

Ministry of Education and Science of Ukraine

National Aerospace University “KhAI”

V.O. Butenko, O.N. Odarushchenko, A.Y. Strjuk,

E.B. Odarushchenko, D.A. Butenko

Mobile and hybrid Internet of

Things based computing

Practicum

Edited by V. S. Kharchenko

Project

ERASMUS+ ALIOT “Modernization Internet of Things:

Emerging Curriculum for Industry and Human Applications

Domains” (573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP)

2019

UDC 004.382.74iOS _And:004.411](076.5)=111

МС77

Reviewers:

DrS, Prof. Volodymyr Mokhor, director of Pukhov Institute for Modelling

in Energy Engineering, corresponding member of NAS of Ukraine

Dr. Ah-Lian Kor, Leeds Beckett University, UK

М77 Butenko V.O., Odarushchenko O.N., Strjuk A.Y., Odarushchenko E.B.,

Mobile and hybrid Internet of Things based computing: Practicum /

Kharchenko V.S. (Ed.) – Ministry of Education and Science of Ukraine,

National Aerospace University “KhAI”, 2019. – 124 p.

ISBN 978-617-7361-87-8

The materials of the practical part of the master course “MC3. Mobile and

hybrid IoT-based computing”, developed in the framework of the ERASMUS+

ALIOT project “Modernization Internet of Things: Emerging Curriculum for

Industry and Human Applications Domains” (573818-EPP-1-2016-1-UK-

EPPKA2-CBHE-JP).

Study material presented in this practical part of the master course is

covering the basic topics iOS and Android application development and

there use for IoT systems.
It is intended for engineers, developers and scientists engaged in the

development and implementation of of IoT-based systems, for postgraduate

students of universities studying in areas of IoT, computer science, computer

and software engineering, as well as for teachers of relevant courses.

Ref. – 38 items, figures – 66.

Approved by Academic Council of National Aerospace University

“Kharkiv Aviation Institute” (record No 4, December 19, 2018).

ISBN 978-617-7361-87-8

© Butenko V.O., Odarushchenko O.N., Strjuk A.Y., Odarushchenko E.B.,

Butenko D.A.

This work is subject to copyright. All rights are reserved by the authors, whether

the whole or part of the material is concerned, specifically the rights of

translation, reprinting, reuse of illustrations, recitation, broadcasting,

reproduction on microfilms, or in any other physical way, and transmission or

information storage and retrieval, electronic adaptation, computer software, or

by similar or dissimilar.

Міністерство освіти і науки України

Національний аерокосмічний університет

ім. М. Є. Жуковського «Харківський Авіаційний Інститут”

В.О.Бутенко, O.М. Одарущенко, О.Ю. Стрюк,

E.B. Одарущенко, Д.A. Бутенко

Мобільні і гібридні обчислення

на основі Інтернету речей

Практикум

Редактор Харченко В.С.

Проект ERASMUS+ ALIOT

 “Інтернет речей: нова освітня програма

для потреб промисловості та суспільства”

(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP)

2019

УДК004.382.74iOS_And:004.411](076.5)=111
M77
Рецензенти:

Д.т.н., проф. Володимир Мохор, директор інституту проблем

моделювання в енергетиці ім. Г.Є. Пухова, член-кореспондент НАН

України

Др. А-Ліан Кор, Leeds Beckett University, Велика Британія

M77 Бутенко В.O., Одарущенкo O.М., Стрюк О.Ю., Oдарущенко E.B., Бутенко

Д.А. Мобільні і гібридні обчислення на основі Інтернету речей. / За ред.

Харченка В.С. – МОН України, Національний аерокосмічний університет ім. М. Є.

Жуковського «ХАІ». – 124 с.

ISBN 978-617-7361-87-8

Викладено матеріали практичної частини курсу “MC3. Mobile and hybrid

IoT-based computing”, підготовленого в рамках проекту ERASMUS+ ALIOT

“Internet of Things: Emerging Curriculum for Industry and Human Applications”

(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP).

Навчальний матеріал, представлений у цій практичній частині

магістерського курсу, висвітлює основні теми розробки додатків для iOS та

Android та використання їх для систем IoT.

Призначено для інженерів, розробників та науковців, які займаються

розробкою та впровадженням IoT для промислових систем, для аспірантів

університетів, які навчаються за напрямом комп’ютерних наук, комп’ютерної

та програмної інженерії, а також для викладачів відповідних курсів.

Бібл. – 38, рисунків – 66.

Затверджено Вченою радою Національного аерокосмічного

університету «Харківський авіаційний інститут» (запис № 4, грудень 19,

2018).

ISBN 978-617-7361-87-8

© Бутенко В.O., Одарущенкo O.М., Стрюк О.Ю., Oдарущенко E.B.,

Бутенко Д.А.

Ця робота захищена авторським правом. Всі права зарезервовані авторами,

незалежно від того, чи стосується це всього матеріалу або його частини, зокрема

права на переклади на інші мови, перевидання, повторне використання ілюстрацій,

декламацію, трансляцію, відтворення на мікрофільмах або будь-яким іншим

фізичним способом, а також передачу, зберігання та електронну адаптацію за

допомогою комп'ютерного програмного забезпечення в будь-якому вигляді, або ж

аналогічним або іншим відомим способом, або ж таким, який буде розроблений в

майбутньому.

