,n), (30.7)

=1

dp(Ei):

where Q,(E;) are the coordinates of the i-th alternative in the
criteria space; Q; are the coordinates of the ideal point.

If the Hamming metric [7] is chosen, then the criterion (30.6) takes
the form:

d,(E)=Y|Q,(E)-Q}|= MinE, e Ex(i=12....m). (30.8)

The best alternative E™ < E has the smallest distance d, (E,).

479

30. Intelligent methods and approaches for management and learning of loT-based systems

30.1.3 Soft computing for the selection of specialized loT
platform

Appropriate MCDM methods have some limitations: the need to
take into account the weight coefficients of the criteria; the provision of
the Pareto-optimal set of alternative decisions; the lack of the ability to
change the dimension of the vector of alternatives and criteria in real
time; the significant impact of the weight coefficients that the expert
determines, and the local criteria on the result [8-10].

Therefore, let us consider to use the soft computing approach, in
particular, Mamdani-type fuzzy logic inference engine for selection of
the specialized 0T platform [8, 9]. When selecting the specialized 10T
platform, a large number of the criteria, that is sometimes not relevant
and appropriate within the scope of a particular application, is used.
According to the various studies and own experience, consider the use
of the following important (main) criteria when selecting loT platform
[10]: level of safety and reliability (Q,); device management (Q,);
integration level (Q,); level of processing and action management (Q,);
database functionality (Q,); protocols for data collection (Q,);
usefulness of visualization (Q,); variety of data analytics (Q,). In this
case, criteria Q,,Q,,..,Q, can act as input signals (coordinates) or

factors X ={x,X,,....x;} of the fuzzy logic inference system.

The structure y=f(x,X%,...x) of the fuzzy logic inference

system for selection of the specialized loT platform is presented in Fig.
30.1. It includes 3 fuzzy subsystems and has 8 input coordinates

X ={xj},j=1,...,8 and one output y, which are interconnected (by
common properties) by the fuzzy dependencies y, = f (X.%,%.X,),
Y, = f,(%, %, %, %) and y=f;(y,,y,) of the appropriate rules bases
(RBs) of the 3 subsystems [8, 9].

To estimate the input coordinates X :{xj},jzl,...,8, three

linguistic terms (LTs) with a triangular form of the membership
function (MF), in particular "low - L", "medium - M" and "high - H",
are chosen. Five LTs vy,,y, e{L,LM,M,HM,H} are chosen for the
evaluation of intermediate coordinates y, - hardware level of the loT

480

30. Intelligent methods and approaches for management and learning of loT-based systems

platform, vy, - software level of the loT platform. The output coordinate
y , Which is intended for evaluation of the specialized 10T platform, has
7LTs ye{VL,L,LM,M,HM ,H VH}.

V>

Y, JFSs2 ®

Fig. 30.1 — The structure of the fuzzy logic inference system for
selection of the specialized IoT platform

The partial sets of rules of rules bases (RBs) for the first
¥, = £, (X, %, %, %,) and for the third y = f;(y,,y,) fuzzy subsystems are
given in Table 30.1.

Table 30.1 — The partial sets of rules of RBs for the first and for the
third fuzzy subsystems

No of | Subsystem Y, = fl(x1'X2'X3'X4) Ne of | Subsystem y = fa(yl!yz)

rule rule

X X X3 X Y1 Y1 Y y
1 [l el L L VL
2 ol [m]L] 2 Y L
L M LM
7 [Mm|ImM[L L [m] ..
8 | M| M[L[M[M]13] M M M
.. |14] M [HM | HM
69 [H| M [M| H[HM][15[™ H H
N [H|IM][H]L][M]..
. | 24] H [HM H
8t |H|H[H[H[H]2]H H VH

481

30. Intelligent methods and approaches for management and learning of loT-based systems

Using the Mamdani-type algorithm [14-16] to develop the fuzzy
logic inference system for selection of loT platform (Fig. 30.1), we
eliminate the need to form weight coefficients for the criteria. In this
case, this soft computing approach allows you to get rid of the
limitations on the number of alternatives. Thus, alternatives can be
evaluated in real time in unlimited quantities using the corresponding
engine. In addition, a relevant fuzzy system can be trained with the help
of, for example, the adaptive neuro-fuzzy inference system (ANFIS)
neural network, which will give more accurate results of loT platform
evaluation [8,16].

30.2 Multi-agent approach for development and management
of 10T systems

In the modern world, the concept of 10T is impossible to imagine
without the use of multi-agent technologies [17]. For each physical
object, the program agent is brought into line with a certain degree of
intellectualism, representing his interests in the network.

The application of distributed computing systems allows
delegating complex tasks to software systems (agents), which, in turn,
lets one represent and solve problems that are difficult to formalize.
When the distributed access systems is designed, multiagent technology
allows you to combine both protocol and any application software
environment in a single system for processing and interacting with
different types of data [18]. Such a system has the flexibility, scalability
and efficiency of the distribution of load between servers.

According to the concept of multi-agent systems (MAS) and
technologies, the agent has only part of the knowledge of the general
problem, as a result, it is able to solve only part of the overall task.
Therefore, to solve a complex problem, you need to have a plurality of
agents that interact with each other, that is, a multi-agent system. Tasks
in such systems are distributed among agents in accordance with their
skills and capabilities. Any agent is an open system that has its own
behavior. Thus, an agent is considered to be capable of perceiving
information from a restricted environment, processing it on the basis of
its own resources, interacting with other agents and acting in the
environment for some time, pursuing its own goals [17].

482

30. Intelligent methods and approaches for management and learning of loT-based systems

30.2.1 Types and characteristics of agents

The foundations of multi-agent systems were formed as a result of
the study of distributed computer systems, parallel computing and
network technologies. The autonomy of individual system modules is
the basis of multi-agency, and such modules are called agents. Each
agent operates in a distributed system, where several processes, which
may have been interconnected simultaneously, occur. An autonomous
object or program that is capable of active motivated behavior and
interaction with other objects in a dynamic environment is called an
agent. Agents have the ability to receive messages by interpreting their
content and generating new messages, which can be sent to other agents
or to the core of the multi-agent message board system that will be
available to all components of the system [17].

The multi-agent approach is used in various fields, among them
there are distributed solutions of complex tasks, reengineering in the
enterprise, interaction of robotic 10T systems [18].

There are two classes of tasks that are solved by multi-agent
approach. The first class includes tasks of distributed control and
planning. At the same time, the efforts of various agents are aimed at
solving a common problem, in such tasks it is necessary to ensure
effective interaction of agents. The second class includes tasks where
each agent solves his problem independently, using shared resources
[19-21].

The operation of the MAS is based on the principle of the division
of responsibilities between individual subsystems, that is, in the
common environment there are autonomous agents, whose work is
aimed at satisfying the interests of different users. In this case, agents
interact with each other while solving their tasks. These tasks include
the management of information flows, network administration, and
information search on the Internet, traffic management, collective
decision of multi-criteria tasks, and many more [20].

The emergence of collaboration agents in distributed systems led
to the formation of a modern representation of the agent. For a long
time, the multi-agent paradigm has accumulated a significant
theoretical base and experience [21]. Also, this research led to the
emergence of different model agents, their types and characteristics, as

483

30. Intelligent methods and approaches for management and learning of loT-based systems

well as the tools and means necessary for their development. Different
principles of agents’ interaction were formed.

Increasing the complexity of tasks foo loT systems and the
development of distributed computing has increased interest in the use
of software agents. A software agent is an autonomous process that can
respond to the environment and cause changes in conjunction with
users or other agents [21]. It should be noted that the medium also
affects the agent [1, 17]. Software agents are classified according to the
following main features.

Based on mobility [20]:

— stationary agents;

— mobile agents.

The main difference between mobile and stationary agents in this
classification is that mobile agents are able to move between nodes of
the computing environment.

By type of interaction [1]:

— cooperative agents;

— competing agents.

A cooperative agent has the ability to integrate with other agents in
the environment to solve a common task. In turn, competitors
competing inherently competitive behavior for their own interests.

There are also many other features that can be used to classify
agents [1]. First, it should be noted that agents can act as living beings.
The signs that we shall consider further relate to the classifications of
artificial agents (robots, automata or computer programs).

Agents can be generally divided into two large groups for
functional purposes [17]:

— functional agents are those that exist and work in the real world
and can be endowed with sensors to obtain information from the
environment. An example of such agents may be robots;

— information agents exist only in the software environment, they
mainly perform tasks related to computer calculations.

We distinguish the following types of agents by the ability to study
[18]:

— agents capable of training, and the behavior of such agents is
based on previously acquired experience;

484

30. Intelligent methods and approaches for management and learning of loT-based systems

— non-capable of learning agents, they act according to pre-
written rules, which respond to changes in the environment.

By the ability of interaction [17]:

— stand-alone agents;

— know-how-to interact with other agents.

On the other hand, agents can be classified according to their
ability to reason or “think”. It is the most effective approach in
designing intelligent 10T systems. According to this classification, there
are two types of agents: intellectual (cognitive) and reactive.

Intelligent agents have a well-developed mathematical model of
the external world, which is constantly replenished. This is achieved
through the presence of a knowledge base agent and mechanisms for
analysis of actions. This type of agent is capable of conducting an
analysis based on a model of the environment using a sample mapping
method and, based on these data, of making decisions or performing
certain work. When an agent has some resources, its knowledge base
will contain information about the structure and status of resources,
which will have a significant effect on subsequent behavior. Intelligent
agent necessarily combines five main functions: cognitive; regulatory,
ability to reason; communicative; resourceful [17-20].

In turn, reactive agents do not have data on the environment, data
analysis mechanism, and resources. Therefore, these agents do not have
a mechanism for predicting changes in the environment and their
actions [17].

Also, the intelligent agent is characterized by higher autonomy
than that of reaction agent, having its own goals, for the satisfaction of
which they can use resources of other agents. In turn, reactive agents
are highly dependent on the external environment and are capable of
only corresponding reactions. Here is a comparison of these types of
agents in Table 30.2 [17].

The typical tasks put of the agents include [21]:

— temporary calculations. The work of agents is carried out not
only between fixed sub-networks of the network, but also between
mobile platforms that are connected to the network. As an example, this
can be the case: the mobile device is connected to the network and adds
an agent which has to do some work, and then disconnects it. After

485

30. Intelligent methods and approaches for management and learning of loT-based systems

completing the agent's task, the device re-connects to another node of

the network and downloads the results of its operation;

Table 30.2 — Characteristics of agents

Characteristics

Cognitive agents

Reactive agents

The internal model of
the external world

Developed

Primitive

Speculation Complex and reflexive | Simple one-step

Motivation Developed motivation The simplest
system that includes incentives associated
beliefs, desires, with survival
intentions

Memory Is None

Reaction Slow Fast

Adaptability Low High

Modular architecture Is None

Composition of the
MAS

A small number of
autonomous agents

A large number of
agents dependent on
each other

— search, processing and analysis of information. It is difficult for
a person to work with large volumes of data, therefore the use of agents
for the search and processing of information is effective enough;

— data monitoring. The agent in real time monitors the source of
the data and notifies any changes.

30.2.2 Communication agents with the external environment

The main types of agents interaction with each other and with the
environment include [17]:

— cooperation (it is the main form of interaction between agents
and the environment, characterized by the unification of their actions,
resources and means to achieve a common goal, with the division of
functions between them);

— competition (confrontation, conflict);

— compromise (it is important to meet both your own
requirements and the opponent's requirements);

— conformism (refusal of their claims in favor of the opponent);

— rejection of interaction.

486

30. Intelligent methods and approaches for management and learning of loT-based systems

The reactive agents interact with other agents in order to survive,
their communication cannot be called intentional, it is based primarily
on natural principles. Unlike intelligent agents, which co-operate
"consciously” to meet the needs. After all, as an agent or system is able
to be under the influence of the environment, it reflects its performance.
Co-operation between agents and the environment can arise both on the
principles of co-operation or forced, and on the basis of situational
cooperation or voluntarily. Agreements and co-operation between
agents is needed. One can distinguish the following main reasons for
the cooperation of agents [19].

A common goal. As a rule, if the agents are bound by this cause,
then they will interact with the type of cooperation. However, it is
necessary to check that such cooperation does not lead to the
destruction of the agent or its viability. There is another possible
situation when agents do not coincide. Then there are conflicts between
MAS objects. But in this situation conflicts can also have a positive
impact on the system. They promote development and provide
incentives for agents. There are systems with simultaneous interaction
types of cooperation and confrontation. An example is the predator-
victim model [20].

To achieve its goal, the agent needs some resources, that is,
resources. If agents do not have shared resources - conflicts arise. To
solve this problem, the rule is said to "win stronger”. That is, a stronger
agent will pick up resources at the weaker one. This can be called the
most effective and easiest way to resolve such conflicts. But in some
situations it is advisable to negotiate [21]. In this case, the agents are
compromising, taking into account the interests of everyone.

Each agent utilizes a limited set of knowledge that he or she may
need to achieve local and global issues. Therefore, he has to look for
interactions with other agents [17].

Thus, the following circumstances are distinguished:

1) the agent is able to achieve the goal without the help of others,
ie independently;

2) the agent is able to achieve the goal on its own, but through
interaction the problem can be solved more effectively or faster;

3) the agent can achieve the goal only by using third-party help.

Agents can independently choose the type of interaction with each
agent or environment, depending on the relevance of the connection.

487

30. Intelligent methods and approaches for management and learning of loT-based systems

In order to establish the order between agents in the process of
interaction, there are obligations. With the help of commitments, you
can predict the actions of other agents and plan their own. Below are
the following types of obligations [1]:

1) the agent is obliged to other agents;

2) the agent is obliged to the group;

3) the group is obliged to the agent;

4) the agent is obliged to himself.

Formal representation of goals, commitments, desires and
intentions, as well as all other data, forms the basis of the mental model
of the intellectual agent that provides its motivated behavior in offline
mode.

There are various forms of agent cooperation [17]:

— ordinary cooperation, which is achieved through the exchange
of experience of each agent (sharing tasks, sharing of knowledge, etc.)
without special measures to coordinate their actions;

— co-ordinated collaboration, if agents have to coordinate their
steps (sometimes using the so-called coordinating agent) for the
efficient use of resources and their experience;

— non-productive cooperation, if agents together use resources or
solve common problems without sharing experience and interfering
with one another.

30.2.3 Data transfer techniques between agents in 10T systems

In order for agents to transmit information to each other in
distributed systems, they use agent interaction. To do this, the MAS
uses [17]:

— universal programming languages, such as (Java);

— knowledge-oriented languages, i.e. knowledge representation
languages (Knowledge Interchange Format (KIF)); language of agent
interaction (Foundation for Intelligent Physical Agents (FIPA),
Knowledge Query and Manipulation Language (KQML), AgentSpeak,
April);

— language of agent specifications;

— specialized programming languages for agents (TeleScript);

— script description languages (Tc / Tk);

— languages of logical programming (Oz);

488

30. Intelligent methods and approaches for management and learning of loT-based systems

— lisp-like languages that are close to ordinary language.

Two different approaches can be used to develop a data exchange
language between agents. The first approach is procedural, which
means that communication is based on the implementation of
instructions. Such a language can be designed and programmed on Java
or on a development tool such as Tcl. The second approach is
declarative, that is, communication is based on descriptions. This
approach has become more widely used to create sharing languages
between agents [1]. The most popular standards defining the language
of agent communication are FIPA [11] and KQML [19].

FIPA standard. Developed by the FIPA Committee [17]. It
includes the FIPA ACL (Agent Communication Language) language
[7], through which agents can transmit messages of a certain format
using various data services, and a LISP-like language describing the
content of the FIPA SL (Semantic Language) message. The internal
architecture of the FIPA standard consists of the following services,
which are integrated into the general registry:

— message service;

— service of registration of agents in the environment (that is, in
the MAS);

— service description of the language of communication agents;

— aregister of all services.

This architecture can interact with external systems for managing
and implementing current agent tasks.

KQML standard. Designed by the ARPA Committee (Advanced
Research Projects Agency) [17]. It includes the KQML language that
defines a set of performativity actions and a LISP-like language for
describing the content of the message, KIF. The standard consists of
three levels: the communicative level (describes parameters such as
sender, receiver, and different message identifiers), message level
(describes requests, control actions, and protocol for interpreting the
message), and content level (contains information that accompanies
message level requests).

The standard is characterized by the following main features:

— agents are connected by one-way communication channels, by
which fixed communications are transmitted;

489

30. Intelligent methods and approaches for management and learning of loT-based systems

— communication channels may have a non-zero delay in the
transmission of the message;

— when receiving a message, the agent determines who and what
input message this message has arrived on;

— the agent can send the message only through a specific channel,

— messages for a particular addressee are received in the dispatch
order;

— delivery of messages is absolutely reliable miitna.

The standard supports both synchronous and asynchronous
transmission of messages. Agents can communicate directly with other
agents (with a symbolic name), send out broadcast messages, or "ask"
other agents-participants in the conversation. The following are
examples of systems implemented with KQML [1, 17]:

— Next-Link software program [1] developed at Stanford
University aims at exploring the principles of coordination, allowing
established agents to carry out distributed design and design of systems;

— Logic Centered Design [18], developed at Lockheed Al
Center's Center of Artificial Intelligence, which is positioned as an
intelligent information system for designing systems;

— Concur [19] web server presentations developed at Stanford
University by Gregory R. Olsen, which uses an agent approach to
computing in distributed design systems;

— a software complex for distributed data acquisition on global
temperatures and dampness [20], developed by Diane Weiss of MITRE.

30.3 Methods and approaches for learning of loT-based
systems

Microsoft together with the technology developer for loTFathym
helps to cope with dangerous glaciation of roads in Alaska caused by
unusual edge fluctuations in temperature [1]. Fluctuations in
temperature lead to glaciation of roads, but past experience no longer
helps to cope with the situation. l0T sensors and machine learning came
to the rescue. Fathym equipped snow-removal cars and light truck fleets
of the county with a system of mobile sensors that track the temperature
of the road, the amount of precipitation, and the condition of the road
surface [22]. During the normal working day, sensors send data at 3-

490

30. Intelligent methods and approaches for management and learning of loT-based systems

second intervals to the cloud-based analytical platform WeatherCloud,
which runs on the basis of cloud-based Microsoft services. The
platform connects the findings with the forecasts of local
meteorological stations and gives the result. For example, if
WeatherCloud shows that in the north of the city there is more ice than
in the south, it distributes chemical reagents, respectively. If the result
warns of a decrease in temperature after 3 days, it does not send a
command with reagents from which there will be even more ice. Such
information allows not only to save money from the local transport
department but also save lives. Annually in the USA 150 000 accidents
occur on the roads through ice, injuries are received by 39 000 people,
550 people die. The Alaska Transportation Department is the first
customer, but the company plans to transfer its experience to other
states and abroad. The cloud's 10T platform, developed by RoadBotics,
works with smartphone cameras and continuously monitors travel
conditions when drivers drive on US roads. And the technology of deep
learning helps to identify defects in the road surface [23].

30.3.1 General principles of M2M learning and self-learning
systems

Machine-to-Machine (M2M) learning is a set of technologies that
allow machines to exchange information with one another, or to
transmit it unilaterally [22]. These can be wired and wireless sensors
monitoring systems or any device parameters (temperature, stock
levels, location, etc.). For example, ATMs or payment terminals can
automatically transmit information over GSM networks, or if they have
check paper or cash finished, or conversely because there is too much
cash and the arrival of collectors is required. M2M is also actively used
in security and safety systems, health systems, industrial telemetry
systems, and positioning systems for moving objects based on
GLONASS / GPS systems [1]. One of the subclasses of M2M is the use
of mobile solutions, and it can also use the abbreviation M2M (Mobile-
to-Mobile).

Self-learning systems these are intellectual information systems,
which, based on examples of real practice, automatically generate the
proper knowledge [23].

At the heart of self-learning systems, there are the methods of
automatic classification of examples of real practice, which means

491

30. Intelligent methods and approaches for management and learning of loT-based systems

training on the samples. Examples of real situations accumulate over a
period and constitute a training sample. As a result of learning the
system automatically generates generalized rules or functions that
determine the attachment of situations to the classes that the trained
system uses in interpreting unfamiliar situations. From the general
rules, the knowledge base is automatically formed, which is
periodically adjusted as the information on the situations analyzed
grows [1].

Distinguish the following types of self-learning systems.

Inductive systems [22]. A system with inductive output is a self-
learning intelligent system, which works on the principle of induction
by classifying examples by significant features. Inductive conclusion
(from partial to general) generalizes the statement on the basis of the
plural of partial statements. The generalization of examples on the basis
of this principle is reduced to the choice of the classification mark from
the set of given; detecting a plurality of examples by the value of the
selected attribute; determining the belonging of these examples to one
of the classes. The classification procedure can be represented as a
decision tree, in which the intermediate nodes are the values of the
signs of the sequential classification and in the end nodes the value of
the attribute of belonging to a certain class.

Neural Networks are self-learning intelligent systems, which are
built on the basis of learning real examples an associative network of
concepts (neurons) for parallel solutions to it [23]. As a result of
training, mathematical solving functions (transfer functions or
activation functions) that form the dependencies between input and
output characteristics (signals) are formed on the examples.

Case-based reasoning systems [22] are self-learning intelligent
systems that, as units of knowledge, preserve the precedents of
solutions (examples) and allow, upon request, to select and adapt the
most similar precedents. In these systems, the knowledge base contains
descriptions of non-generalized situations, and actually the situations
themselves or precedents. Then the search for a solution to a problem is
reduced to a search by analogy (abductive conclusion).

Data warehouses are self-learning intelligent systems that allow
you to learn from databases and create specially-organized knowledge
bases. Information repositories are a repository of meaningful
information, are regularly exported from operational databases and are

492

30. Intelligent methods and approaches for management and learning of loT-based systems

intended for operational analysis of data (implementation of OLAP-
technology). To extract meaningful information from databases, special
methods (Data Mining or Knowledge Discovery) are based on the use
of methods of mathematical statistics, inductive methods of
constructing decision trees or neural networks [23-25].

30.3.2 Technologies and applications of M2M learning

The most successful algorithms of machine learning are those that
automate the processes of decision-making by generalizing known
examples. In these methods, known as teacher training or supervised
learning, the user provides an object-response pair of algorithms, and
the algorithm finds a way to get an answer to an object. In particular,
the algorithm is able to find an answer to an object which it had never
seen before, without any human help. Returning to the example of spam
classification using machine learning, the user submits an algorithm to
a large number of letters (objects) along with information about
whether a message is a spam or not (answers). For a new email, the
algorithm will determine the probability that this message can be
attributed to spam [24].

The algorithms of machine learning, which are studied in the
object-response pairs, are called learning algorithms with the “teacher”,
as the "teacher" shows the algorithm of response in each observation,
on which the learning takes place. Despite the fact that creating a set of
objects and responses - this is often a labor-intensive process, which is
carried out manually, learning algorithms with the teacher interpreted
and the quality of their work easy to measure. If the task can be
formulated as a task work with a teacher, and you can create a dataset,
which includes answers, then it is likely that machine learning will
solve this problem [25].

Let's consider examples of problems of machine learning with a
teacher [22].

Determination of postal code by handwritten digits on an
envelope. Here the object will be a scanned image of the handwriting,
and the answer is the actual digits of the postal code. To create a dataset
for building a model of machine learning, you need to collect a large
number of envelopes [23]. Then you can independently read the postal
codes and save the numbers in the form of responses.

493

30. Intelligent methods and approaches for management and learning of loT-based systems

Definition of tumor benignity on the basis of medical images. Here
the object will be the image, and the answer is the diagnosis of whether
the tumor is benign or not. To create a dataset for model building, you
need a database of medical images. In addition, you need an expert
opinion, so the doctor should look at all the images and decide which
tumors are low-quality, and which are not. In addition to image
analysis, you may need additional diagnostics to determine the high
quality of the tumor [23].

Detecting fraudulent activity in credit card transactions. Here the
object is a transaction with a credit card, and the answer is information
about whether the transaction is fraudulent or not. For example, you are
the institution issuing credit cards, dumpers have the purpose of saving
all transactions and records of customer messages about fraudulent
transactions [23].

With these examples, it's interesting to note that although objects
and answers look quite simple, the process of data collection for these
three tasks is significantly different. Despite the fact that reading
envelopes are labor-intensive occupation, this process is simple and
cheap. Getting medical images and performing diagnostics requires not
only expensive equipment but also rare, highly paid expert knowledge,
not to mention the ethical issues and issues confidentiality. In the
example of detecting credit card fraud, data collection is much easier.
Your customers will give you an answer by reporting fraud. All you
have to do to get objects and responses related to fraudulent activity is
to wait [22].

Learning algorithms without a teacher or uncontrolled learning.
In the algorithms of learning without a “teacher”, only objects are
known, and there are no answers. Although there are many successful
areas for the application of these methods, they are usually more
difficult to interpret and evaluate [24].

Let's look at examples of problems of machine learning without a
teacher.

Definition of topics in the set of posts. If you have a large
collection of text data, you can aggregate them and find the most
common themes. You do not have any previous information about what
topics are being considered and how much they are. Therefore, there
are no known answers.

494

30. Intelligent methods and approaches for management and learning of loT-based systems

Dividing clients into groups with similar preferences. With a set of
customer records, you can identify groups of clients with similar
benefits. For a trading site, such groups may be "parents”, "bookmates"
or "gamers". Because you do not know in advance about the existence
of these groups and their quantities, you have no answers [22].

Detecting patterns of abnormal behavior on the website. It is often
useful to identify mistakes, patterns of behavior that are different from
the norm. Patterns of abnormal behavior may be different, and, perhaps,
you will get registered cases of abnormal behavior. Because in this
example you only see traffic, and you do not know what is normal and
abnormal behavior. It is a problem of learning without a teacher [23].

When solving the problem of machine learning with and without a
teacher, it is important to present the input data in a format that is
understandable for the computer. Often the data is presented as a table.
Each data point you want to explore (each email, each client, each
transaction) is a string, and each property that describes this data point
(e.g., customer's age, amount, or transaction place) is a column. You
can describe users by age, article, account creation date and shopping
frequency in an online store. You can describe the image of a tumor
using grayscale for each pixel or with the size, shape, and color of the
tumor. In machine learning, each object or line is called a sample or a
data point, and column properties. These examples are called
characteristics or features [1, 22].

But no algorithm for machine learning will be able to predict data
that does not contain any useful information. For example, if the only
sign of a patient is his or her last name, the algorithm will not be able to
predict his gender. This information is simply not available in the data.
If we add another sign-the patient's name, the effectiveness of accurate
prediction is higher, since often, knowing the person's name, one can
judge his/her gender [22, 23].

30.3.3 Neural networks for learning of loT-based systems

In the past few years, the Artificial Intelligence field has entered a
high growth phase, driven largely by advancements in Machine
Learning methodologies like Deep Learning (DL) and Reinforcement
Learning (RL). Combinations of those techniques demonstrate
unprecedented performance in solving a wide range of problems,

495

30. Intelligent methods and approaches for management and learning of loT-based systems

from playing Go at super-human level to diagnosing cancer like a
specialist [22].

DL/RL innovations are happening at an astonishing pace
(thousands of papers with new algorithms are presented in numerous Al
related conferencesevery year). Though it is premature to predict the
final winning solutions, hardware companies are racing to build
processors, tools, and frameworks. They are trying to identify pain
points and bottlenecks in DL workflows (Fig. 30.2), leveraging years of
experience of researchers [23].

Data Gathering
and Preparation

o - E Pretrained
El Q j Models

i f Cloud Inference

Import, -
Training Data - l Trained

Training Deployment

Clean,
Label, etc

=
{{‘Eﬁ =

Edge Inference

Fig. 30.2 — Basic Deep Learning Workflow [23]

Let’s consider some training platforms. Graphical Processing
Units (GPU) based systems are usually the choice for training advanced
DL models. Nvidia has long realized the advantages of using GPU for
general purpose high performance computing [8, 9].

GPU has hundreds of compute cores that support a large number
of hardware threads and high throughput floating point computations.
Nvidia developed Compute Unified Device Architecture (CUDA)
programming framework to make GPU friendly for scientists and
machine learning experts to use [24].

CUDA toolchain has improved overtime, providing researchers a
flexible and friendly way to realize highly complex algorithms. A few
years ago, Nvidia aptly identified the DL opportunity and persistently
developed CUDA support for most of DL operations. Standard

496

30. Intelligent methods and approaches for management and learning of loT-based systems

frameworks like Caffe, Torch, and Tensorflow all support CUDA [25].
In cloud services like AWS, developers have a choice between using
CPU or GPU (more specifically Nvidia GPU). Platform choice depends
on the complexity of the neural networks, budget, and time.

30.4 Work related analysis

A lot of developments and approaches for management and
learning of loT-based systems belongs to Leeds Beckett University,
Newcastle University, KTH Royal Institute of Technology and
University of Coimbra. The paper [11] considers the architecture of a
typical 10T Data Analytics Platform (IoTDAP), which starts with raw
data collection from sensing devices and ends with complex data
analytics and decision making activities. This research [12] aims at
creating a resource-sharing platform to support such relationships, in
the perspective that resource unconstrained devices can assist
constrained ones, while the latter can extend the features of the former.

A hybrid multi-objective approach based on GRASP (Greedy
Randomized Adaptive Search Procedure) and SA (Simulated
Annealing) meta-heuristics is proposed [13] to provide decision support
in a direct load control problem in electricity distribution networks. The
incorporation of preferences is made operational using the principles of
the ELECTRE TRI method, which is based on the exploitation of an
outranking relation in the framework of the sorting problem. Diversity
of hard logic and soft processors, interfaces and buses, self-diagnostics
means are described in paper [14]. Addressed to the problem of
translating the control knowledge of a human expert operator into fuzzy
control rules, this paper [15] proposes an approach to automatically
design a Mamdani fuzzy logic controller. The proposed approach is
based on the use of a data set extracted from a process that has been
manually controlled, and has the aim of learning a Mamdani logic
controller with the capability to imitate the control action of an expert
human operator. The results show that the proposed approach has the
capability of designing the Mamdani fuzzy controller in order to
successfully controlling the real experiment [15]. Knowledge gained
through classification of microarray gene expression data is
increasingly important as they are useful for phenotype classification of
diseases. Different from black box methods, fuzzy expert system can
produce interpretable classifier with knowledge expressed in terms of

497

30. Intelligent methods and approaches for management and learning of loT-based systems

if-then rules and membership function. This paper [16] proposes a
novel Genetic Swarm Algorithm (GSA) for obtaining near optimal rule
set and membership function tuning.

This paper [18] focus on the development of a hierarchical multi-
agent framework for resilience enhancement over wireless sensor and
actuator networks. Experimental results collected from a laboratory
IPv6 based test-bed comprising distributed computational devices and
heterogeneous communications, show unequivocally the relevance and
inherent benefits of the proposed approach. In this paper [19] authors
identify some of the existing MAS architectures for WSNs, and propose
some novel architectures. Multi-agent platform and toolbox for fault
tolerant networked control systems are considered in the paper [20].
This work aims to expand on previous investigations considering
frequency control and examines distributed communication and control
architectures through the medium of MAS focusing on voltage control
in a radial microgrid. The investigation assesses control and
communication performance across a range of agent architectures
against four selected performance criteria, and an increasing agent
population [21].

In M2M networks, an energy efficient scalable medium access
control (MAC) is crucial for serving massive battery-driven machine-
type devices. In this paper [24], authors investigate the energy efficient
MAC design to minimize battery power consumption in cellular-based
M2M communications [25]. Authors present an energy efficient MAC
protocol that not only adapts contention and reservation-based
protocols for M2M communications in cellular networks, but also
benefits from partial clustering to handle the massive access problem.

Conclusions and questions

In this section, the materials for module PCM4.3 “Intelligent
methods and approaches for management and learning of IoT-
based systems” of PhD course “Development and implementation
of IoT-based systems” are presented. They can be used for preparation
to lectures and self-learnig for lecturers, PhD-students, loT
developers, etc. These module materials were developed by Prof.
Yu. P. Kondratenko, Assoc. Prof. G. V. Kondratenko, Assoc. Prof.
le. V. Sidenko, Ph.D. Student M. O. Taranov.

498

30. Intelligent methods and approaches for management and learning of loT-based systems

Recently, the direction associated with the analysis of the
intelligent methods and approaches for management and learning of
loT-based systems has become very popular and effective. This gave
rise to such areas as neural network technologies, cloud and fog
computing, control systems, comuter vision, etc [2, 3, 8-10].

This chapter discusses the types and capabilities of 10T platforms,
multi-criteria approach and soft computing for choosing the loT
platform [6-10]. Also analyzed the concept of multi-agent approach in
loT, in particular, types and characteristics of agents, communication
agents with the external environment and data transfer techniques
between agents. In addition, an important component of the loT
network is the choice of methods and approaches for learning of loT-
based systems. Also considered general principles of M2M learning,
self-learning systems and neural networks [22, 23].

The considered methods and approaches are widely used in all
applications of the loT, for example, medical and healthcare,
transportation systems, building and home automation, manufacturing,
agriculture, energy management, environmental monitoring, etc [1, 4].

In order to better understand and assimilate the educational
material that is presented in this section, we invite you to answer the
following questions.

1. Whatis the loT platform?

2. What criterion is responsible for working with 2D- and 3D-

models and graphs?

3. What platform is developed by Amazon?

4. What is the minimum number of criteria necessary when

solving a problem using multi-criteria decision making?
What does this component Q, (E;) mean?

5.