3

Abbreviations

ABBREVIATIONS

MC Master Course

API Application Programming Interface

IDE Integrated Development Environment

ID Identifier

BLE Bluetooth Low Energy

UUID Universally Unique Identifier

UI User Intrerface

4

Introduction

INTRODUCTION

The materials of the practical part of the master course “MC3. Mobile

and hybrid IoT-based computing”, developed in the framework of the

ERASMUS+ ALIOT project “Modernization Internet of Things: Emerging

Curriculum for Industry and Human Applications Domains” (573818-EPP-

1-2016-1-UK-EPPKA2-CBHE-JP)1.

Study material presented in this practical part of the master course is

covering the basic topics iOS and Android application development and

there using for IoT systems.

The main topics of practical works are following:

- getting started with XCode and Android Studio - setting up your

development environment;

- design and basic layouts of the iOSand Android diabetic tracer

application “Glu”;

- translating design into code - add and setup basic “Glu”

components;

- getting started with data storages for iOS and Android;

- assessing user health information using HealthKit and Google Fit;

- Integrating third-party trackers and glucometers using API.

The course is intended for engineers, developers and scientists engaged

in the development and implementation of IoT-based systems, for

postgraduate students of universities studying in areas of IoT, computer

science, computer and software engineering, as well as for teachers of

relevant courses.

Practicum prepared by Dr. Butenko V.O., Dr. Odarushchenko O.M.,

Dr. Strjuk O.Y., Butenko D.A. (National Aerospace University “KhAI”)

and Dr. Odarushchenko O.B. (Poltava State Agrarian Academy). General

editing was performed by DrS. Kharchenko V.S.

The authors are grateful to the reviewers, project colleagues, staff of

the departments of academic universities, industrial partners for valuable

information, methodological assistance and constructive suggestions that

were made during the course program discussion and assistance materials.

1 The European Commission's support for the production of this publication does not

constitute an endorsement of the contents, which reflect the views only of the authors,

andthe Commission cannot be held responsible for any use which may be made of the

information contained therein.

5

Getting Started with XCode – Introduction to the IDE

1. Developing IoT-based application for iOS

Practical work 1.1

GETTING STARTED WITH XCODE – INTRODUCTION TO

THE IDE

1.1.1 Synopsis

In this practical work we will discuss the Xcode basics – the

native IDE for iOS, macOS, watchOS and tvOS. This practical work is a

brief introduction to the Apple coding environment that aims to show

basic functionality of the IDE by creating a playground and a single view

application project, use git to make a version control and CocoaPods to

scale project with various libraries.

1.1.2 Brief theoretical information

Xcode — is an integrated development environment (IDE) for

software on macOS, iOS, watchOS and tvOS platforms developed by

Apple.

Xcode provides developers with documentation and Interface

Builder – imbedded application for graphic user interfaces construction.

The Xcode bundle consist of following sources: XCode supports source

code for the languages C, C++, Swift, Objective-C, Objective C++, Java,

Python, Ruby and ResEdit with a variety of programming models,

including but not limited to Cocoa, Carbon and Java. The third parties

have added the support of GNU Pascal, Free Pascal, Ada, C#, Haskell,

Perl and D. Xcode suite uses the LLDB debugger as the back-end for the

IDE's debugger.

During this course we will use Swift to develop the glucose

management application. Swift is a general-purpose, multi-paradigm,

compiled programming language created by Apple for iOS, macOS,

watchOS, tvOS, Linux and z/OS platforms.

While supporting the most Objective-C concepts such as dynamic

dispatch, widespread late building, the Swift is intended to provide

“safer” way to ease the software bugs catching. Swift supports the

concept of protocol extensibility that can be applied to types, structures

and classes etc.

The given practical works are based on Swift 4.2 presented in

6

Getting Started with XCode – Introduction to the IDE

2018 by Apple along with iOS12 [1].

1.1.3 Practical steps

The Xcode is free and can be downloaded via AppStore. Being

multifunctional the Xcode have integrated iOS SDK package, code

editor, Interface Builder, debugger, iPhone/iPad/Apple Watch/Apple TV

simulators. The Xcode welcome screen is presented on Figure 1.1. Here

we can create a new project, playground, clone existing project or

navigate to the recent one.

Figure 1.1 – Xcode welcome screen

1. Creating a first playground

The playground is a perfect place to learn Swift, quickly write

some code, experiment with new syntax or to test algorithms. Here we

can test new code and immediately see the real-time results. The

playground window consists of two basic parts: code editor in the left

side and results view part on the right side (Figure 1.2).

Add following code to the playground (Code sample 1.1).

import UIKit

let frameView = CGRect(x: 0, y: 0, width:

150, height: 150)

let customView = UIView(frame: frameView)

customView.backgroundColor = UIColor.blue

Code sample 1.1

7

Getting Started with XCode – Introduction to the IDE

Figure 1.2

The first line imports a UIKit framework that construct and

manage a graphical, event-driven user interface for iOS and tvOS

applications. Next, we create a frame with CGRect(x:y:width:height)

method and use this frame to initialize UIView. Lastly, change it color to

blue.