6. What is needed to solve the problem by MCDM methods?

7. What is the main principle of the ideal point method?

8. What is the Euclidean metric?

9. What is the Hamming metric?

10. What is the form of membership function in a linguistic term?

11. What is the ANFIS?

12. What is the main difference between mobile and stationary
agents?

13. What is the functional agent?

499

30. Intelligent methods and approaches for management and learning of loT-based systems

14. What is the reaction of cognitive agents?

15. What are the most popular standards defining the language of
agent communication?

16. What is the neural network?

17. What is the synonymous name of the learning algorithm
without a teacher?

References

1. F. Hussain, Internet of Things: Building Blocks and Business Models.
Cham: Springer, 2017.

2. G. Keramidas, N. Voros, and M. Hubner, Components and Services for
10T Platforms. Cham: Springer, 2017.

3. J. Guth, U. Breitenbucher, M. Falkenthal, F. Leymann, and L. Reinfurt,
"Comparison of loT platform architectures: A field study based on a reference
architecture,” Cloudification of the Internet of Things (CloT), P.72-77,
November 2016.

4. Y. Kondratenko, G. Kondratenko and 1. Sidenko, "Multi-criteria
Decision Making and Soft Computing for the Selection of Specialized loT
Platform,” in Recent Developments in Data Science and Intelligent Analysis of
Information. ICDSIAI 2018. Advances in Intelligent Systems and Computing,
vol. 836, O. Chertov, T. Mylovanov, Y. Kondratenko, J. Kacprzyk, V.
Kreinovich, and V. Stefanuk, Eds., 2019, P. 71-80. DOI: 10.1007/978-3-319-
97885-7_8.

5. Y. Kondratenko, G. Kondratenko, and I. Sidenko, "Multi-criteria
decision making for selecting a rational 10T platform," IEEE 9th International
Conference on Dependable Systems, Services and Technologies (DESSERT),
P. 147-152, May 2018.

6. A. V. Katrenko, V. V. Pasichnyk, and V. P. Pas’ko, Decision making
theory. Kyiv: Publ. Group BHV, 2009 (in Ukrainian).

7. Y. P. Zaychenko, Decision making theory. Kyiv: NTUU “KPI”, 2014
(in Ukrainian).

8. A. P. Rotshtein, Intelligent Technologies of Identification: Fuzzy
Logic, Genetic Algorithms, Neural Networks. Vinnitsya: Universum Press,
1999 (in Russian).

9. A. Piegat, Fuzzy Modeling and Control. Heidelberg: Springer, 2001.

10. G. Kondratenko, Y. Kondratenko, and I. Sidenko, "Fuzzy Decision
Making System for Model-Oriented Academia/lndustry Cooperation:
University Preferences,” in Complex Systems: Solutions and Challenges in
Economics, Management and Engineering. Studies in Systems, Decision and

500

30. Intelligent methods and approaches for management and learning of loT-based systems

Control, vol. 125, C. Berger-Vachon, A. Gil Lafuente, J. Kacprzyk, Y.
Kondratenko, J. Merigé, C. Morabito, Eds., 2018, P. 109-124.

11. G. Kecskemeti, G. Casale, D. Jha, J. Lyon, and R. Ranjan,
"Modelling and Simulation Challenges in Internet of Things,” in IEEE Cloud
Computing, vol. 4, no. 1, 2017, P. 62-69.

12. R. Silva, J. Sa Silva, and F. Boavida, "A symbiotic resources sharing
10T platform in the smart cities context,” IEEE Tenth International Conference
on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),
P. 192-197, April 2015.

13. E. Oliveira, C. Henggeler Antunes, and A. Gomes, "A hybrid multi-
objective GRASP+SA algorithm with incorporation of preferences,” IEEE
Symposium on Computational Intelligence in Multi-Criteria Decision-Making
(MCDM), P. 32-39, December 2014.

14. O. llliashenko, V. Kharchenko, A. Kor, A. Panarin, and V. Sklyar,
"Hardware diversity and modified NUREG/CR-7007 based assessment of NPP
1&C safety,” 9th IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS), P. 907-911, September 2017.

15. J. Mendes, A. Craveiro, and R. Araujo, "lterative Design of a
Mamdani Fuzzy Controller," 13th APCA International Conference on Control
and Soft Computing (CONTROLO), P. 85-90, June 2018.

16. P. Ganesh Kumar, T. Aruldoss Albert Victoire, P. Renukadevi, and
D. Devaraj, "Design of fuzzy expert system for microarray data classification
using a novel Genetic Swarm Algorithm,"” in Expert Systems with Applications,
vol. 39, no. 2, 2012, P. 1811-1821.

17. R. Fagin, J. Halpern, Y. Moses, and M. Vardi, Knowledge in Multi-
Agent Systems. Cambridge: MIT Press, 2003.

18. F. Januario, A. Cardoso, and P. Gil, "Multi-agent approach for
resilience enhancement in wireless sensor and actuator networks,” Joint 17th
World Congress of International Fuzzy Systems Association and 9th
International Conference on Soft Computing and Intelligent Systems (IFSA-
SCIS), P. 635-640, June 2017.

19. R. Tynan, G. O’Hare, D. Marsh, and D. O’Kane, "Multi-agent
System Architectures for Wireless Sensor Networks," in Lecture Notes in
Computer Science, 2005, P. 687-694.

20. M. J. G. C. Mendes, B. M. S. Santo,s and J. S. da Costa, "Multi-agent
Platform and Toolbox for Fault Tolerant Networked Control Systems,"
in Journal of Computers, vol. 4, no. 4, 2009, P. 303-310.

21. C. Cameron, C. Patsios, and P. Taylor, "On the benefits of using self-
organising Multi-Agent architectures in network management,” International

501

30. Intelligent methods and approaches for management and learning of loT-based systems

Symposium on Smart Electric Distribution Systems and Technologies (EDST),
P. 335-340, September 2015.

22. R. Schneiderman, "Internet of Things/M2M-A (Standards) Work in
Progress," in Modern Standardization, 2015, P. 203-234.

23. A. Laya, L. Alonso, J. Alonso-Zarate, and M. Dohler, "Green MTC,
M2M, Internet of Things," in Green Communications, 2015, P. 217-236.

24. A. Azari and G. Miao, "Energy efficient MAC for cellular-based
M2M communications," IEEE Global Conference on Signal and Information
Processing (GlobalSIP), P. 128-132, December 2014.

25. G. Lawton, "Machine-to-machine technology gears up for growth,"
in Computer, vol. 37, no. 9, 2004, P. 12-15.

502

31. Prototyping and rapid development of 10T systems

31. PROTOTYPING AND RAPID DEVELOPMENT
OF 10T SYSTEMS

Assoc. Prof., Dr A. P. Plakhteyev, MSc student
H. A. Zemlianko (KhAI)

Contents
ADDIEVIATIONS ... e 504
311 10T AEVICES ..ttt 505
31.1.1 Interaction of end devices With 10Tccccocviviviinenniniicinnns 505
31.1.2 EDGE Computing for Association Sensor Networks............. 507
31.1.3 Types and structure of 10T dEVICES.........ccovvvririnerierieieiine 509
31.2 Prototyping and rapid development principles..........cccccoevenee. 511
31.2.1 MaiN CONCEPLS....ecviiieerieieie et se ettt sre e 511
31.2.2 Techniques for prototyping of 10T systems.........ccccceevvvvennene. 513
31.2.3 Rapid Prototyping of Fragments of Internet of Things 515
31.2.4 Modeling of Access to WEB ReSOUICES.......c.cccveveverirrrannnn. 517
31.3 Cases of 10T systems rapid development ..o 519
31.3.1 Case 1. Collection of data on an angular position of the mobile
platform of road 1aboratory...........cccceoeieiiiiiiiiis e 519
31.3.2 Case 2. Monitoring of temperature with use of a cloud service of
Thingspeak and access 0N WiFic.cccvvvevviiiie v 527
31.4 Work related analysisccoovevrerererierieieenese e 530
Conclusions and QUESLIONS..........coererieieieieesesie e eeeseeneas 531

503

31. Prototyping and rapid development of 10T systems

Abbreviations

BLE - Bluetooth Low Energy

BN — Boundary node

CPU - central processing unit

HRDMI — High Resolution Distance Measurement Instrument
IDK — 0T Development Kit

LED - Light-emitting diode

MCU Microcontroller Unit

ROMDAS —ROad Measurement Data Acquisition System

SN — Sensor network

SoC — System on Chip

Sigfox — Global Communications Service Provider for the loT
USART — Asynchronous serial interfaces —

504

31. Prototyping and rapid development of 10T systems

The Internet of things develops very quickly. A variety application
demands inclusion in development of specialists of different
qualification. For entry into the market time of development is reduced
with since normal 9-12 months and tends to reduction up to 3 - 6
months. Compliance to requirements for functionality, flexibility,
opportunities of development, energy efficiency, and cost of products
and to operating costs depends on quality of design. Eventually success
in the market of projectable 10T of systems is defined. Unlike many
other 10T applications the small-size devices capable to provide
interaction with other devices by means of peer-to-peer or network
connections are required.

31.1 10T devices
31.1.1 Interaction of end devices with 10T

In the general scheme (Fig. 31.1) of the interconnection of nodes
of sensor networks (SN), individual devices (Dev), sensors (S),
actuators (A) are showed. At the Edge, Dew, Fog, Cloud (Cloudlet)
levels, the state of S and A is represented by digital copies (Digital
Twin).

Sensor networks can be wired and wireless. The most popular
networks are Ethernet, RS485 and similar, CAN, LIN, etc. Wireless
networks can be proprietary in the ISM bands 315, 433, 868 MHz, as
well as 2.4 GHz networks based on the IEEE802.15.4 standard
(ZigBee, 6LOWPAN, etc.)), IEEE802.15.1 (Bluetooth v.2 .. 5),
IEEE802.11 (WiFi). Low-speed sensor networks in industry and home
automation are combined using high-speed interfaces - Ethernet, WiFi.
In fact, a heterogeneous network is formed, where it is necessary to
provide access to various nodes in each network and their
interconnectivity. Boundary nodes are bridges (gateways) between
segments of sensor networks [1].

Thus, the loT fragment can be represented as a hierarchical
structure from a variety of disparate sensor networks SN = {SN1, SN2,
SNi, ...}. Each network consists of a set of nodes: SNi = {Ni, 1, ..., Ni,
J, ...} connected by the network communication interface Ci from the
set C = {C1, C2, ...}, by the protocol Pi from set P = {P1, P2, ...}. The
Ni, j node serves a set of sensors (S) and actuators (A). To implement

505

31. Prototyping and rapid development of 10T systems

the functions of the node a microcontroller platform MCUI, j is used
that has a network interface Ci, as well as analog and digital interfaces,
that form data streams from sensors S and for controlling actuators A.
Networks are designed to collect data from sensors primary processing,
accumulation, presentation in some form (indication, sound, video,
etc.), control and management of executive devices. The network can
be embedded in some object (robot, tool, machine, etc.), and the state of
set S and A determines the state of the object.

Let the current state of the node of one network be determined by
the state of the sensor S, and the node of the other network by the state
of the actuator A. In so doing, the state S is displayed on the state A.
The simplest example is that the state of the switch determines by the
state of the lamp, which can be realized by their direct connection.
Alternatively, the state S is determined by the MCU that is associated
with the MCU that controls A.

Cloud 5 1\ IA i
e |f; |
Fog ! IA ¥ A
: 1 1
Dew s Digital ¥ A" LN
1 1 1
Edge S"‘ ' Twins <S.A> ¥ A v 4
- | I 1 _+
SN 5‘ | ——— Yo SN ---‘
| 1 loT
Node : | MNode ‘ Node | . ¥y MNode
MCU fmmmmm e -] MCU
I AT [s]

Fig. 31.1 — Methods of an interaction of network nodes

The logical link of the sensor to the executive device can be
implemented: interconnectivity by sending a message S' that displays
the state S to another network as a package A' representing the state A.
In the case of different interfaces and protocols of associated sensor
networks, a series of transformations S'— A’ is required. In the absence
of direct network connection, Edge computing is used, operating with a
digital representation of < S", A" >, that is called Digital Twin [2].
Accordingly, Digital Twin at the levels Dew, Fog, Cloud, will be used
in various forms, but displaying the current state of <S, A>.

506

31. Prototyping and rapid development of 10T systems

Synchronization <S', A>, <§", A">, ..., <§"", A™" requires certain
computational costs and the expenditure of traffic, and hence - time
costs. Generally, there are time intervals of the desynchronization in the
meaning of various Digital Twin, which can affect the operation of
systems sensitive to such uncertainties. Here, it should be entrusted
Edge computing with critical to communication delays and direct
interaction of sensor networks.

31.1.2 EDGE Computing for Association Sensor Networks

Cloud technologies implement a variety of loT services for
storage, data processing and remote access (Amazon Web Services 10T
Platform, Microsoft Azure 10T Hub, Google Cloud 10T, IBM Watson
loT Platform, CISCO loT Cloud Connect, ThingSpeak, etc.). This
simplifies the development of applications for loT. But these
technologies have a lot of disadvantages [3]. There are restrictions on
the intensity of the data flow for storage in the Cloud stores and a
significant delay in access to these data. For a growing number of loT
sites the permanent access to the Internet is required. Also the
increasing of bandwidth is needed. It prevents the use of Cloud
technologies in real-time management systems and critical
appointments. Excessive traffic arising in the process of access to
remote resources causes increasing energy costs and the cost of access
to information.

The solution is to approach resources to their consumers.
Consequently, Fog computing [4-6], and then Dew computing [7] have
appeared.

The loT feature is the importance of the level boundary interaction
of TCP/IP — oriented components and services with sensor networks
(SN) and individual devices — stationary, mobile, moveable (EDGE
computing). This level of interaction is difficult for formalizing because
of variety of devices types, interfaces, network protocols, numerous
vulnerabilities and strong requirements to power of loT devices.
Acquiring necessary skills for building the boundary level of 10T is the
pressing challenge of training specialists in networking technologies.

Let's consider independent sensor networks SNi (head node 1,
internal nodes 11, 12, 13 and boundary nodes BN, BNi2, BNi3), SN2
(head node 2, internal nodes 21, 22, 23 and boundary nodes BNz, BN,
BNa3) , SN3 (head node 3, internal nodes 31, 32, 33 and boundary nodes

507

31. Prototyping and rapid development of 10T systems

BNs, BNi3, BN23). In Fig. 31.2, double lines show internetwork data
flows. Let the data for node 21 come from the access point through the
boundary node BNL1.

The chain is constructed: Datal — BN1 — BN12 — 21. Data is
delivered from node 31 via the chain: 31 — 3 — BNy — 2— BN —
1 — BN; — Datal. A shorter way, in the presence of BN13 is: 31 —
3— BNi3 — 1— BN; — Datal.

23 4
AR
Q Boundary network node o Data3

Fig. 31.2 — Combining of sensor networks with internetwork data
transport

o Networks SNi, SN2, SN3 can be used for data exchange
between the head and inner nodes and external networks via BNj,
BN, BNs. The following conditions must be met: support for packet
switching in selected networks; sufficient length of network
messages for organizing data transfer over SNi-SN3; network
protocols. Data transfer rate in networks ensures an acceptable delay
in transmission of data packets; network traffic must have sufficient
redundancy to accommodate additional traffic; head nodes 1, 2 and 3
allow the extension of the basic set of functions; energy costs for
implementation of additional services should not extend beyond
established limits.

508

31. Prototyping and rapid development of 10T systems

e A number of sources [6,8-10] describe the results of the
interaction of wired and wireless networks. The principal possibility
of reliable transportation of CAN-packets through the IP network is
shown. However, many sensor networks have too limited capabilities
of interfaces and protocols to implement additional functions. This
may require profound changes to the services of elements 1, 2 and 3,
will affect a number of existing protocols and will lead to the
emergence of new protocols that support prospective platforms of
sensory networks.

Thus, the problem of constructing a common information field
from independent heterogeneous networks is solved as follows.
Network interfaces are assumed by the boundary nodes (BN). There are
BN1, BNz, BN for external access to SN1, SN2, SNz and there are BNy,
BNis, BNz for the interaction of networks. Boundary nodes that
perform the function of gateways have the possibility of a simultaneous
presence in at least two networks between which interaction is
organized.

Each network controller through a network interface is related to
the nodes of its network - sensors and drives and it performs a set of
basic functions (services). Expansion of the set of functions gives
access to the network controller from the side of the boundary node,
which provides transport of data from one network to another.

Head nodes (network controllers) form requests (commands) to
sensors and drives receive response messages in accordance with the
internal logic of the network functioning. To provide communication
with the global network of all nodes, without exception, that generates
and receive data, it is advisable to use one entry point for a cluster of
nodes within one or more sensor networks [8, 9].

31.1.3 Types and structure of 10T devices

Devices on which 10T conditionally is under construction share on:
1. Simple attached device.
2. Intelligent device.
3. Border gateway.

The simple attached device generates data, performs instant
operations and carries out data transmission. As a rule, contains the
microcontroller with limited resources, built in by software, does not

509

31. Prototyping and rapid development of 10T systems

demand big costs of the equipment, provides basic functions of
connection, basic tools of safety. These are the most mass devices to
which specific, often contradictory requirements are imposed.

The intelligent device contains the microprocessor or SoC, the
operating system and considerable hardware resources (Ready 10T).
Provides data analysis on peripheral sections, support connectivity
across multiple networks, makes decisions and carries out local
calculations. Provides the maximum level of safety, controllability,
interaction and compatibility, reliable work of solutions, support of
cloud computing, the user interface and reduces data transmission cost.
The border gateway is the intelligent device for computing Edge with
the high level of safety, minimizes the problems connected with
interaction of the physical and virtual world and scaling of the loT
systems.

loT projects increasingly rely on existing out-of-the-box solutions.
Benefits [5]:

— quicker Time To Market;

—access to crucial skills;

—secure by design;

— optimized to work with wider ecosystem;
— scale with ease;

— enable a more end-to-end offering.

The choice for independent development usually is accepted for
simple and parts of intelligent devices. The structure of these devices is
presented in a general view on Fig. 31.3.

Datainput
Identification Display

Sensors H CPU H Actuators

SN, WSN COMMs Internet

Cloud

Fig. 31.3 — Block scheme of device loT
Kernel of devices (CPU) can be ready (Fig. 31.4) or independently
projectable modules on the basis of 8-32 bit microcontrollers [11-13].

510

31. Prototyping and rapid development of 10T systems

,__I,v'mm_ A

=

ARLLILRE e

Fig. 31.4 — Kernel of loT deV|ces

Samples of sensors, indication and data entry, communication
means in modular or submodular execution for prototyping or creation
of end devices are widely presented at the market (Fig. 31.5).

Fig. 31.5 - Sensors and communlcatlon modules of 1oT devices

31.2 Prototyping and rapid development principles
31.2.1 Main concepts

There are following six phases in every loT based system
development life cycle model [14-16]:

— requirement gathering and analysis;
— design;

— implementation or coding;

— testing;

— deployment;

— maintenance.

Development of loT of applications is the iterative process
allowing eliminating errors and mismatching to requirements at
different stages. Errors of initial stages of development are most
difficult eliminated.

Design of the 10T components of systems includes:

511

31. Prototyping and rapid development of 10T systems

1. Providing functional requirements:

— modeling for decision-making (Matlab, Simulink);

— distribution of functions between the loT components of
systems, use of support from mobile devices (smartphones,
tablets and so forth);

—rational distribution of functions between equipment
rooms and software (minimization of hardware expenses);

— use of the previous developments.

2. Depreciation of components:

— rational choice of element base;

— use of open platforms.

— Reduction of weight and dimensional parameters:

— rational configuration;

— choice of cases of elements;

—replacement of bulky elements (power supply,
indication, management).

3. Decrease in terms of development of components:

—use of the previous developments, resources of
ecosystems;

—rational choice of development tools, compilers,
simulators.

4. Use of the previous developments.

5. Decrease in energy consumption (collecting energy for a power

supply).

6. Reliability augmentation (resistance to failures, power failures

and so forth).

7. Reduction of expenses on service.

8. Work in severe conditions of the environment.

9. Adaptation to new requirements.

10. Standardization of interfaces for Sensors, Actuators, network

and between network interactions.

11. Interaction with services Edge, Dew, Fog, Cloud.

12. Complex use of different platforms.

At different development stages focus of fast prototyping is
transferred to different components. Existence of lightweight loT
middleware for rapid application development is important [16-18].

512

31. Prototyping and rapid development of 10T systems

31.2.2 Techniques for prototyping of 10T systems

Physical prototypes of simple devices can have virtual analogs, for
example, in the environment of Proteus (Fig. 31.6). Virtual devices
cannot reflect fully behavior of physical prototypes, but considerably
accelerate intermediate prototyping.

Availability of components of an ecosystem of Arduino,
Breadboards to fast assembly of prototypes cause their wide circulation,
especially in education [11, 12].

All largest vendors of microprocessors, microcontrollers, SoC,
communication means are guided by IoT and offer both end-to-end
solutions, and means of fast prototyping. Elements of compatibility
with shields of an ecosystem Arduino are often entered and in the same
format own payments are offered.

ON Semiconductor provides configurable, end-to-end, rapid
prototyping platforms for the Internet of Things [19]. These platforms
enable development of energy efficient solutions for smart
homes/buildings, smart cities, industrial 1oT (Predictive Maintenance,
Asset Monitoring, etc.) and personal loT (Wearables, activity monitors,
etc.).

Figure 106

The IDK baseboard can be connected with different shields
depending on the required IoT application. The IDK baseboard allows
the user to create many types of 10T nodes and/or gateways depending
on which shields are used with the baseboard. Programing/configuring
the IDK requires the ON Semiconductor IDE software (Fig. 31.7).

513

31. Prototyping and rapid development of 10T systems

1DK Baseboard

Assembly

12vDC
Power

Adapter

Fig. 31.7 — Hardware Setup

Based on the company’s highly sophisticated NCS36510 system-
on-chip (SoC) with a 32-bit ARM® Cortex® M3 processor core, it has
all the necessary hardware resources for constructing highly effective,
differentiated 10T systems, along with a comprehensive software
framework to attend to interfacing with the cloud (Fig. 31.8).

Fig. 31.8 - EVBUMZ2497/D IoT Prototyping Platforms

By attaching different shields to the IDK baseboard, a wealth of
connectivity (WiFi, Sigfox, Ethernet, ZigBee and Thread protocols,
etc.), sensor (motion, ambient light, proximity, heart rate, etc.) and
actuator (with stepper and brushless motor driving, plus the ability to
drive LED strings) options can be added to the system. This means that

514

31. Prototyping and rapid development of 10T systems

compromises do not have to be made, and the most suitable technology
can be chosen.

Offering a wide range of choices including configurable hardware,
multiple cloud connectivity, easy-to-use development software, and
application examples, these platforms reduce time-to-market and allow
rapid deployment of loT-enabled products.

Designed for expert makers, entrepreneurs, and industrial 10T
companies, the Intel Edison module provides easier prototyping with a
fully open source hardware and software development environment. It
supports WiFi and BLE 4.0 connectivity (Fig. 31.9). This kit contains
eleven, selected Grove sensors and actuators. It can be used to track
indoor environment as well as to create smart-home applications [20].

Fig. 31.9 —Intel® Edison and Grove loT Starter Kit

At production of single copies or the small 10T series of solutions
these platforms are final option.

31.2.3 Rapid Prototyping of Fragments of Internet of Things

The option of rapid prototyping of a network fragment using wired
and wireless access that realized with use a WiFi router shown in
Fig. 31.10.

515

31. Prototyping and rapid development of 10T systems

j ENC28150 fad

w5100 w5500
UNO

Fig. 31.10 — Rapid prototyping of the 10T network fragment

There are four Ethernet ports for connecting the end devices
(Ethernet MCU) and the local server, the WiFi access point for
connecting the 10T wireless devices: WiFi MCU (ESP 8266, Espressif
ESP 32, etc.), SoM Raspberry Pi, laptops, smartphones, tablet
computers. As the access point WiFi mobile devices GSM, DSL
modems and WiFi MCU can be used. This creates a variety of tasks for
building various Edge-level network configuration for building and
analyzing loT fragments, mastering promising loT platforms.

Simple Ethernet MCUs are built using Ethernet - SPI converters
Wiznet w5100, w5500, Microchip ENC28J60 and microcontroller
platforms [21]. Converters implement TCP/IP protocol in hardware.
Microcontrollers can be connected to sensors and actuators, perform the
functions of the boundary nodes of sensor networks, and exchange
information among themselves using built-in interfaces. Using multiple
routers and connected devices allows the local server to simulate
interaction at the boundary level of higher 10T levels (Fig. 31.11).

The prototype is the base for the development and research of
industrial automation systems, a smart home that is based on
technologies of the Internet of Things.

516

31. Prototyping and rapid development of 10T systems

e B niipy/103.2170/ Leve Jo

Bl ~ (& mm ~ Gesonacwocs > Ceppuc ™

LED control (pin 4)
® On W Off | Apply |

LED-status: Off

Fig. 31.11 — Example of use of shield w5100 for remote control
via the Internet

31.2.4 Modeling of Access to WEB Resources

Along with rapid prototyping, an effective tool for developing and
debugging an application for the Internet of Things is the model
approach. Thus, the Proteus modeling and development environment
allows investigate the behavior of devices based on wired access
ENC28J60 to a local network and also based on emulating access to
web resources by intercepting TCP/IP packets.

Figure 5 shows the model view and the browser window with the
result of querying the IP address of the device. This simple and
affordable tool allows you to gain the skills of organizing an exchange
using HTTP pages in a network with the TCP/IP protocol. Limited
resources of microcontrollers and features of ENC28J60 allow using
highly shortened HTTP pages that can be placed in one Ethernet frame
and occupy the amount of available memory.

Proteus allows simulate the exchange between nodes of sensor
networks, and also the interaction of microcontrollers with digital and
analog sensors (temperature, humidity, pressure, approach, etc.),
various actuators (lighting, electric drives, relays, etc.), indicators,
alarms and various converters (Fig. 31.12).

517

31. Prototyping and rapid development of 10T systems

hip://192.168.0.15/
€0 192.1680.15

Arduino ENC28J60 192.168.0.15
A0..5=(92, 154, 420, 625, 707, 891)

Fig. 31.12 — Modeling access to Web resources using the Proteus.

The program - a network analyzer for computer networks of
Ethernet - Wireshark allows the user to browse all traffic passing on
network connected with the modelled device [22]. The program is
distributed for free. On Fig. 31.13 analysis of a frame of exchange with
the browser and local control of data is given.

No. Time Source Destination ProtocoLengttInfo !
231 108. 542928000 192.168.0.15 192.168.0.75 TCP 189 [TCP segment

0000 00 30 4f 51 73 7f 54 55 58 10 00 24 08 00 00 . 3 ..$. .8
0010 [EES a 9b 40 00 40 06 e 03 ¢O0 a8 00 Of cO as| B P T ot
0020 [oYs 00 50 07 79 00 00 16 01 23 T2 6b f3 50 19 Y

0030 54 06 00 00 48 54 54 50 2f 31 2e 30 20 32 «.T...HT TP/1.0 2

0040 30 30 20 4f 4b 0d 0a 43 6f 6e 74 65 6e 74 2d 54 00 OK..C ontent-T

0050 79 70 65 3a 20 74 65 78 74 2f 68 74 6d 6¢c 0d O0a ype: tex t/html..

0060 0Od 0a 3c 2f 48 31 3e 3c 48 31 3e 41 72 64 75 69 ..</Hl>< Hl>Ardui

0070 6e 6f 20 45 4e 43 32 38 4a 36 30 20 31 39 32 2e no ENC28 160 192.

0080 31 36 38 2e 30 2e 31 35 3c 2f 48 31 3e 3¢ 48 31 168.0.15 </HL><Hl| \Web
0090 3e 41 30 2e 2e 35 20 3d 20 28 20 31 30 32 33 2c¢ >A0..5 = (1023,

00a0 20 38 31 39 2c 20 36 31 34 2c 20 34 31 30 2c 20 819, 61 4, 410, page
00b0 32 30 35 2¢ 20 30 20 29 3c 2f 48 31 3e 205, 0) </Hl>

8]

=r

[192.168.0.1S x

€« C 192.168.0.15 Q@
Arduino ENC28J60 192.168.0.15
A0.5 = (1023,819,614, 410, 205,0)

Fig. 31.13 — Analysis of the data field of Frame

518

31. Prototyping and rapid development of 10T systems

For convenience of search/viewing of information on the
necessary packets in the Wireshark program it is possible to filter the
taken packets to the IP address or port number.

31.3 Cases of 10T systems rapid development

A number of the practical tasks connected with development of
systems of collection of information on mobile platforms complicate,
and in some cases exclude debugging of hardware-software complexes
in the real environment. It is necessary to resort to use of models of
elements of interaction with networked environment, sensors and
actuation mechanisms.

Casel contains process description of independent development
and prototyping of the attached loT device for data collection of
measurements with use of language of the low level. Can be similarly
constructed some other 10T devices with tight restrictions on the used
resources.

Case2 shows difference of modern approach to fast design of the
device of monitoring of temperature with use of a cloud service on the
basis of Arduino ecosystem by Ready loT.

31.3.1 Case 1. Collection of data on an angular position of the
mobile platform of road laboratory

For condition monitoring of roads the ROMDAS® system (ROad
Measurement Data Acquisition System) [23] is widely used and some
other systems. There is similar road laboratory JIBC-3 [24] domestic
development on the basis of the car. JIBC-3 contains a ruler from 18
laser sensors measuring a profile of a paving, HRDMI (High Resolution
Distance Measurement Instrument) — the odometer for measurement of
the passable way on the basis of an encoder, Digital inclinometer for
measurement of slope angles, navigation instruments and the camera of
video monitoring.

Each sensor creates a data flow with results of measurements
through certain distances. These distances are counted by means of
HRDMI which creates the pulse sequence with a frequency
proportional to motion speed. Data from sensors are taken off through a
certain number of div of impulses of HRDMI. Data in a special format
also remain in memory of the on-board computer for further processing

519

31. Prototyping and rapid development of 10T systems

(definition of places of damage of coverings, calculation of the IRI
index of flatness of roads). For creation of a profile of the road, it is
necessary to consider slope angles (pitch of X and a roll Y) platforms.

Data of an inclination on X, Y from Digital inclinometer are
transferred with a frequency of 10 Hz and have a 22-character text
format <DO... D21>:

<D0 ... D10> = “X=txx.xxx"“, <CR>, <LF>

<DI11 ... D21>= “Y=txx.xxx", <CR>, <LF>

Example of data from an inclinometer:

"X=+12.345",$0D,$0A,"Y=-09.876",$0D,$0A

Received by X,Y will be transformed to 16-bit branching codes
(shortint) of values with scaling ratio 1000 and about one tetrad is
transferred in byte:

X=+12345= 0x3039, <Ox#9, Ox#3, 0x#0, Ox#3> — s X=+12.345°
Y=-9876 = 0XxD96C, <Ox#C, Ox#6, 0x#9, Ox#D> — s Y=-09.876°

Here 8 tetrads of codes X and Y of each measurement are
numbered by 4-bit codes (#) synchronization (0,1,2, ..., E,F,0.1.). New
measurement gets the future issue from a cyclic row - 0,1,2, ...,
E,F,0.1. Data from other sensors have a similar format.

Interaction of hardware-software functional modules of the
channel of measurement of slope angles is given in Fig. 31.14.

Communication means and the software of the computer are
provided by multichannel data reception of measurements, forming of
the general data array with a binding to local maps for storage and
further processing and use of results in local and cloud services.

MCU - a set of hardware-software modules of conversion of
formats and temporary parameters of messages with results of
measurements.

MCU modules interact as follows.

1. Receiver in real time analyzes an asynchronous data flow from

Digital inclinometer.
2. Correct messages are used for conversion of values of corners
X, Y from a text format in binary branching code of shortint.

3. The template of the output message forms.

4. The moments of the beginning of transfer of the next day off

the message are defined.

5. Transmitter sends the 8th byte packets of the output message.

520

31. Prototyping and rapid development of 10T systems

I’ _____ - - - — — — -/
| I?igital -:—zzggggesle Receiver i Transmitter | | ils:t':;
| Inclinometer 10Hz || <XY> <X, Y,num> [| gin/giv
| §gn§gr§ | | |
| PC K>
| HRDMI -I—Fin—l—a Timing |——nable |
| div—I% | Sensors
_____] I_______'\EUJ other

Fig. 31.14 — Functional modules of the channel of measurement of
slope angles

Functions can be implemented program, equipment rooms and
software and hardware tools of different microcontrollers. In the
considered channel of measurements widespread AVR ATmegal62
microcontrollers with two transceivers were used [25].

Rapid software development

Considering intensity of exchange and implementation of
conversions language of the low level - the graphic Algorithm Builder
assembler is in real time selected. In comparison with the traditional
assembler time of development of the program is several times reduced.

Typical for analysis and forming of message bars at exchange in
loT functional modules of the program:

» wait_Rx1 — reception of characters

« read_RxD1(value) — waiting of the character

« read_dec (valuel, value2) — waiting of digit

+ read_sign(signXY) — waiting of the sign of number

+ OutMess — the output message

« Chr_Bin —branching code from a line

* messXY — the output message

« Timer_0_Overflow — synchronization of transmission of

messages

» USARTO0_DR_Empty — transfer of byte

* USARTO_Transmit_Complete — the termination of a cycle of

transfer

521

31. Prototyping and rapid development of 10T systems

Fragment of programming module of reception of a corner of pitch
of X (Fig. 31.15) it is similar to the module of reception of angle of heel
of Y.