2. Creating a first Xcode project.

Go back to the welcome screen and create a new Xcode project. In

following window (Figure 1.3) navigate to the iOS tab. There are several

project types that can be created by now:

- Single view application – is the most commonly selected

application type. The template includes default UIViewController and

it's class;

- Game – the template includes a GameViewController with basic

files to develop gaming scenes (GameScene.sks, Actions.sks and

GameScene.swift);

- Augmented Reality App – the template which contains a

default UIViewController and it's class with imported ARKit and some

methods from ARSCNViewDelegate;

- Document Based App – the template with the standard

Document Browser View Controller and several default classes;

- Master-Detail App – the template includes a predefined views

tree that incorporated Master View Controller with two Navigation

Controllers, Table View Controller and UiViewController;

- Page-Based App – the template gives a default

UIPageViewController with it's classes;

- Tabbed App – provides a template with UITabBarController

8

Getting Started with XCode – Introduction to the IDE

that have a segue to the two UiViewControllers along with their classes;

- Sticker Pack App – the template has a Stickers.xcstikers file for

new stickers integration;

- iMessage App – the template gives a storyboard and controller

to create iMessage extension.

Figure 1.3

Select the Single View App type and in the next window enter

following information (Figure 1.4):

- Product name – is a newly created project name, for example

«HelloWorld»;

- Team – is an account name created on developer.apple.com;

- Organization name – is a developer or organization name. If

nothing is defined the system will take the Mac account name;

- Organization identifier – mainly presents a domen organization

name written in backwards order (com.name) that aims to make a unique

application identifier;

- Bundle identifier – the unique application identifier that is

created with project name and organization ID, for example

«com.name.HelloWorld»;

- Language – is a project language (Swift or Objective-C). We

need to select Swift.

 On the next screen we need to select a destination folder tor

9

Getting Started with XCode – Introduction to the IDE

newly created project and create the Git repository if it is needed.

Figure 1.4

3. Xcode windows

The Figure 1.5 shows Xcode interface for the new «HelloWorld»

single view application that contains the Navigation (1), Editor (2),

Utility (3), Debug (4) and Toolbar (5) areas. We can change size of each

window and hide or show them using buttons in the right top corner.

Let us discuss each Xcode component;

1) The Navigation gives bunch of tools that can help to navigate

through project files a as well as build, debug and run stages. The first

tab presents project files tree (Figure 1.6). The files groups can be

created during project development, but it should be noted that creation

of a new group inside of Xcode doesn't mean that folder with the same

name was actually created in original project folder. To escape the

complications during final project debug all project folders should be

created manually and then added to Xcode with right button click on

specified folder and in popup menu «Add new files to «HelloWorld»»

selection. Using Search tool in Navigation bar we can easily look for

interested text information (Figure 1.7). The Issue tab presents all

problems that appear during compilation and helps to quickly jump to

that place in code (Figure 1.8).

10

Getting Started with XCode – Introduction to the IDE

Figure 1.5

 Figure 1.6 Figure 1.7 Figure 1.8

2) Code Editor is a place where developer spends main time

during application development (Figure 1.9). The navigation through

project files can be made using Navigation bar, as it was previously

discussed, or in Code Editor options directly. Those options present the

work files hierarchy and even give information on methods in each file

(Figure 1.10).

The Editor window can be presented in three possible types: single

11

Getting Started with XCode – Introduction to the IDE

window (Figure 1.11), Version Editor to see the changes in file (Figure

1.12) and Assistant Editor Window that shows two work files (Figure

1.13).

 Figure 1.9 Figure 1.10

 Figure 1.11 Figure 1.12

Before we go to the next window there is one important thing that

should be highlighted in Editor Window – breakpoint. The breakpoints

are heavily used during code debug and mark the line to pause an

application as soon as it enters that line. Breakpoint are simply placed by

clicking on the number of needed line (Figure 1.14)

12

Getting Started with XCode – Introduction to the IDE

Figure 1.13

Figure 1.14

13

Getting Started with XCode – Introduction to the IDE

3) Utility window. One of the most frequently used Utility tabs is

an Attributes Inspector (Figure 1.15), especially if the UI components are

created with Interface Builder or XIB file.

Figure 1.15

This tab helps to make some basic setup on components appearance,

view and default behavior etc. In case of creating the custom objects this

panel is mostly hidden and can be called back if needed.

4) Debug gives information of results and states of various

variables during application run.

5) The Toolbar holds elements to build, run, test and analyze the

application. Here we can also select the simulation device or run on

actual one. Using the Xcode simulator we can emulate such events as

change of GPS coordinates, shake etc.

4. Git and CocoaPods basics

 The control version tools are heavily used during development

of iOS applications. The Git is one of the most widely used systems that

can ease development process by splitting, merging and visualizing the

nonlinear project development history.

 As we have seen before the local Git repository can be created

14

Getting Started with XCode – Introduction to the IDE

during new project creation. Let's briefly discuss main Git basic

commands.

 There are two types of Git repository – local and remote. The

local repository is a .git catalog and if it was not created with project, we

can navigate in console to the project folder and with «git init» make it

initialization. If we need to copy information from nonempty parental

remote repository - put link on it and use git clone command.

 Basically there are three types of objects in git repository – file,

tree and commit. File is a version of a user file, tree is a group of user

files from different catalogs and commit is a tree with some additional

information.