The macro of read_RxD1 (value) carries out check of the accepted
character and saves it in the buffer, and at an error reception of the
message is interrupted. So there is a syntactic control and ignoring of
incorrect messages.

How to check operation of the module of reception of the message
without field tests?

1. To replace function of waiting of input of the character
wait_Rx1 with function of reading test characters from in-
memory string

Imessl
n "E=-12.333",500,50R
" "Y=+29.599",50D,508
Input of the message from the virtual terminal Proteus.
3. To connect the Digital inclinometer emulator to a prototype.

———

Batringk->Y
read ExDL("X")
read RxDI1("=")

read sign(signi)
read dec{™0","3™)
read_dec(™0™,"9")
read BxD1({".™)
read_dec(™0™,"9")
read_dec(™0","3")
read_dec(™0™,"9")
read BExD1 (50D)
read RxDI ($0R)
read ExDL({"Y")

n

.Jlread_BxDI{value}
walt Bxl

OutMess
l1-»gut_en

value->comp

Heuf~1
W BORTB~502 RxData—=comp jﬁ— Berr
_—) BxData->[Y++]

Fig. 31.15 — Reception of values of slope angles of X, Y

31. Prototyping and rapid development of 10T systems

On the AVR microcontroller with asynchronous reception - the
transmitter (ATtiny2313, ATmega8535, ATmega8/168/328, etc.) can
implement programmatically the emulator of an inclinometer for
transfer of value of fixed values of X and Y, or a series of values
including incorrect.

For error trapping at consecutive exchange the additional bit of
control of parity is used. AVR transceivers of microcontrollers support
exchange of 9-bit codes, but the bit of Even Parity (Data bit 8) forms
and processed programmatically. On the Fig. 31.16, the fragment of the
program of data transmission with control of parity is shown. In the
same way sending for transfer to the PC form.

In addition to functions of the Digital inclinometer emulator it is
possible to assign function of emulation HRDMI to the microcontroller
— generation of impulses with a program-controlled frequency of Fin.
The internal timer counter having communication with an exit is for
this purpose used.

|1cc:p
temp->PORTC/ /for LEDs
mesgl*2->2

21-rcount
LFM
I+t
RO->UDR | bitd_even
//oropasxa 9 BMT OOCETRM
LEM//next byte Parity-»bitd
T4t g->ccc
RO->data data->temp
=0
- C. . =0
1->ULDRE//UCSBA. 5/ /ULRE temps>
- .
bité_even//send 9 bit O
58400->Tw/ /10 meas/3ec bitd & £01
0->TXBE
1->TXBE
data->UDR

Fig. 31.16 — Transfer of the message with Even Parity bits

523

31. Prototyping and rapid development of 10T systems

Generation of impulses happens hardware. It is possible to use
management of frequency by means of external signals (Fig. 31.17). To
each signal there corresponds the code of control of the timer.

|set0 |set1
PINA->temp//read pin Even->Parity Even->Parity
aetn 22-30CRIL//80,5 36->0CRIA//50
setl Vloop Wloop
setl
sets |set2 |set3
Even-»Parity Even-»Parity
s=td 16->0CRIA/ /40 92->0CR1A//20
setd Vlccp Vlccp
seth
3et? |setd |seF5
Even-»>Parity Even-s>Parity Even-»Parity
61->0CR1A//30khz 184->0CR1A/710 01 POCRIA//S
W Vlccp
|lccp loop

Fig. 31.17 — Fragment of the program of the choice
of Fin (80.5 - 1.0 KHz)

For creation of the device the microcontroller with two
asynchronous serial interfaces (USARTO.1) is necessary for exchange
on RS232, the hardware pulse counter HRDMI. The model -
ATmegal62 with clock rate 7.3728 MHz is selected. Setup in
Algorithm Builder of speed and operation modes of Receiver USART1
for communication with an inclinometer and Transmitter USARTO for
contact with the computer is shown on Fig. 31.18.

Transmitter
| Enable
Receiver | Complete interrupt enable
| Enatle Data Bit &

. [ata reqgister interupt enable
Complete interupt enable
R P /| Clear Complte Interupt Flag

Character size : 8- bit 1 ztop bit
Parity mode : Even Parity Character size - 8- hit 1 stop bit
Parity mode : Even Parity
UBRR - $02F UBRR : $003
[Baud Rate = 3600 bps) [Baud Rate = 115200 bps)
[CPU clack frequency is 7372800 Hz | [CPU clack frequency i 7372800 Hz)

Fig. 31.18 — Setting mode USART1 and USARTO

524

31. Prototyping and rapid development of 10T systems

For prototyping the developed earlier printed circuit board for
ATI90S8515/ATmega8515/ATmegal62 with sufficient number of
external connectors was used (Fig. 31.19).

Fig. 31.19 — Prototype of microcontroller devices

After modification of the connection diagram COM port it is used
for connection with the computer, the contact of Fin connects to
HRDMI, Fin/div - contact of a pilot, a0.2 — inputs for the jumpers
installation of the choice of div value. Indication of a power supply
(Led), the button of reset (Reset) and the connector of onboard
programming (ISP) is provided.

15 DSUBY [RS5232)
PC (TxDO)
Inclinometer (RxD1)

J2 Fin

1_Strobe
=n
L2

XA PEVALE g
7ar2amru | [MTA FEZIOCIE |2

GND
U3 780510220
13 ATmegale2

= e 2 g2

Fig. 31.20 — Function chart of the device

525

31. Prototyping and rapid development of 10T systems

To the Com port connector (J1) according to (Fig. 31.20 with can
be connected both an inclinometer (RxD1), and the computer (TxDO).

The prototype of the Digital inclinometer and HRDMI emulator is
constructed on the basis of a board with the ATmega8535
microcontroller ("Sensors" on Fig. 31.21).

— r
‘ ‘-/ / Inclinometer

Fig. 31.21 — The stand for debugging of the microcontroller device

Verification of signal outputs of the emulator is executed with use
of the logical analyzer. The analyzer has functions of record of time
diagrams of signals, measurements of temporary parameters and
decoding of sendings of standard interfaces (Fig. 31.22).

+10 ms +20 ms +30 ms

b——r—— W} 1.15m: B 4348 H: [2.3 ms

Fig. 31.22 — Signals emulator Digital inclinometer and HRDMI

Here from the emulator the line "X = 12.345\r\nY=-09.876\r\n"
and impulses with a frequency of 997 Hz arrives.

For control of data transmission from the device on the COM1
computer the Terminal v1.9 program with the settings shown on is used
Fig. 31.23. In a window of the terminal we receive the expected flow
of enumerated output messages. The prototype set onboard mobile road
laboratory passed rather long period of operation without additional
debugging in field conditions.

526

31. Prototyping and rapid development of 10T systems

i Terminal v1.9b - 200609... [= [OX|

COM Port Baud rate Data bits

%22:2? COM1 - (" B00 14400 ¢ 5FEO0 | g

oo | 12000 ¢ 19200 6 115200
COM B
Lolsly g ||~ 200 ¢ 20800 ¢ 128000 b
_Bbot |~y rg | ooge00 © 38400 © 258000 7
Quit 5 10| 900 ¢ 58000 ¢ custom | * 8
Settings

[Auto Dis/Connect [~ Time [~ Steam log [gjeustom BRJICMCles
Set f
Sethont | [~ AutoStart Scipt [~ CR=LF [~ StayonTop W0 J7 3

Receive
- _ ¢ HEx [Dec
CLEAR Feset Counter | (13 5| Counter = 41 4SO [Hex

09 03 00 03 OC 06 OS 0D 19 13 10 13 1C 16 19 1D A
29 23 20 23 2C 26 29 2D 39 33 30 33 3C 36 39 3D
49 43 40 43 4C 46 49 4D 58 53 50 53 5C 56 59 5D
69 63 60 63 6C 66 63 6D 79 73 70 73 TC 76 719 7D

89 £3 80 83 8C 56 89 £D 99 93 90 93 9C 96 99 9D Diata bits-| Pty Stap bits
A9 A3 O A3 AC A6 A9 AD BY B3 BO B3 BC E6 B9 ED C 57600 || ¢ 5 Conore || @ i
€9 3 CO C3 CC C6 9 CD DI D3 DO D3 DC D6 DY DD & 115200 || - o " odd
E9 E3 E0 E3 EC E6 E9 ED FI F3 FO F3 FC F6 F9 FD ¢ 128000 & even || € 15
09 03 00 03 OC 06 09 OD 19 13 10 13 1C 16 19 1D ¢ 256000 || © 7 C mark

29 23 20 23 2C 26 25 2D 39 33 30 33 3C 36 33 30 | ¢ custom || * 8 space|| © 2

Fig. 31.23 — Control of data transmission from MKU to the computer

31.3.2 Case 2. Monitoring of temperature with use of a cloud
service of Thingspeak and access on WiFi

On Thingspeak.com the channel for monitoring of temperature is
registered. It is required values of temperature from the digital
DS18b20 sensor periodically to send for storage and visualization to the
canal and to exercise control of receipt of data. There is a ready
decision for access to the Internet through WiFi — WeMos D1 R1 based
on SoC ESP8266-12E from Espressif [27, 28]. Necessary elements and
communications between them are shown on Fig. 31.24.

WiFi the microcontroller in WeMos D1 R1 works according to an
algorithm on Fig. 31.25.

Libraries of high-level functions:

#include <OneWire.h>

#include <DallasTemperature.h>
#include <ESP8266WiFi.h>
#include <WiFiClientSecure.h>

527

31. Prototyping and rapid development of 10T systems

Fleld 1 Chart ? 07 x

[JThingSpeak

e

DS18b20 {

-) @ i -
e

Internet

Fig. 31.24 — Monitoring of temperature with use
of Thingspeak.com service

Parameters of WiFi network:
const char* ssid = " ssid ";
const char* password =" password ";
Attributes of access to thingspeak.com:
const char* host = "api.thingspeak.com";
const int httpsPort = 443;

Initialization of the sensor of temperature:
#define ONE_WIRE_BUS 2
OneWire oneWire(ONE_WIRE_BUS);
DallasTemperature sensors(&oneWire);
Establishment of WiFi of connection:
WiFiClientSecure client;
WiFi.mode(WIFI_STA);
WiFi.begin(ssid, password);
while (WiFi.status() '= WL_CONNECTED) {
delay(500);
Serial.print(".");

In a basis cycle the wvalue of temperature, sending to
thingspeak.com channel and control reading is read out (Fig. 31.26):

528

31. Prototyping and rapid development of 10T systems

void loop(void)

sensors.requestTemperatures();

éé'nd Data(sensors.getTempCBylIndex(0));
delay(1000);

¥
<Begjn\

Init
Sensor, WiFi

e Repeat?

Request
sensor data No

— L m)
Access to \ A
Thingspeak

Fig. 31.25 — Scheme of an algorithm of functioning of the device

Function of formation of URL of inquiries thingspeak.com for
sending data:
void sendData(float temp){
if (Iclient.connect(host, httpsPort)) {
Serial.printIn("connection failed™); return;
¥

String url = /update?api_key=Z2S2KDK8HRD&field1=
"+String(temp);

client.print(String("GET ") + url + " HTTP/1.1\r\n" + "Host: "
+ host + "\r\n" + "User-Agent:
BuildFailureDetectorESP8266\r\n\r\n™);

529

31. Prototyping and rapid development of 10T systems

Serial.printIn("Request sent to " + String(host));
while (client.connected()) {
String line = client.readStringUntil('\n");
}
String line = client.readStringUntil("\n’);
}

jes coM3

connecting to [N

WiFi connected

IP address:

192.168.43.188

connecting to api.thingspeak.com

Requesting temperatures...DONE

Temperature for the device 1 (index 0) is: 30.50

requesting URL: /updatezapi_key=ZS2KDKEHCGEMD=£ield1=30.5
Request sent to api.thingspeak.com

| Autoscroll No line ending + | 9600 baud v Clear output

Fig. 31.26 — Control of establishment of connection, sending and data
acquisition in the IDE Arduino terminal

In this example more difficult task, than in Casel is solved much
more simply and quicker thanks to ready hardware and libraries of
high-level functions in the IDE Arduino coding environment.

31.4 Work related analysis

Technologies of development and prototyping on the basis of an
ecosystem of Arduino and other platforms are used at many universities
of Ukraine — National Aerospace University "Kharkiv Aviation
Institute” [31], Zaporozhye National Technical University [32], Odessa
National Polytechnic University [33] and others. Here Circuits, Tina,
Fritzing, etc. is considered as physical prototyping and development of
printed circuit boards of devices, and use of computer circuitry models
in Proteus, Autodesk 123D.

In courses of many the US and EU countries universities, similar
platforms and technologies are used. For example:

530

31. Prototyping and rapid development of 10T systems

- course ME 2011 «Arduino Microcontroller» University of
Minnesota [34];

- course “Physical Computing with the Arduino” Middlesex
University London [35];

- course Stanford University Explore Courses - ARTSTUDI 130:
“Interactive Art: Making it with Arduino”, EE 392B: “Industrial
Internet of Things” [36];

- course Comp 366 / 450 “Microcontrollers - Building The
Internet of Things (IOT)” Loyola University Chicago [37].

Course of ECE 4760 "Designing with Microcontrollers” Cornell
University. School of Electrical and Computer Engineering is
constructed on use of 8-bit platforms with architecture of AVR, and in
the last years - 32-bit PIC32 platforms with architecture of MIPS. The
numerous projects completed by development of prototypes are
presented [38]. 10 best (according with opinion of authors) courses
Arduino & loT & Certification are described on [39].

Conclusions and guestions

Obijects of the physical world can be connected by one or several
touch networks in about tens of sensors and actuation mechanisms and
programmable computing modules (the robot, the car, the house, the
machine, etc.). The state and behavior of object - "thing" is defined by
data flows in networks, and on Edge, Dew, Fog and Cloud levels of
global network are formed copies of his digital double (Digital twin).

Digital doubles have to reflect adequately a condition of physical
objects, and impact on doubles — to cause the corresponding reaction
physical objects and change of conditions of all copies of Digital twin
for representation to users. Development and prototyping of such loT
components of systems and their deployment are very difficult. On the
other hand, sensor networks and elements of network interconnection
consist of rather simple devices with available development tools and
prototyping. Rapid development assumes availability of functionally
full range of elements cuts of fast assembly of devices rapid
developments of programs of their debugging. Classical approach -
development of the device with the program languages of the low level,
but with visually way programming is considered. The example of
modern approach on the basis of the open platform allows to implement

531

tel:2011

31. Prototyping and rapid development of 10T systems

quickly devices of monitoring and remote control with access to Web
services.

In order to better understand and assimilate the educational
material that is presented in this section, we invite you to answer the
following questions.

1. What is understood as the connected device?

2. What requirements are imposed to 10T devices?

3. Inwhat difference between Edge, Dew, Fog and Cloud?

4. What function is performed by boundary knots of networks?

5. What stages are included by development of IoT of a system?

6. What enters a concept of the 10T platform?

7. What communication potential does the microcontroller have?

8. Call ready decisions for IoT.

9. What devices can perform the computing Edge functions?

10. How the device gets Internet access?

11. What potential does Proteus have?

12. What order of development of the microcontroller 10T device?

13. In what advantage of visual programming?

14. Why emulators are used?

15. Call means of fast prototyping of access to a cloud service?

References

1. S. Kulkarni and S. Kulkarni, "Communication Models in Internet of
Things: A Survey”, IJSTE - International Journal of Science Technology &
Engineering, vol. 3, no. 11, 2017.

2. R. Kienzler, "Digital twins and the Internet of Things", 2019.
https://developer.ibm.com/articles/ digital-twins-and-the-internet-of-things/.
[Accessed: 25- Jun- 2019].

3. A Botta, W. Donato, V. Persico, A. Pescap. "Integration of Cloud
Computing and Internet of Things: a Survey". Journal of Future Generation
Computer Systems, pp. 1-54, 2015.

4. S.Yi, Z Hao, Z Qin, and Q. Li, Fog Computing: Platform and
Applications. Third IEEE Workshop on Hot Topics in Web Systems and
Technologies, pp. 73-78, 2015

5. Fog computing: fog and cloud along the Cloud-to-Thing continuum.
https://www.i-scoop.eu/internet-of-things-guide/fog-computing-cloud-internet-
things/ [Accessed 25 June. 2019].

6. N. Mohan, J. Kangasharju, "Edge-Fog Cloud: A Distributed Cloud for
Internet of Things Computations”. https://www.cs.helsinki.fi/lu/nmohan/
documents/2016/ EF_Nitinder_Jussi_UH_Final.pdf. [Accessed 25 June. 2019].

532

31. Prototyping and rapid development of 10T systems

7. P. Ray, "An Introduction to Dew Computing: Definition, Concept and
Implications".
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8114187. [Accessed
25 June. 2019].

8. S. Yuvragj, C. Jiannong, Z. Shigeng, Edge Mesh: A New Paradigm to
Enable Distributed Intelligence in Internet of Things. IEEE ACCESS, 2017, Vol.
5, pp.: 16441-16458

9. T. Higuchi, H. Yamaguchi, and T. Higashino, Mobile devices as an
infrastructure: A survey of opportunistic sensing technology. Journal of
Information Processing, 23(2):94—104, 2015.

10. Brandon Keith Maharrey, Alvin S. Lim and Song Gao, "Interconnection
between IP Networks and Wireless Sensor Networks”. International Journal of
Distributed Sensor Networks", December 4, 2012.
http://journals.sagepub.com/doi/full/ 10.1155/2012/ 567687. [Accessed 25 June.
2019].

11. Marco Schwartz, Internet of Things with Arduino Cookbook. Packt
Publishing, 2016.

12. P.Waher, loT: Building Arduino-Based Projects (+code). Apress. 2016.

13. P. Xiao, Designing Embedded Systems and the Internet of Things (loT)
with the ARM Mbed.. Wiley. 2018.

14. F. Pramudianto, "Rapid Application Development in the Internet of
Things: A Model-Based Approach”, https://publications.rwth-aachen.de/record/
464316/files/ 464316.pdf [Accessed 25 June. 2019].

15. Padraig, S. and Lueth, K, "Guide to iot solution development", 2016.
[https://iot-analytics.com/wp/wp-content/uploads/2016/09/White-paper-Guide-to-
loT-Solution-Development-September-2016-vf.pdf. [Accessed 25 June. 2019].

16. G. Guan, W. Dong, Y. Gao, K. Fu and Z. Cheng, "TinyLink: A Holistic
System for Rapid Development of 0T Applications”. https://ieeexplore.ieee.org/
document/8116508. [Accessed 25 June. 2019].

17. K. Karvinen, T. Karvinen, 10T Rapid Prototyping Laboratory Setup.
International Journal of Engineering Education Vol. 34, No. 1, pp. 263-272, 2018

18. Configurable Rapid Prototyping Platform for The Internet of Things.
[Online] Auvailable at: https://mww.rs-online.com/ designspark/iotidk-Kkit.
[Accessed 25 June. 2019].

19. EVBUM2497/D. loT Development Kit (IDK). Quick Start Guide.
https://mww.mouser.com/ pdfdocs/ ONSemi_IDK_QuickStart.pdf. [Accessed 25
June. 2019].

20. Intel Edison and Grove loT Starter Kit Powered by AWS.
http://wiki.seeedstudio.com/ Grove_loT_Starter_Kits_Powered by AWS/.
[Accessed 25 June. 2019].

533

http://wiki.seeedstudio.com/Grove_IoT_Starter_Kits_Powered_by_AWS/

31. Prototyping and rapid development of 10T systems

21. B. Hammell, Connecting Arduino: Programming And Networking With
The Ethernet Shield (+source code). CreateSpace Independent Publishing
Platform, 2014.

22. S. Orgera, “How to Use Wireshark: A Complete Tutorial. Capture and
view the data traveling on your network”. —https://www.lifewire.com/wireshark-
tutorial-4143298. Updated June 24, 2019. [Accessed 25 June. 2019].

23. ROMDAS System. https://romdas.com/ romdas-system.html [Accessed
25 June. 2019].

24. 1. Kismxo, P. Cmomsntok, 1. HoBakoBerkuii, O. ITapxomenko and O.
MiHakoB, /fiazHocmuxa CMany NOKpUmmie HOSIMHIMU XOO08UMU OOPONCHIMU
1a6opamopisiMu; Cy4acHuil Cmax ma NepPCReKmusu po36umKy, ABTOMOOLTbHI
nopord, no. 5(229), pp. 31-36, 2012.

25. Atmel AVR ATmegal6?2 datasheet.
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2513-8-bit-AVR-
Microntroller-ATmegal62_Datasheet.pdf. [Accessed 25 June. 2019].

26. G. Gromov, "Algorithm Builder for AVR”, Atmel applications journal.
http://ww1.microchip.com/ downloads/en/DeviceDoc/avr_builder.pdf. [Accessed
25 June. 2019].

27. 1. Hendry, Learn about the ESP8266 using Wemos shields. Amazon
Digital Services LLC . 2019.

28. M. R. Thakur, NodeMCU ESP8266 Communication Methods and
Protocols: Programming with Arduino IDE. Amazon Digital Services LLC .
2018.

29. Global High-Density Interconnect (HDI) PCB Market — Industry
Analysis and Forecast (2018-2026). https://www.maximizemarketresearch.com/
market-report/global-high-density-interconnect-hdi-pch-market/30122/. [Accessed
25 June. 2019].

30. R. Marvin, “The Best Low-Code Development Platforms for 2019”.
https://www.pcmag.com/ roundup/ 353252/ the-best-low-code-development-
platforms. August 10, 2018. [Accessed 25 June. 2019].

31. https://khai.edu/en/, https://csn.khai.edul/.

32. http://lwww.zntu.edu.ua/zaporozhye-national-technical-university.

33. https://opu.ua/en.

34. http://lwww.me.umn.edu/courses/me2011/arduinol/.

35. http://www.mdx.ac.uk/courses/summer-school/courses/ physical-
computing-with-the-arduino.

36. https://explorecourses.stanford.edul/.

37. http://cs.luc.edu/whonig/comp-366-488.

38. http://people.ece.cornell.edu/land/courses/ ece4760/FinalProjects/

39. https://digitaldefynd.com/best-arduino-iot-tutorial-certification-course-
training/

534

https://www.lifewire.com/scott-orgera-445539
https://www.pcmag.com/author-bio/rob-marvin

Amnoranis

YIK 62:004=111

173

Penensentsl: Dr. Mario Fusani, ISTI-CNR, ITi3a, Itamis
Dr. Olga Kordas, KTH University, Ctokronsm, I1IBemis
Viktor Kordas, KTH University, Crokromnem, [1IBeris

173 InTepHer peveil aasi IHAycTpiaJbHMX | rymaHiTapHux
3acToCyHKiIB. Y Tpbox ToMax. Tom 1. OcHoBH i TexHoJiorii / 3a pexn. B. C.
Xapuenka. - MinicrepctBo ocBitTH 1 Haykm Ykpaiam, HamioHamsHUIA

aepokxocMivynmit yHiBepcuTeT XAl, 2019. -547 c.
ISBN 978-617-7361-82-3

Kuura, mo ckiagaeThest 3 TPHOX TOMIB, MICTHTh TEOPETHIHI MaTepiann
JULSL JIEKIIH Ta TPEHIHTiB, po3po0iieHuX B pamkax npoekTy Internet of Things:
Emerging Curriculum for Industry and Human Applications / ALIOT,
573818-EPP-1-2016-1-UK-EPPKA2- CBHE-JP, 2016-2019, 110
¢inancyerbes nporpamoro €C ERASMUS +. Towm 2 onwmcye Mozeni, METou
MOJIeTIIOBaHHA Ta po3poOku 1yt [HrepHeTy peueit (IoT). Kaura cknanaerses 3 4
YaCTUH JUISl BIJIOBIAHUX JOKTOPAHTCHKHX KYpPCIB: MOJEINIIOBAHHSI CHUCTEM Ha
ocHoBi 10T (po3mimn 16-19), mporpamao-Bu3HauyBaHi Mepexi i [oT (po3mim
20-23), wapgiiiHicts 1 Oesmeka loT (posmima 24-27), po3poOmeHHST 1
BIpOBapKeHH: cucteM Ha ocHOBI [0T (po3mimm 28-31).

Knxura migrorosnena ykpaiHChKMMHU YHIBEPCUTETCHKUMH KOMaHIaMH 32
MIATPUMKH KOJIET 3 aKaJeMiYHuMX 3aknaniB kpaiH €C, mo BXOIATH 10
KoHcopuiymy npoekty ALIOT.

KHura mpusHadeHa s MariCTpaHTiB 1 acHipaHTIB, SIKi BHBYAIOThH
texHoorii IoT, mporpamMHy i KOMI'IOTepHY 1H)XXEHEpilo, KOMIT'IOTEPHI HAyKH.
Moxke OyTH KOPHCHOIO [UIsi BUKJIQJayiB YHIBEPCHUTETIB 1 HaBYaJIbHUX
LEHTPIB, JOCTITHUKIB 1 po3poOHUKiB cuctem [oT.

Puc.: 158. ITocunans: 430. Tabmuus: 45.

Ll poboTa 3axwineHa aBTOPCHKMM IpaBoM. Bci mpaBa 3ape3epBoBaHi
ABTOpaMH, HE3AJISKHO BiJ] TOTO, UM CTOCYETHCS 1€ BCHOTO Martepiaixy abo foro
YJaCTHHH, 30KpeMa IpaBa Ha MepeKyIay Ha 1HIIi MOBH, EPEBUIAHHS, IOBTOPHE
BUKOPHCTAHHS UIFOCTpAIliid, JCKJIAMAIlifo, TPAHCISLII0, BiITBOPCHHS Ha
MiKkpodinbMax ado OyIb-sIKMM 1HIIUM (i3HYHHM CIIOCOOOM, a TAKOXK Nepeady,
30epiraHHsl Ta ENEKTPOHHY aJanTallilo 3a JONOMOIOK KOMITIOTEPHOTO
MPOTPaMHOTO 3a0e3MeueHHs B OyIb-sIKOMY BHIJIAI, a00 X aHAJIOTIYHUM abo
IHIIUM BiZOMHM criocoboM, abo K TakuM, Skl Oyzme po3poOieHWil B
MaiOyTHLOMY.

535

AHoOTaNii po3aiaiB

AHoTaunii po3ainiB

Po3min 16 npucBsUeHWid OMUCY 3aralbHUX MPUHLMUIIB
BiIMIHHOCTI MK (I3UYHOID Ta KOMO'IOTEPHOI CHMYIISIIETO.
OnucyroTbess METOAW CUMYIIALIl, SIKIi MOXKYTh OyTH 3aCTOCOBaHi IS
wiat ApayiHo. HaBeneHo MOpIBHSIBHUE aHaii3 Pi3HUX MPOTPaMHHUX
3aco0iB, fKi MOXYyTh OyTH BUKOpHCTaHI st cuMysimii. JletampHO
omucaHa poboTa 3 MporpaMHUM KOMIUIEKCOM IIPOTEYC.

V posnini 17 posrasmaerses TpupiBHeBe MoaemoBanus 10T/I0E
CHCTEM B IX CTPYKTypi, MOBEiHII 1 TMpolecax CHHXPOHI3alii.
3ampornoHOBaHO Bi3yaJdbHHWI MOJISNIHT, MOJCTIOBAHHS 1 TepeBipKy
apXiTeKTypH, (GYHKIIIOHATLHOCTI Ta 4acoBUX ocobimBocteir 10T/IOE
CUCTEM 1 1X KOMIIOHEHTIB B CTaTHYHOMY 1 JUHAMIYHOMY pEXKUMax 3
Bukopuctanusivm UML giarpam, wmepex Ilerpi, wacoBoi JOrikw,
BIIMOBITHUX METOMWK Ta iHCTpyMeHTIiB. IlokazaHo ocoOmmBOCTI
MOJICTIFOBAHHS Ha OCHORBI €BOJIIOLIMHUX MEHETHYHUX 1 MYJIBTUATCHTHUX
TEXHOJIOTIH.

[Mpu pmocnmimkeHHI HAAIMHOCTI MIKPONPIOLUECCOPHUX CHCTEM
9acTO 3aCTOCOBYEThCS MaTeMaTWYHUH amapaT MapKOBCBKHX 1
HariBMapKOBCHKUX Mopeneil. DyHKIIOHyBaHHS cHuCTeM [HTepHeTy
peueil npu NMeBHUX MPUHHATHX TMPHUITYIIEHHIX MOXKE OyTH OMHCAHO 32
JIOTIOMOTOI0 TaHWX Mojiesiell. Y po3aini 18 HaBegeHo BiIOMOCTI Mpo
0COOJIMBOCTI ~ CTBOpeHHS MapKOBCBKMX 1 HalliBMapKOBCHKHUX
MaTeMaTHYHHX MoOJeNieil s omucy mporecy (yHKIIOHYBaHHS
cuctemu IuTepHery peueil. HaBezeHo 1 omucaHi JONMYIICHHS IPH
po3pobui momiOHmx mozeneid. lloOymoBaHo Ta OCHIHKEHO
MapKoBCBKi MOJIETIi TOTOBHOCTI cuCTeM [HTepHeTy pedeii.

Posmin 19 mnpucBsueHO MopenmOoBaHHIO B3aimonidn B l0T
crucreMax. ABTOpaMH pPO3TIITHYTO apXiTEKTypy CHCTEM 1 3araibHi
mrabJIOHH IS MOJEIOBaHHs B3aeMonaiil. Tak Ak MeTogu 1 MOAEN, 10
BUKOPHUCTOBYIOTBCS JUIS TIPOEKTYBAaHHS B3a€EMOMIl 3alexaTh Bif
CKJIATHOCTI TIPOEKTOBAHWX CHUCTEM 1 KJIacy BHUPINIYBaHUX 3aBJaHb, B
PO3IUT PO3TISAAIOTHCS YOTHPH MPHUKIIAIHN, 10 BUKOPUCTOBYIOTH Pi3Hi
migxomu. Y mpukiami 3 BigmaneHnoi maboparopiero GOLDi

536

AHoOTaNii po3aiaiB

JIEMOHCTPYEThCS 3acTocyBaHHs wmonenedd FSM i Kpumnke, npu
MPOEKTYBaHHI CHCTEMH TojJocoBoi Hapiramii mms Cwmaprt-Kammycy
BukopuctoByBamucs IFML womem, a mms momemroBaHHS Kibep-
(hi3UYHUX CHCTEM BHKOPHCTOBYBAJHCS «IU(PPOBi-ABIHHUKNY, IO OYyII0
MoKa3aHo Ha npukiaai sabopartopii ISRT.

Y pozaimi 20 po3rasAaloThCsl OCHOBH TEXHOJOTII MPOrpaMHO-
KOHQITYpOBaHMX MepeX — 0a30Bi NPUHIUNHN TOOYAOBH Ta
(GYyHKIIIOHYBaHHS, OCHOBOIIOJIOXKHI ~ TEXHOJNOTil, apXiTeKTypHi
ocobnmuBocTi. PoOuTbCs Takok akueHT Ha (QyHAaMEHTaJIbHUX
BIIMIHHUX pHCaX TEXHOJIOTii, ICTOPUYHUX TepeayMOBaX, IO CIPUSIN
BUHUKHEHHIO OCTaHHKOI. OCcOOIMBY yBary mpuIiIeHO OTIIATY €BOFOIIT
cnerudikamii OpenFlow, ska d¢opmye ©Oasuc 3abe3meucHHs
yHiQiKOBaHOTO MeXaHi3My B3a€MOJil MDK KOHTPOJEpOM i
KOMYTaTOpaMH.

Y posmimi 21 po3riAmarOThCS MUTAHHS NPOTPaMyBaHHS i
MOJICNIIOBAHHSI ~ MPOTPAMHO-KOH(ITYypOBaHUX Mepex. ACIHEeKTH
NpOTrpaMyBaHHSl PO3TIISTHYTO Ha MPHKIAAi MOBH TNPOrpaMyBaHHS
Python. HaBomsaTecsi Ta TOACHIOIOTBECA ~ 0a30Bi KOMaHIU
KOH(ITYpYBaHHS TOIOJOTii Mepexi, 30KpeMa KOMaHIH, MPUCBSUICHI
BUPIIICHHIO MUTaHb aBTOMAaTH3allii Ha3BaHuX nid. [Ipuninsgerscs yBara
CepeoBHIy MOIeNtoBaHHs Mininet 1 BinoBiHi rpadidHii 00010HII
MiniEdit.

Y pozmimi 22 po3rSaloThCS TMHUTaHHS TIOB’S3aHI 3 HU3KOIO
JIOCITIHUIIBKUX MTPOOJIEM 110 BUHUKAIOTh MPHU peajtizallii crenudiaaux
QoS mopeneit SDN muisixoM po3poOKH i BIPOBAHKEHHS aITOPUTMIB 1
migxoxdiB, fAki 3abe3neuyloTs edektuBHy pobory SDN B loT.
[IpoananizoBaHO OCTaHHI TEHJIIEHIlI B BUKOPUCTAHHI aJTOPUTMIB IS
texHosyorii SDN 3 Toukm 30py iX NPUIATHOCTI JJisi CTBOPEHHS 1
o0ciyroByBaHHsI BeJMKHX MarictpanbHux mepex SDN / OpenFlow B
inppacTpykrypi loT. OOGroBOprOIOTHCS MEPCIEKTUBH HPOTHO3YBAHHS
npoAyKTUBHOCTI SDN 3 BUKOPHCTaHHAM METOAY 00'€IHAHHS JJaHHUX.