 The “git commit” and “git merge” are the most frequently used

Git operations:

- “git commit” saves changes to the local repository. The Git

requires to explicitly show what exactly must be saved with this commit,

thus we need to use “git add” command previously. For example, we

need to save changes in HelloWorldVC.swift to the local repository. To

do that use following commands, where “-m<message>” presents a

comment to the commit:

git add HelloWorldView.swift

git commit –m “Create custom view for

basic screen”

If we need to add changes from many different files, the prefix “-

a” can be applied that add all changed files to this commit:

git commit –a –m “Create custom view for

basic screen”

- git merge can be applied to merge parallel tree branches. For

example, we need to create a new branch in project version tree, make

several changes on it and then merge this new branch with a main one

(master branch). To do so, we can use the following commands:

create a branch new
git checkout –b new master

commit of all changes made in branch new
git commit –a –m “Change and add some

15

Getting Started with XCode – Introduction to the IDE

features”

merge of branch new with master
git checkout master

git merge new

deletion of branch new
git branch –d new

It should be noted that almost all common Git operations are

processed locally and can be synched with remote repository using push

and pull commands. The push sends new data from local repository to

the remote. It should be noted that remote repository must have only up

to date information. If it was changed, first call the git pull command that

will load all changes in remote repository to the local and merge those

changes into the local. The pull command makes a local copy of changes

made in remote repository and if one branch has independent history in

local and remote repositories the pull will immediately merge it. The

fetch command is also heavily used to work with remote and local

repositories, as it present a partial pull. The fetch takes changes from the

remote repository and copy them to the local. For more details about git

commands please visit the official git site [2].

The CocoaPods is a one of the best dependency manager in Swift

and Objective-C projects. The CocoaPods provide developers with over

64 thousand libraries that help to easily scale iOS projects. It is build

with Ruby and is installable with the default Ruby available on macOS.

To setup CocoaPods we need to update the packages list with

update command and as the list became up to date install pods and setup

them (Code sample 1.2).

sudo gem update –system

sudo gem install cocoapods

pod setup

Code sample 1.2

Then navigate to the project folder and create the Podfile with the

command vim Podfile. After this check the project folder for the Podfile

presence. Now we can use this file to setup CocoaPods simply using

pod‘NameOfNeededPod’. For more detailed information and list of

available libraries visit [3].

16

Getting Started with XCode – Introduction to the IDE

1.1.4 Report requirement and tasks

Practical work tasks:

1. Download Xcode from App Store and install it to the local

machine.

2. Create the playground project with custom UIView inside. Add

a UILabel with “Hello World” text as a subview to the custom UIView

and change it text and background color.

3. Create a HelloWorld swift project as in practical work steps.

As you have added changes to it commit them to the master branch.

Create a new branch and on this branch add a UILable to the Interface

builder. Commit this change and merge the new branch with a master.

4. Install CocoaPods. From the Podfile in HelloWorld project

install AFNetworking and SwiftyJSON pods.

The report should contain following sections:

1. Introduction – background, theory and practical work purpose;

2. Development – screenshots with explanation of each practical

work task completion, code from ViewController.swift file and

screenshot from HelloWorld Interface Builder with simulator screenshot.

3. Summary – conclusions and result summary.

1.1.5 Test questions

1. What is a playground in Xcode? For what purpose it can be

applied?

2. What types of template projects does Xcode provide?

3. What is an Interface Builder? How we can change controls

common attributes in it?

4. Explain three types of Code Editor presentation. What is the

main difference between them?

5. What is Git? Explain git commit, git merge, git push, git pull

and git fetch commands.

6. What is a CocoaPods?

1.1.6 Recommended literature and resources

1. Matt Neuburg. Programming iOS 12: Dive Deep Into Views,

View Controllers and Frameworks/ o’Reilly Media, 2018 – 1176 p.

2. Git. Documentation. https://git-scm.com/docs

3. CocoaPods. https://cocoapods.org/

17

Design and Basic Layout of the iOS Diabetic Tracer Application “Glucose”

Practical work 1.2

 DESIGN AND BASIC LAYOUTS OF THE IOS DIABETIC

TRACER APPLICATION “GLUCOSE”

1.2.1 Synopsis

This practical work presents a step-by-step analysis of how the

health-related application can be designed according to Apple Review

Guidelines and official HIG recommendations.

1.2.2 Brief theoretical information

Apple gives a list of requirements and recommendations that have

to fulfilled during the development of an application that is planned to be

subscribed to App Store [1,3]. Those questions include guidelines

arranged into five sections: safety, performance, business, design and

legal. As for this and following practical works 1.3 – 1.6 the key

application that helps to trace the everyday glucose level in blood we

need to focus on section «5.1.3 Health and Health Research» in App

Store Review Guidelines.

They provide some special rules to ensure customer privacy is

protected:

- apps may not use or disclose to third parties data gathered in the

health, fitness, and medical research context—including from the Clinical

Health Records API, HealthKit API, Motion and Fitness,

MovementDisorderAPIs, or health-related human subject research, etc. The

specific health data that is collected from devices should by disclosed.

- apps must not write false or inaccurate data into HealthKit or any

other medical research or health management apps;

- personal user health information may not be stored in iCloud;

- apps conducting health-related human subject research must obtain

consent from participants or, in the case of minors, their parent or guardian

[1].

Accounting those recommendations can remove inappropriate

functions which are forbidden by App Store as well as decrease the

application development time.

Now, let's set the basic functions that diabetic tracer application

«Glucose» should provide:

18

Design and Basic Layout of the iOS Diabetic Tracer Application “Glucose”

- Give a information about previously made glucose test in a table

form;

- The user should have an option to edit this glucose history table;

- Manually add new glucose measurement: set data in ml/dg,

dependence on meal, data and time;

- Synchronize an application with glucometers and get data from

those third-party devices;

- Ability to send reminders for the next glucose measurement

time;

- Connect to the Health application and get data about latest

trainings and heart rate measurement.

The internal data storage will be organized using Core Data

store. Within this practical works the «Glucose» application will use

mainly native iOS 12 components.