VY posaini 23 aHani3yl0ThCs 1HOBAIIi#HI, TEXHOJIOTIYHI Ta Gi3HECOBI
OpUYMHU TOSIBU Ta PO3BUTKY Metoxosorii Development and
Operations (DevOps). VBara 30cepemKyeTbcsi Ha J00pe BiIOMHX
mwiarpopmax AWS, MS Azure, Google Cloud Ta inm. Crucio

537

AHoOTaNii po3aiaiB

OMUCYIOThCS ocobnmmBocTi Metononorii DevOps, mosicHroeTsCsl SIK 1
3aBASKM YOMY BOHAa pPO3BUBAETbCA. OOTOBOPIOIOTHCA 3B S3KH Ta
B3aemomisi DevOps, mporpamMHO-Bu3HAuyBaHUX Mepexxk Software
Defined Networks Ta Intepuery peueii.

Y posmimi 24 po3rmsmaroThest Mopaeni (yHKIIOHAIBHOI Ta
iHopMmarifiHoi Oe3neku. Y pamkax KoHIENIii (QyHKIiOHaIBHOI Ta
iHpopMartiiiHoi Oe3leKW 3alpOINOHOBAHO TAaKCOHOMIIO BHMOT,
aTpu0yTH Ta OCHOBM aHaNi3y pH3UKiB. Mozeni (yHKIiOHAIBHOT
0e3meKkn B OCHOBHOMY KiJIbKiCHI, 3aCHOBaHI Ha iMOBIpHICHOMY aHai3i
3HaYeHb MOKa3HWKIB. Moxeni iHpopMariiiHoi Oe3rekn B OCHOBHOMY
SKICHI, 3aCHOBaHI Ha aHaIIi31 3arpo3 i CIieHapiiB aTak.

B posmimi 25 po3rismaroTbCs BUMOTH 10 YIIPABIIHHA
¢GyHKIIOHANBHOI Ta iHGOpMaliiHOW OE3MEeKO0, BKIHOYAIYN
VIOpaBIiHHS TIEPCOHATIOM, YIpPaBIiHHA KOH(pirypamiero, BuOIp 1
OIIIHFOBaHHS IHCTPYMEHTAJIBHUX 3aC00iB, YIPABIiHHS TOKYMEHTAIII€0,
a TakoX OIIHKY Oe3meku. JlokmaaHo onucyeTbest V-nomiOHUi
KUTTEBUH 1MWK (QyHKIioOHanmbHOT Ta iHpopManiiHOI —Oe3mexw,
BKJIIOYAIOYH TpPAacyBaHHS BHMOT. PO3IJISIHYTO OCHOBHI METOIH
Bepudikallii, Taki SK OTJSA JOKYMEHTIB, CTaTHYHHU aHaNi3 KOy,
(byHKIIOHANBHE 1 CTPYKTYpHE TECTYBaHHSI.

Mertononoris Assurance Case po3risimaetbest B 26 posfini, sK
LUTICHAN MiAXI 10 iHTerpaiii BuMor i apredakris Oe3neku. J1jis 110ro
npencTaBieHi ocHoBU Assurance Case, a TaKO)K KOHIICTIIISI 1 icTOpis.
Hns rpadiunoro mpencrapieHHs Assurance Case BUKOPHUCTOBYHOTHCS
HamiBQopManbHi HOTallil, Taki sk «MeTta, apryMeHT 1 MiATBEPHKEHHS
(CAE) i «Hotauis crpykrypoBanux mineit» (GSN). Assurance Case
JUISL CUCTEM IHTEPHETY peueil TPYHTYeThCs Ha BpaxyBaHHI BUMOT JIO
iH(popMalliitHOT Oe3MeKu Ta eHeproe)eKTHBHOCTI.

Y po3piti 27 pO3riSHYTO OCHOBU TEXHOJIOTIi OJIOKYEHH Ta
NpuUKJIaay i1 BUKOPUCTAaHHA B cepenoBuili InTepHer peueil. [IpoBeneno
aHaJli3 aJrOpUTMIB KOHCEHCYCY, SIKi BUKOPHCTOBYIOTBHCS B TEXHOJIOTI
0JIOKYECHH, 1 NPUHIUIIB 3a0e3eUeHHs HalIiHOCTI Ta Oe3neku [HTepHeT
peueit 3 BUKOPHCTAaHHAM TEXHOIIOTIT OJIoK4elH. Buineno nepeBaru ta
icHyI04i mpobyemMu iHTerpauii TexHosorii 6mokueiin B [ntepueT peueil.
Bupimenns nutaHHs Oe3neky Ha pi3HUX piBHAX 3actocyBaHHs loT €

538

AHoOTaNii po3aiaiB

OB CKJIAHOK MPOOIEMOI0 Yepe3 OOMEXKEHY MpPOAYKTUBHICTH Ta
BHCOKY HEOJTHOPIAHICTH IPHUCTPOIB.

Y po3aini 28 po3risimaeThcs HU3Ka MPOOJieM, MO TOB’s3aHi
po3podkoro apxitektyp loT, apxiTekTyp HpUCTpOiB Ta iHTerparii
0a30BUX KOMIOHEHT Ha OcHOBI [0T. Po3risiHyTo edexTHBHI Miaxoau
0 PO3pOOKH I MOJOJAaHHS OCHOBHUX IMpPOOJieM, II0 BHHUKAIOTH B
MIPOIIECi MPOEKTYBaHHS Ta BHpOBa/KeHHS edextuBHOro loT pimenHs.
O06roBoprotoThCs 6a30Bi KOMIIOHEHTH cucteM 10T, ¢a3u Ta pe3ynbpraTi
TexHiyHOi cTpaterii loT, a Takox kpurepii BUOOpPY AJsi PO3TOPTaHHS
miatdopm loT.

VY poznini 29 po3risayTi Moaedi [oT npucTpois i TeXHOIOTIT yist
00poOku 1 mepenayi maHuX. Y I[bOMY PO3LJI aHANI3YIOTHCS OCHOBHI
OpUHIMIM T00ynoBU iHGopManiiHnx Mopaeneit loT mnpuctpoiB i
IHCTpyMeHTH ans iX cTBopeHHs, 30kpeMa Eclipse Vorto. Takox
JOCITiKEH] MTPOTOKOIN MepexeBux 3'eqHanb A [oT mpuctpois. Kpim
TOro, BaKIMBUM KommnoHeHToM [oT Mepexi € BuOip TexHOJOTIH
00pobkn nmannx B loT cuctemax 1 METOAIB YOpaBIiHHA 1
MPOTHO3YBaHHs. TakoX pO3TISHYTI OCHOBHI MPOTOKOJH 1 CTaHIApTH
utst iepenadi nanux Mk loT mpuctposmu. [lesika yBara mpuIiisieThes
kibepoOesneni B [oT.

VY pozaini 30 po3risHyTI IHTEIEKTyaabHI METOIU Ta MiIXOIH JJIsI
yrpaBiaiHHs 1 HaB4aHHsA 10T cuctem. Y 1mbOMy pO3JiTi aHANI3YIOTHCS
iU T2 MOXKIHBOCTI 10T mmatdopm, OaratokputepiitHUN TiaXif 1 M'aKi
obuncnenns it BuOopy l0T mumatpopmu. Takox mpoaHamTi30BaHO
KOHIICTIIIIF0 MyJibTHarentHoro miaxomy B 10T, 3o0kpema, Tumu i
XapaKTePUCTHUKH areHTIB, 3B'SI30K areHTiB 3 30BHIIIHIM CEPEIOBUIIEM i
TEXHOJIOTII Tiepenadi JaHuX MiX areHtamu. KpiM TOro, BaIIMBUM
koMmrioHeHTOM |0T Mepexi € BuOip METOIB 1 MiIXOIB)i HaBYaHHS
IoT cumcrem. Takox pO3MIANAIOTBCS ~ 3arayibHi TPUHITUIH
MDKMAIIIMHHOIO HaBYaHHSA, CHCTEMHM, IO CAMOCTIiHO HABYaIOTHC 1
HEHPOHHI Mepexi.

Y pozgini 31 posrusHyTI Mozeni iHpopMauiiiHOT B3aemofil
eneMenTiB cucteM loT. HaBeneHo mopsiok po3poOKH 1 HIBHIKOTO
NPOTOTHITyBaHHs NpUCTPoiB. [lokazani THIIOBI pileHHs A Mo0yI0BU
cucreM loT, BUKOpHUCTaHHsS BipTyaJbHHX HPUCTPOIB sl PO3POOKH

539

AmHoTanii po3zinis

mporpaMHoro 3a0esmnedeHHs. Haeneni mnpukiagu po3poOKH Ta
NPOTOTHITYBaHHA KaHAlTy BHUMIPIOBaHb Ha OCHOBI MaJOpECYpCHHX
MIKpOKOHTpoJiepiB. Ilokazano npuckopeHHs po3podku mpuctporo loT 3
BUKOPUCTAHHSIM CY4YacHHX BigkpuTux 1ardgopm 1 06i0miorek
BUCOKOPIBHEBUX (YHKIIIH.

540

AHHOTAIIHS

VJIK 62:004=111

173

Penenzentsl: Dr. Mario Fusani, ISTI-CNR, ITu3a, Utanus
Dr. Olga Kordas, KTH University, Ctokroasm, IIBerust
Viktor Kordas, KTH University, Ctokrosism, I1IBerus

173 WHTepHer Bemieil /sl MHAYCTPHAJIBHBIX U I'YMAHHUTAPHBIX
npuiaoxenuii. B Tpex Tomax. Tom 1. MoneaupoBanue u pa3padorka /
Hox pexn. B. C. Xapuenko. - Munncrepctso O0pa3zoBaHus U HAYKH Y KpPaWHEI,
HanunonaneHelii aspokocmuueckuil yausepcuret XAU, 2019. - 547c.

ISBN 978-617-7361-82-3

Kuura, cocrosmas u3 Tpex TOMOB, COAEPKUT TEOPETUIECKHE MaTepPHaIIbI
JUISL JIEKUMA W TPEHMHIOB, pa3pa0OTaHHBIX B paMkax npoekra Internet of
Things: Emerging Curriculum for Industry and Human Applications /ALIOT,
573818-EPP-1-2016-1-UK-EPPKA2- CBHE-JP, 2016-2019, ¢unancupyemoro
nporpammoit EC ERASMUS +. Tom 2 omnuchiBaeT MOJIETH, METOIbI
MozenupoBanus 1 pazpadborku 1 Uurteprera Beeii (IoT). Kuura cocrout n3
4 yactell UII COOTBETCTBYIOIIUX IOKTOPAHTCKUX KypCOB: MOJEIMPOBAHUE
cucreMm Ha ocHoBe [0T (pasmenmsl 16-19), mporpaMMHO-OTIpeACIIEMBIE CETH U
I0T (pazmensr 20-23), mamexxHocTh u Oe3omacHocTh 0T (paszmensr 24-27),
pa3paboTka u BHenpeHue cucteM Ha ocHoBe [0T (pa3mernsr 28-31).

Khura noarorosneHa ykpauHCKUMH YHHBEPCUTETCKUMH KOMaHIAMU IIpU
MOJJIepKKE KOJIIET M3 aKaJeMHUYecKux opraHu3armii crpaH EC, Bxomammx B
KoHCcopruyM mpoekra ALIOT.

Knura npenHasHadeHa Ui MarucTpaHTOB M aCHHMPAHTOB, M3YYarOIIUX
texHojormu [oT, nmporpaMMHyI0 ¥ KOMIBIOTEPHYID HHKEHEPHIO,
KOMIBIOTEpPHBbIE Haykn. MoxkeT ObITh TON€3HA [UIsI MpenojaBaTenei
YHUBEPCHUTETOB M Y4YEOHBIX IIEHTPOB, HCCIeOBaTelel M pa3pabOTIMKOB
cucrem loT.

Puc .: 158. Ccputok: 430. Taomurr: 45.

Ora paloTa 3amuIeHa aBTOPCKMM @paBoM. Bce mpaBa 3ape3epBUpPOBaHbBI
aBTOpaMHM, HE3aBHCHMO OT TOrO, KacaeTcs JIM 5TO BCEr0 MaTephalia WM ero 4acTH, B
YaCTHOCTH TIIpaBa Ha IMEpEBOJAbI Ha APYrue€ sA3bIKH, M[EPEHU3MaHUsA, ITOBTOPHOC
HUCIIOJIb30BAHUC WJUIIOCTpAllMM, [ACKJIIaMalluio, TPaHCIAIUIO, BOCHPOU3BEACHUS Ha
MHUKPOQIIbMaX WIH JIOOBIM JIPYyruM (U3HMYECKHM CIOCOOOM, a Takke Iepenady,
XpaHEHHUE U DJIEKTPOHHYK afalTaliio € IMOMOLIBIO KOMIBHOTEPHOT'O IIPOrpaMMHOI0
obecrieyeHus B JIFOOOM BHJIE, MO0 K€ aHATIOTMYHBIM MJIM MHBIM U3BECTHBIM CIIOCOOOM,
1100 Ke TaKUM, KOTOPBIi OyzieT pa3paboTaH B OymyIeM.

541

AHHOTaIuM pas3zenon

AHHOTaIIUM Pa3/iesioB

Pazgen 16 ToCBAIMEH OMHCAHWIO OOMIMX IIPHHIIWIIOB
¢yaxmuonupoBanus mwiatel APAYMHO u cumymsmun ee paboOTHIL.
Iokazanbl pazmuuumss MeEXIy (U3MYECKOM W KOMITBIOTECPHOM
cumynsiuei. ONHCHIBAIOTCS METOIBI CUMYJISIIUN, KOTOPBIE MOTYT
oprTe puMenenHs! i Tiat APAAYHWHO. IlpuBenaeH cpaBHUTEIBHBIN
aHAJIM3 PA3JIMYHBIX MPOTPAMMHBIX CPEICTB, KOTOPBIE MOTYT OBITh
UCTIONB30BaHbl i cuMmyisiuu. [logpoOHO omucana paborta ¢
nporpaMmmubIM KoMiuiekcoM IIPOTEYC.

B paznene 17 paccMaTpuBaeTcsi TpEXypOBHEBOE MOACIUPOBAHUE
[oT/IoE cuctem B HX CTIPYKType, TMOBEICHHM M Mpoleccax
cuHXpoHM3anuu. llpeamoskeHO ~ BH3yalbHOE MOJEIIMPOBAHUE,
MOJEIIMPOBAHNE W TIPOBEPKA ApPXUTEKTYPHl, (PYHKIMOHAJIBHOCTU H
BpeMeHHbIX ocoOeHHOcTel [oT/IoE cucreM WM WX KOMIIOHEHTOB B
CTaTUYECKOM M JIMHAMUYECKOM pEXKUMax C wucnojib3oBanuem UML
nuarpamm, ceteid IleTpu, BpeMEHHON JIOTHKH, COOTBETCTBYIOIIUX WM
METOAWK M HMHCTPYMEHTOB. llokazaHbl 0COOEHHOCTH MOZEIHPOBAHUS
Ha OCHOBE DJBOJIOIUOHHBIX T'€HETHMYECKUX U MYJbTHAreHTHBIX
TEXHOJIOT .

Ilpu mccnenoBaHWM HAJEKHOCTH MUKPOIPOLIECCOPHBIX CHCTEM
4acTO IPHUMEHSETCS MaTeMaTU4ecKui ammapaT MapKOBCKHX U
MOJTyMapKOBCKUX Mojeneld. DyHKIMOHWPOBAaHHWE CHUCTEM HWHTEpHETa
BEIICH MpPH OMNpPENEeNICHHbIX NPHUHATHIX IOIYLICHUSIX MOXET ObITh
ONMCAaHO C TIOMOIIBI0 JAHHBIX Mojeneil. B pasgene 18 ommcansl
0cOOEGHHOCTH cOo3AaHusi ~ MAapKOBCKMX U TOJyMapKOBCKHX
MaTeMaTHYECKHX Mozeneit ISt OIKCaHUs nporecca
¢byHkumoHupoBaHusi cucteM MHrepHera Bemei. IlpuBenensl u
OMHMCaHbl JIOMyIIEHWS TMpH pa3paboTKe TMOJOOHBIX MOJIeINeH.
ITocTpoens! u uccneaoBaHbl MapKOBCKHE MOJENIM TOTOBHOCTU CHCTEM
MHTEpHETA BELIeH.

Paznen 19 mocesmien momenupoBanuio B3amMmojeicTBuid B 10T
cucremax. PaccmMoTpeHa apxuTeKkTypa cHCTeM W O0IIue maliIoHbl IS
MOJICTIMPOBaHMs B3auUMOJeHCcTBHiA. Tak Kak MeToAbl M MOJEIH
BapPBUPYIOTCSI OT CJIO)KHOCTH TPOCKTUPYEMBIX CHCTEM U Kiacca
pelaeMbix 3ajJa4, B TJlaBe pacCMaTpPUBAETCS 4YEThIpE IMpUMEPa,

542

AHHOTaIuM pas3zenon

HCIIONB3YIOIINE pa3InyHble MOAXOoAbl. B mpumepe ¢ ynaneHHOU
nmaboparopueit GOLDi nemonctpupyercs npumerHerane FSM u Kpumke
MOZEJIEH, IPU NPOEKTUPBOAHUM CHCTEMbI I'OJOCOBOM HaBUTALUM IS
Cwmapt-Kammyca ucnons3oBanuck [IFML monenu, 1yist MOAETUpPOBAHUS
KHOep-(QOU3NYCCKUX CHUCTEM HCIIOJIB30BAINCH «ITU(PPOBBIC-IBOUHUKI,
49TO OBIIO TIOKa3aHO Ha mpuMepe Jadopatopuu ISRT.