1.2.3 Practical steps

1. Measure page design

Now let’s discuss the basic organization of application pages. As

we can see from previously made app functions list there are four logical

groups of functions – management of the glucose history data, addition

of a new measurement, synchronization with devices and few settings.

Thus we can present app in as set of four tabs – Settings, Connect,

History and Management. The app is heavily dependent on the most

frequently used page that allows user to add a new glucose measurement,

thus Measure tab will be the first screen that appears after app launch.

The Figure 2.1 presents tab Measure that is basically based on

native iOS 12 components. User can add a new measure with

UITextField that holds an example of the required data. Selection of

meal dependence can be organized with UIAlertController (Figure 2.2)

that keep user on the same page and avoid additional forward/backward

navigation on page.

Note, that in official Human Interface Guidelines (HIG) [2] the

default Cancel button is strictly recommended during the work with

Action Sheets component. We can set the meal dependence field as non-

required because user can simply forget when this measurement was

made, thus Cancel button will switch to the default “No details” variant.

The UIDatePicker component is applied to select date and time. This is

also an optional field that will keep the default value of date and time

19

Design and Basic Layout of the iOS Diabetic Tracer Application “Glucose”

when measurement was saved in the application.

Figure 2.1 Figure 2.2

One of the basic HOG recommendations on Date Picker element

use is to decrease the time interval if it is possible, thus we will set the

time interval to value 5 on the scale [0; 59] (Figure 2.1).

2. History page design

In the History tab user can view and edit the data on previously

made glucose measurements (Figure 2.3). For this purpose, we use

UiTableView component. Each cell of the table holds three labels that

are based on gathered data. The unnecessary row can be deleted from the

table.

3. Connect page design

The user can not only manually add data but also get it from third-

party glucometers or other appropriate devices with Bluetooth inside.

The initial page presents list of devices that have been already connected.

«Add device» button can be used to search for new connection (Figure

2.4).

20

Design and Basic Layout of the iOS Diabetic Tracer Application “Glucose”

 Figure 2.3 Figure 2.4

While searching the nearby devices via Bluetooth user can view

all appropriate for connection devices in a table and by selecting one get

connection request (Figure 2.5 – 2.6).

 Figure 2.5 Figure 2.6

21

Design and Basic Layout of the iOS Diabetic Tracer Application “Glucose”

The process of search is presented to user with Refresh Connect

control, and according to HIG the list of found devices should be

constantly updated. The Figure 2.6 shows an Alert message that asks for

permission to connect with selected peripheral device. In HIG we can see

the recommendation to use mainly two-button Alerts with clear and short

names for message and buttons. Additionally, user can dismiss this

message by simply moving to another tab.

4. Settings page design

In the Settings tab user can activate native iOS notifications to

send reminders on next glucose measurement time (Figure 2.7 – 2.8).

For this practical works we will forward user to the Notifications tab in

iPhone device settings. There is a list of official recommendations in

HIG that can help to increase an effectiveness of notifications instrument

[2]. One of the most important conditions, that can be found in this list,

are notifications relevance, absence of multiple notifications for the same

thing, even if the user hasn’t responded and recommendations on

badging use. To expand application functionality, we can also ask for

authorization to Health data, if Health is available on current user device

and collect data from last trainings and heart rate measure.

 Figure 2.7 Figure 2.8

22

Design and Basic Layout of the iOS Diabetic Tracer Application “Glucose”

1.2.4 Report requirements and tasks

Practical work tasks:

1. Download Sketch or Figma, install the software and design the

basic «Glucose» application screens. You can use the partial or full

design and data organization of «Glucose» application as it was

presented in 1.2.3 Practical steps. Use thenounproject.com and

material.io to find icons for buttons and other control elements.

2. Read the official HIG requirements and recommendations for

following controls: buttons, labels, pickers, refresh content controls,

switchers and text fields. Read the official HIG requirements and

recommendations for following views: action sheets, alerts, tables.

3. Add into the Settings tab following additional setup functions:

select the glucose units from mg/dL to mmol/L; clear measurements

history; delete measurement history for data later than month ago; setup

reminder inside an application.

The report should contain following sections:

4. Introduction – background, theory and practical work purpose;

5. Development – screenshots with explanation of each practical

work task completion.

6. Summary – conclusions and result summary.

1.2.5 Test questions

1. What is an official Apple HIG and what type of information it

presents?

2. What are the basic requirements in Apple Review Guidelines to

the health-related applications?

3. What type of information is presented in Measure screen? Why

did you used such controls to get user data?

4. What type of information is presented in History screen? How

we can alternate the data presentation in this screen?

1.2.6 Recommended literature and resources

1. App Store Review Guidelines. https://developer.apple.com/

app-store/review/guidelines/

2. Human Interface Guidelines for iOS https://developer.apple.

com/design/human-interface-guidelines/ios/overview/themes/

3. Joshua Greene. Design Patterns by Tutorials: Learning Design

Patterns in Swift 4/ Razeware LL, 2018. – 364 p.

https://developer.apple.com/%20app-store/review/guidelines/
https://developer.apple.com/%20app-store/review/guidelines/

23

Translating Design Into Code – Add and Setup Basic Application Component

Practical work 1.3

TRANSLATING DESIGN INTO CODE - ADD AND SETUP

BASIC APPLICATION COMPONENT

1.3.1 Synopsis
In this practical work we will focus on presenting of already

created application design inside Xcode Interface Builder. We will setup

UI components, set constraints for each view, ink the appropriate views

with outlets and actions in code. Finally, we will apply the initially

required methods.

1.3.2. Brief theoretical information

After design creation and as we have screens for each application

reaction on various user interactions with it, it is time to create a new

project file and setup user interface in Xcode. This can be performed

through Interface Builder storyboard that gives rather flexible tools to

customize and set controls on View Controllers or without storyboard. In

the second case we can create and customize all views from code using

various imbedded Xcode frameworks or download appropriate from

CocoaPods. Xcode doesn't permit usage of both storyboard files with no-

storyboard designed views, thus we can easily combine the needed

variants. As «Glucose» application consists of four main screens, does

not provide user with wide functionality and it was designed upon native

iOS 12 element – we can use storyboard to construct application

interface.

1.3.2. Practical steps

1. Project creation and Interface Builder overview

Create new single view application project in Xcode. Check the

Core Data during new project creation as we will need it later to store

user data. Accept the Git repository creation if you will use version

control during application development.

Inside of new project go to the Main.storyboard file (Figure 3.1)

that presents a default View Controller at the Interface Builder canvas

[1].

Interface Builder consists of four main areas:

24

Translating Design Into Code – Add and Setup Basic Application Component

a) Interface elements hierarchy along with their constraints

(placing rules);

b) Interface elements canvas;

c) Toolbar for setting the items constraints;

d) Selection of devices on which the application will run and

device orientation modes;

e) Tools to setup elements connections, behaviors, appearance,

basic graphical features etc.

Figure 3.1

An app consist of four tabs, thus we can use the

UITabBarController to present it's content. Imbed it into the project with

Editor – Embed In – Tab Bar Controller. As a result you can see that

Main.storyboard file now presents UITabBarController connected with

empty View Controller (Figure 3.2).

Drag from the Objects library two more View Controllers and one

Table View Controller for Settings page. Add to each new controller the

Tab Bar Item and holding ctrl create segue between Tab Bar Controller

and each new controller selecting the«Relationship segue – view

controllers» (Figure 3.3).

25

Translating Design Into Code – Add and Setup Basic Application Component

Figure 3.2

Figure 3.3

26

Translating Design Into Code – Add and Setup Basic Application Component

2. Constructing the Measure tab in the Interface Builder and

programming the basic connections between view and code

First, add to the Аssets.xcassets file the app icons in three sized

(1x, 2x и 3x) [2] and using Attribute Inspector in the Interface Builder

assign icons to each Tab Bar Item or newly created controllers. Change

the Title of each.

The tab Measure consists of three fields – measurement number

(mg/ml), meal and date and time. This page can be presented as a static

table with determined number of sections and rows or as following views

hierarchy, namely:

- Navigation bar with “Add Measure title”;

- Top UIView with imbedded UILabel titled as “Measurement

number (mg/ml) inside”;

- UITextField with centered text alignment and placeholder “90”;

- Second UIView with UILabel titled as “Meal” inside;

- UIButton that calls for UIAlertController with “No details” title;

- Third UIView with “Date & Time” UILable inside;

- UIDatePicker on mode “Date and time” and 5 minute interval;

- “Save measure” UIButton placed on page footer.

Let’s consider the second presentation type to show the Interface

Builder flexibility. Construction and initial setup of UITableView will be

considered in the description of the History tab.

3. Constructing the Measure tab in the Interface Builder

Set up UINavigationBar. Select in Objects library NavigationBar

and drag it to the Interface Builder canvas. Resize and position it as

needed. After you have placed view on canvas Interface Builder will

automatically create a set of prototyping constraints that define the

view’s current size and position relative to the upper left corner. This can

be done for fast prototyping purpose, as by now app can be build and

run, but should always be replaced by own explicit constraints. After

creation of the first explicit constraint, the system will remove all

prototyping constraints from views referred by the constraint.

Interface Builder provides four Auto Layout tools, namely Stack,

Align, Pin and Resolve Auto Layout Issues in the bottom-right corner of

the Editor window:

1) The Stack tool (Figure 3.4) allows to quickly create a stack

view by selecting one or more items in layout and clicking on Stack tool

27

Translating Design Into Code – Add and Setup Basic Application Component

button. Interface Builder created a stack view from selected items and

resizes the stack to its current fitting size based on its contents.

2) The Resolve Auto Layout Issues tool (Figure 3.5) provides a

number of options for fixing common Auto Layout issues. The top

options affect only the currently selected views. The bottom options will

affect on all views in the scene.

3) The Align tool (Figure 3.6) is used to quickly align items in

layout. After selection of the items that have to be aligned click Align

tool and choose among presented alignment types the appropriate. The

Interface builder will create the constraints needed to ensure those

alignments.

4) The Pin tool (Figure 3.7) let us quickly define a view’s position

relative to its neighbors or define its size. Select the item that has to be

pinned and call Pin tool from Editor Window. Interface Builder presents

a popover view containing a number of options. The top part of popover

helps to pin selected item’s Leading, Top, Trailing, or Bottom edge to its

nearest neighbor. The associated number indicates the current spacing

between the items in the canvas. The lower part let us set the items’

width and height.

 Figure 3.4 Figure 3.5

 Figure 3.6 Figure 3.7

28

Translating Design Into Code – Add and Setup Basic Application Component

For UINavigationBar set height and pin it to the Leading, Trailing

and Top canvas edges with 0. Change it title to “Add Measure”.