B pasmene 20 paccMaTpuBarOTCSI OCHOBBI TEXHOJOTHUH
MPOrPaMMHO-KOH(PUTYPUPYEMBIX ~ CeTe — 0a30BbIC MPHUHIIMIIEI
MOCTPOCHUS U (PYHKIIMOHUPOBAHUS, OCHOBOIIOJIATAIOIINE TEXHOIOTHH,
apXUTEKTYpHBIE OCOOCHHOCTH. AKIIEHT CTaBUTCS TaKkKe Ha
q)yHI[aMCHTaIH)HBIX OTIINYHUTECIBbHBIX OCO6€HHOCTHX TCXHOJIOTHUH,
UCTOPUYECKUX TMPEHANOChIIKAX, KOTOPble MOCIOCOOCTBOBAJIH
BO3HHKHOBCHHIO moclienHeil. OTaeapbHOe BHUMAaHHUE YACICHO 0030py
sgoimonnu cnenupukanmuu OpenFlow, dopmupyromeli 6asuc
oOecrieueHus1 yHH(DHUIIMPOBAHHOTO MEXaHMU3Ma B3aUMOJICUCTBUS MEXKITY
KOHTPOJIEPOM U KOMMYTaTOpPaMH.

B paznene 21 paccMaTpuBarOTCsl BOIPOCH! MPOrPAMMHUPOBAHUS U
MOJICJIMPOBAHMS POTPAaMMHO-KOH(DUIYPUPYEMBIX CEeTCeH. ACIEKThI
MPOrPaMMHUPOBAHUS PaccMOTpPEHBI Ha puMepe SI3BIKA
nporpammupoBanus Python. [IpuBomstcs u mosicHstoTCsS 0a30BbIe
KOMaH 1bl KOH(PHUTYpUPOBAHUS TOMIOJOTHUHU CETH, B YACTHOCTH KOMaHIbI,
MpeHa3HAYCHHBIE JIJIS1 PEIICHUS BOIPOCOB aBTOMATHU3AIIUN HAa3BAHBIX
neicTBuil. BHuUMaHMe ynensercs cpeie MonenupoBaHus Mininet u
COOTBETCTBYIOIICH rpaduueckoii odomouke MiniEdit.

B pasmene 22 paccmaTpuBaeTcs psI HCCIEIOBATEIBCKUX
mpo0JieM, CBS3aHHBIX C peanu3anueil cnenuduueckux mozpeneit QoS
yepe3 SDN myTem pa3paboTKu ¥ BHEJPEHUS alTOPUTMOB U TOAXOJIOB,
obecnieunBaromux 3ddextuuyto padory SDN B IoT. Ilocnennue
TEHJCHIINU B MCIIOJIb30BaHUM aITOPUTMOB JUIs TexHonoruu SDN Obutn
MPOAHAIM3UPOBAHEI C TOYKU 3PEHHS WX MPUTOIHOCTH IS CO3/IaHUS U
o0ciTy>)KuBaHHsl KPYMHBIX MaructpanbHbix ceteir SDN / OpenFlow B
uHpactpykrype [oT. OOcyx)narTcs mepcreKTUBBI TPOTHO3UPOBAHHS
npousBoauTeabHOCTH SDN ¢ Mcroip30BaHHEM MeTona O0bheIUHEHUS
JTaHHBIX.

B pasnene 23 AHATM3UPYIOTCS WHHOBAITNOHHBIE,
TEXHOJIOTHYECKUE ¥ OW3HEC-TIPUYUHBI TIOSBIECHUS W Pa3BUTHUS

543

AHHOTaIuM pas3zenon

metoposnorun Development and Operations (DevOps). Buumanwue
dokycupyeTcst Ha X0opomo u3BecTHhIX mmiardopmax AWS, MS Azure,
Google Cloud n gpyrux. Jlaercsi KpaTkoe BBeIE€HHE B OCOOCHHOCTH
metoponorun DevOps, oObsicHseTcs, Kak W Onarogaps 4eMmy OHa
pasBuBaercsi. OOcyxknaroTcsa cBs3u U B3aumojencTBue DevOps,
nmporpaMmHo-onpeneasieMeix cereid Software Defined Networks u
NHuTepHeTa Bee.

B pasmene 24 paccMmoTpenbl Mojaenu (YHKIMOHANBHOW U
WH()OPMAITMOHHON 0€301MacHOCTH I CHUCTEM HWHTEpHETa Bemiei. B
paMKax KOHIENIMH (YHKIMOHAIBHOH W HMH(pOPMAIMOHHOMN
0€30MacHOCTH MPEIJI0KEHbI TaKCOHOMHSI TpeOOBaHHiA, aTpUOYTHl H
OCHOBBI aHaNM3a PUCKOB. Mojenn (pyHKIHOHAIBHOH 0€30MacHOCTH B
OCHOBHOM KOJINYECTBEHHBIC, OCHOBAaHHbIE HAa BEPOSTHOCTHOM aHAJIH3e
3HAYCHUH Tokazateneil. Monenn WHPOPMAIMOHHOH 0E30MacHOCTH B
OCHOBHOM Ka4eCTBEHHBIE, OCHOBAaHHBIE Ha aHAIN3E YTPO3 U CIICHAPHUEB
CBSI3aHHBIX aTaK.

B pazmene 25 paccmarpuBaroTcsi TpeOOBaHHA K YIPaBICHHIO
¢GyHKIMOHAIEHOW W WH(OPMAIMOHHOM O€30MacHOCThIO, BKIIOYas
yIOpaBlieHHE IIE€PCOHAIOM, yIpaBlieHHe KOHGHUrypauueil, BbiOOp u
OLICHUBAHUE MHCTPYMEHTAJIBHBIX CpEICTB, yhpaBieHHE
JIOKyMEHTAIlMeH, a TaKkKe OIeHKy Oe3omacHoctu. I[loapoOHO
onuchIBaeTcs V-00pa3HbIl KU3HEHHBIH IHMKI (QYHKIHOHAIBLHOH W
MH(QOPMALIMOHHON 0€30MacCHOCTH, BKJIIOYasi TPACCUPOBKY TPeOOBaHUIA.
PaccMoTpeHbI OCHOBHBIE METOJIbI BepH(UKAIMH, TaKhe Kak 0030p
JOKYMEHTOB, CTaTWYeCKHH aHamu3 Kojxa, (QYHKIHOHAIBHOE U
CTPYKTYPHOE TECTHPOBAHHUE.

Mertononorus Assurance Case paccMarpuBacTcs B 26 paszerne,
Kak IIeJIOCTHBIA TOAXO0J] K HMHTEerpalnuu TpeOoBaHUU W apTedakToB
6esonacHoctu. [y 3Toro mpencraBieHbl ocHOBBI Assurance Case, a
TaKKe KOHLenuust u ucrtopus. [na rpaduueckoro mnpeacraBieHUs
Assurance Case UCTIONB3YIOTCS MOTy(QOpPMaTbHbIe HOTAIUH, TAKHE KaK
«emp, aprymenr wu mnoxarBepxkaeHue» (CAE) wu «Horamus
cTpykrypupoBanHbix 1eneit» (GSN). Assurance Case mis cuCTeM
WHTEpHETa BEIIel OCHOBBIBAETCS Ha ydeTre TpeboBaHUI K
UHGOPMAIMOHHOM 0€30MMacHOCTH U SHEProd3(hHEeKTHBHOCTH.

544

AHHOTaIuM pas3zenon

B pasgene 27 paccMOTpeHBI OCHOBBI TEXHOJOTMH OJOKUYEHH U
NpuMepbl ee ucnosib3oBanusi B MHTepHeT Bemieil. IIpoBenen anamus
ITOPUTMOB KOHCEHCYCa, MCHOIB3YeMbIX B TEXHOJOTUW OJOKYEHH, H
NPUHIMIIOB OOECTeYeHUs] HaAEKHOCTH W Oe3omacHocTH HMHTepHET
BElIeH C HCHONb30BAaHMEM TEXHOJOrMM OyiokueiiH. BriaeneHsl
MPEUMYIIECTBA U CYIIECTBYIOIIHNE MPOOIeMbl HHTETPAIH TEXHOJIOTHI
onmokueiin B MHuTepHer Bemieil. Pemenne Bompoca 0Oe30macHOCTH Ha
pa3nuuHbIX ypoBHsX mnpuMmeHeHus loT sBnsercs Oosiee CIOXKHOU
mpo0IeMO M3-3a OTPAaHMYCHHON IPOM3BOAMTEILHOCT W BBICOKOU
HEOJHOPOJHOCTH YCTPOMCTB.

B pasmene 28 paccmaTpuBaeTcs psAI HCCIEIOBATEIBCKUX
mpoOiieM, CBS3aHHBIX C pa3paborkoit loT-apxurekTyp, apXUTEKTyp
YCTPOMCTB M CHUCTEMHOM HHTerpanuu Ha ocHoBe loT. PaccMmorpensl
¢ ¢deKTHUBHbIE MOAXOABI K pa3paboTKe Uil TPEOJOJICHUS
CYLIECTBEHHBIX NpobieM nmpu pa3paboTKe U BHEAPECHUU dPPEKTHBHOTO
pemenusi IoT. OO6cyxnmatorcs 6a3oBble KOMITOHEHTHI cuctem loT,
3Tambl U pe3ynbTaThl TexHUUeckoi crpateruu loT, a Takke kpurepuu
BbIOOpa 115 pazBepThiBanus miatdopm loT.

B pazgene 29 paccmorpensl mogenu loT ycTpoHcTB
TEXHOJIOTHMM A1 00pa0OTKM M mepeldadd NaHHbIX. B 3TOM paszgene
AHATM3UPYIOTCS OCHOBHBIC MPUHIIMIIBI TIOCTPOCHUSI HHPOPMAIIMOHHBIX
Mozened IoT yCTpOHCTB M MHCTPYMEHTBHI JUIi HMX CO3JIaHUfA, B
yactHocTH Eclipse Vorto. Takxke ncciiegoBaHbl IPOTOKOJIBI CETEBBIX
coequaeHmit s [oT ycrpoiictB. Kpome TOro, BaKHBIM KOMIIOHEHTOM
IoT cern sBnsieTcs BBIOOp TEXHONOTHH 00pabOTKH AaHHBIX B loT
CUCTEMAaX M METOAOB YIPABJICHUS M NPOTHO3UPOBaHUA. Takxke
pPacCMOTPEHBl OCHOBHBIE MPOTOKONBI M CTaHAAPTHI AJIs NEepefadu
naHHbIx Mexnay loT ycrpoiictBamu. HekoTopoe BHMMaHME yaAeIseTCs
kubepoeszonacuocTh B [oT.

B pasgene 30 paccMOTpeHBI HMHTEIIEKTYyalbHbBIE METOABI H
NOJXOMbl st yrnpaBieHuss u odydenust loT cucrem. B asT0# rinaBe
aHaNM3UpYyIOTCsT TUOBIL W Bo3MoxkHoctd loT mmardopwm,
MHOTOKPHTEPUAIBHBINA MOJX0] M MSTKHE BBIUUCIeHHs 115 BeiOopa loT
riatdopmel. Takke MpoaHATM3UPOBAHA KOHIIETIIHS MYJIbTHATEHTHOTO
noaxoxaa B 10T, B yacTHOCTH, TUIBI U XapaKTEPUCTUKU arcHTOB, CBS3b
areHTOB C BHEWIHEH Cpefod M TEXHOJIOTMH MEPeJadd JaHHBIX MEXIy

545

AHHOTaIuM pas3zenon

arentamu. Kpome Toro, BakHeiM kommoneHToM loT ceru sBnsieTcs
BbIOOp MeTomoB m momxonoB mnst obydenus loT cucrem. Taxoke
paccMaTpUBAIOTCS OOMIME NPHHIMIBI MEKMAIIMHHOTO O0ydYeHHs,
caMo00yYaroIuecs: CUCTEMBI 1 HEHPOHHBIE CETH.

B pasmene 31 paccMoTpeHbl Mojend HWHQPOPMAIMOHHOTO
B3auMojieicTBus aneMmeHToB cucteM [oT. IlpuBenen mopsiaok
pa3paboTKH U OBICTPOro MPOTOTHIIMPOBAHUS YCTPOMCTB. IlokazaHbI
TUINOBBIE pelleHus g mnocTtpoeHus cucreM loT, wucnonb3oBaHue
BUPTYaJbHBIX yCTPOMCTB Aai pa3pabOTKM NPOrpaMMHOTO
oOecnieyenus. [IpuBenensl npuMepsl pa3pabOTKU M MPOTOTHIINPOBAHUS
KaHaja U3MEpEeHUI Ha OCHOBE MAaJIOPECYPCHBIX MUKPOKOHTPOJIEPOB.
Ilokazano yckopenue pazpabotku ycrpoiictBa loT ¢ ncroms3oBanuem
COBPEMEHHBIX OTKPBITHIX IIATPOPM M OMOINOTEK BBICOKOYPOBHEBBIX
byHKIU.

546

Onexcannp Banentunosuu dpo3a, Oner Onexcanapouy [yisieHko,
Bstaecnas CepriitoBua Xapuenko, Mapuna OnexcanapiBHa KomicHUK,
l'anuna Bonoaumupisaa Konaparenko, FOpiii [TanreniitoBny Konaparenko,
Onena lOpiiBHa MaeBcbka, JImutpo AHapiiioBua MaeBcbkiid, Onekcanap
Mukosaiioud MapTusiok, Jlernc CeprilioBuy Ma3syp, Makcum
Bomomumuposuda Hecrepos, Anatomiii [1aBnosud [InaxTees, Bagum
Bikroposuu IlIxapynuno, €sren Bikroposuu CineHko,

Inna CepriiBaa Cxapra-banmyposa, Bomomumup Bomomumuposua Cxirsip,
INanuna Bonomumupisaa TaOyHimuk, Mukuta Onekcanaposuy TapaHos,
Aprem IOpiitoBna Benukxanin, Amutpo AMutpoBnd Y3yH,

IOmnist OnexcanapiBHa Y3yH, Haranis ['eopriiBHa Snkis,

Bacuie Bacunbosny fukis, ['eopriit AHApiiioBHY 3eMIISTHKO

InTepHeT peyeii a5 iHAyCTpiaAbHUX i ryMaHiTAPHUX
3aCTOCYBaHb.
Tom 2. MoaenioBaHHs i po3po0ieHHs
(aHTITIHCHKOI0 MOBOIO)

Penakrop Xapuenxo B.C.
Komm'torepna Bepctka Lursawenko O.0.

3B. mnaH, 2019
[igmucanuit mo apyky 22.08.2019
®dopmar 60x84 1/16. [Mamip odc. No2. Ode. apyk.
YMmoB. apyk. apk. 33,95. O6im.-un. 1. 34,19. Haknan 150 mpum.
3amoBnenHs 220819 2

HarmionansHuit aepokocMiganit yHiBepeuTeT iM. M. €. JKykoBchkoro
"XapkiBchbKHU aBiamliiHUN i1HCTUTYT"
61070, Xapkis-70, Byn. Ukanosa, 17
http://www.khai.edu

Bunyckarounii pegaxrop: @OII 'onemborcbka O.0.
03049, Kuis, [ToBiTpodmorcekuii mp-KT, 0. 3, k. 32.
CBiZIOLITBO PO BHECEHHS Cy0’€KTa BUJABHUYOI CIIPABH 10 JEP>KABHOTO PEECTPY BUAABIIIB,
BUTOTOBITIOBAYIB 1 PO3MOBCIOMKYBaYiB BUAABHIYOT HPOIYKIIii
cepist IK No 5120 Bix 08.06.2016 p.

Bunmasens: TOB «Bugasaunrso «OcTtom»
01034, m. Kuis, Byn.. O. T'onuapa, 36-a, ten.: +38 044 360 22 66
WWWw.yuston.com.ua
CBiZIOLITBO PO BHECEHHS Cy0’€KTa BUJABHUYOI CIIPABH 10 JEP>KAaBHOTO PEECTPY BUAABLIIB,
BUTOTOBJIIOBAYIB i PO3MOBCIODKYBAUiB BUJIABHUYOT IIPOYKILiT
cepis JIK No 497 Bix 09.09.2015 p.

	ALIOT_Multi-Book_Volume2_cover
	ALIOT_Multi-Book_Volume2
	ALIOT_Multi-book_Volume2