Set up top UIView with UILabel “Measurement number

(mg/dl)”. The same principles are used to set constraints on the rest of

views. Select in Objects library the UIView and drag it to the Interface

Builder canvas. Set it under the UInavigationBar and give it the proper

size. Change the background color, pin it to the bottom of

UINavgationBar, Leading and Trailing edges of the screen and give it

the proper height. Align it horizontally in container view.

Drag the UILabel from the Objects library and set it inside the

UIView by pinning it to the UIViews Bottom and Leading edges.

Change title and give it the needed height.

Set up UITextField. Drag the UITextField from the Objects

library to the designed screen. Pin it Top to the Bottom of previously

added UIView, Leading and Trailing to the edges of container view. Set

proper height and align horizontally in container.

As the UITextField has no initial text inside use put “90” to the

placeholder settings in the Attribute Inspector. Select None as Border

Style, set Font Size and make centered text alignment.

Set up UIView with UILabel “Meal”. This UIView and UILabel

can be added to the designed screen the same way as UIView with

UILabel “Measurement number (mg/dl)”. The mane difference is that

Top edge of UIView must be pinned to the Bottom edge of UiTextField.

Set up UIButton with title “No details”. Drag the UIButton to

the Interface Builder canvas. Place it under the last added UIView and

pin it Top to the UIView Bottom edge, Leading and Trailing edges to the

container view. Set height, change title to “No details” as this parameter

goes as default is user will not choose the meal dependence option. The

UIButton should be in enables state. Give it the needed background color

and title color.

Set up UIView with UILabel “Date & Time”. Use the UIView

with UILabel “Measurement number (mg/dl)” as an example, with main

difference is that Top edge of UIView should be pinned to the Bottom

edge of UIButton.

Set up UIDatePicker . Select the UIDatePicker in the Object

library and drag it under the last added UiView. Pin it edges as follows:

Top edge to the Bottom of UIView, Leading and Trailing edges to the

container view and set needed height. Set the horizontal in container

29

Translating Design Into Code – Add and Setup Basic Application Component

alignment in the Align tool.

Make additional settings in the Attributes Inspector: set 5 minutes

interval, the current date must be applied as default; alignment should

have center value for both horizontal and vertical lines.

Set up UIButton with title “Save measure”. Drag the UIButton

from Objects library and place it in the bottom part of the designed

screen. Pin it Bottom edge to the bottom of the container view with

needed margin, for instance 28, Leading and Trailing edges to the

container view with equal margin sizes, for example 16. The UIButton

should be horizontally aligned in container. Set it height size, change

title to the “Save measure”, check the state as it should be enabled, set

background color and title color.

4. Connecting the Measure views with code

After placing all views in the Measure tab they should be

connected with the code in ViewController [3]. The XCode have already

created be default following files:

- AppDelegate.swift. As in IOS the delegate is a class that does

something on behalf of another class, and the AppDelegate is a place to

handle special UIApplication states, with a lot of functionalities inside.

- ViewController.swift. This file manages the app interface setup

and interaction between interface and underlying data.

- Main.storyboars. This file contains the canvas for building and

setting up the user interface.

- Assets.xcassets. Holds images that are used in application.

- LaunchScreen.storyboard. This file contains an initial user interface

that is loaded when the user taps on app’s icon. The system displays launch

screen immediately, letting the user know that app is now launching. When

app is ready, the system hides the launch screen and reveals app’s actual

interface.

- Info.plist. This document describes the keys and corresponding

values that can be included in an information property list file.

- yourAppName.xcdatamodeld. This file is created by default is

during the project creation the use of Core Data was enabled and

contains tools for creating and managing database models.

As the MVC is the officially recommended architectural pattern

the files can be separated in three folders by its Model, View or

Controller features. Each screen (view) presented in the Interface builder

30

Translating Design Into Code – Add and Setup Basic Application Component

is connected to its own ViewController that will manage the views inside

of it. As app consist of four tabs – there have to be four ViewControllers,

each managing its own tab. To see this connection go to

Main.storyboard, select needed tab and in Identity inspector check the

class (ViewController) (Figure 3.8).

The Assistant Editor tool can be applied to ease the connection of

views to code. Call the Assistant Editor and place Main.storyboard with

designed Measure tab on the left-hand side and connected to Measure tab

ViewController on the right-hand side (Figure 3.9).

Figure 3.8

There are four controls on Measure tab that give us user

information:

- UITextField that present ongoing glucose measure;

- UIButton that calls the UIAllertController for selection of meal

dependence;

- UIDatePicker to select the date of ongoing glucose

measurement;

- UIButton to save the entered data.

The UITextField and UIDatePicker views are can be refereed in

31

Translating Design Into Code – Add and Setup Basic Application Component

ViewContoller as IBOutlet. In iOS an outlet is a property of an object

that references another object. The reference is archived through

Interface Builder. The containing object holds an outlet declared as a

property with the type qualifier of IBOutlet and a weak option.

 @IBOutlet weak var glucoseMeasure: UITextField!
 @IBOutlet weak var datePicker: UIDatePicker!

Code sample 3.1

The UIButtons are referred in ViewController as IBAction that

perform function on its activation.

@IBAction func mealBtnPressed(btn: UIButton!){}

@IBAction func saveMeasureBtnPressed(btn:

UIButton!){}

Code sample 3.2

After adding IBOutlet and IBActions for each component they

have to be connected with according views in Interface Builder. This can

be made by holding the dragging from the circle created near the new

@IBOutler or @IBAction to the view (Figure 3.9).

Figure 3.9

32

Translating Design Into Code – Add and Setup Basic Application Component

5. Receiving data from Measure views

As the connection was enabled we can start getting the user

information from those controllers. To do so we can create three

variables that will hold received data for following use as Core Data

entities (Code sample 3.3):

var glucoseData: Double?

var meal = "No details"

var date: String?

Code sample 3.3

Let’s consider the process of obtaining the glucose measurement

data from UITextField (Code sample 3.4). The guard statement

combines two powerful concepts: optional unwrapping and where

clauses, thus giving a safe way of avoiding nil, invalid values or the very

long if let statement.

func getGlucoseMeasure(){

guard let measure = Double(glucoseMeasure.text!)

else {

print("Not a number: \(glucoseMeasure.text!)")

 return

 }

self.glucoseData = measure }

Code sample 3.4

As a result of code sample 3.4 the constant measure of double type

is obtained and if user skips this measure we can process what to do

next, for instance – give the warning message (Code sample 3.5).

func alertMessageMeasurement(){

let alert = UIAlertController(title:

"Oops...", message: "Please enter the

glucose measurement", preferredStyle:

UIAlertController.Style.alert)

33

Translating Design Into Code – Add and Setup Basic Application Component

alert.addAction(UIAlertAction(title: "OK",

style: UIAlertAction.Style.default,

handler: nil))

self.present(alert, animated: true,

completion: nil)

}

Code sample 3.5

When user presses UIButton to enter the measurement dependence

on eaten meal we present UIAlertController [4]. The UIAlertController

shows four options: “After meal”, “Before meal”, “Bedtime” or

“Cancel” that will chance the UIButton title thus showing user the

selected variant. The “Cancel” will leave the default data – “No details”.

This can be performed in following way (Code sample 3.6).

@IBAction func mealBtnPressed(btn: UIButton!){

 let optionMenu = UIAlertController(title:

nil, message: "Select the meal dependance",

preferredStyle:

UIAlertController.Style.actionSheet)

 let beforeMeal = UIAlertAction(title: "Before

meal", style: .default, handler: {(action) ->

 Void in

 self.meal = "Before meal"

 btn.titleLabel?.text = "Before meal"

 })

 let afterMeal = UIAlertAction(title: "After

meal", style: .default, handler: {(action) ->

 Void in

 self.meal = "After meal"

 btn.titleLabel?.text = "After meal"

 })

 let bedtime = UIAlertAction(title:

"Bedtime", style: .default, handler: {(action) -

34

Translating Design Into Code – Add and Setup Basic Application Component

>

 Void in

 self.meal = "Bedtime meal"

 btn.titleLabel?.text = "Bedtime meal"

 })

 let cancel = UIAlertAction(title: "Cancel",

style: .cancel, handler: {(action) ->

 Void in

 self.meal = "No details"

 btn.titleLabel?.text = "No details"

 })

 optionMenu.addAction(beforeMeal)

 optionMenu.addAction(afterMeal)

 optionMenu.addAction(bedtime)

 optionMenu.addAction(cancel)

 self.present(optionMenu, animated: true,

completion: nil)

 }

Code sample 3.6

 Date and time from UIDatePicker can be obtained with

DateFormetter() class (Code sample 3.7) [5]:

 func getDate(){

 let dateFormatter = DateFormatter()

 dateFormatter.dateStyle =

DateFormatter.Style.medium

 dateFormatter.timeStyle =

DateFormatter.Style.short

 let strDate =

dateFormatter.string(from: datePicker.date)

 self.date = strDate

 self.datePicker.endEditing(true)

 }

Code sample 3.7

35

Translating Design Into Code – Add and Setup Basic Application Component

6. Constructing the History tab in the Interface Builder and

programming the basic connections between view and code

The tab History is presented as UITableView with

UITableViewCell inside which present the following user information:

- UILabel with saved glucose measurement;

- UILabel showing the meal dependence;

- UILabel with data and time of corresponding measurement.

The designed cell can be created using default cell settings but for

learning purpose we will consider creation of custom UITableViewCell.

7. Constructing the History tab in the Interface Builder

Set up UINavigationBar. As in previous case with Measure tab

select in Objects library UINavigationBar and drag it to the Interface

Builder canvas. Resize and position it as needed. Pin it’s Top to the Top,

Leading and Trailing edges to the container view, set height and give

name to the Title “Measurement History”.

Set up UITableView. Select in Object library the UITable view

and drag it under the UINavigationBar. Change the size and pin Leading,

Trailing and Bottom edges to the container view and Top to the Bottom

edge of UINavigation bar, give it Horizontal alignment.

Set up UTableViewCell. From the Object library drag on the

UITableView the UITableViewCell and place it in the top of the table

and change it size.

This cell contains three UILabels, thus we need to place them

properly and set all constraints. The first UILabel that contains glucose

measurement appears in top left corner of the cell, thus pin it Top and

Leading edge to the UITableViewCell, give it height and with Aspect

ratio make it half-long of cell width.

Place second UILabel under the measures label and pin it Top

edge to the Bottom of first one with margin 8, Leading edge to the cell,

set height and make as long as previous label.

The last UILabel which presents date and time have to be placed

in the upper right corner. Pin it Trailing to the cell, Leading edge to the

Trailing of first UILabel with measurement data and make the right text

alignment.

Set text colors for each created labels, as well as consider text

truncation mode. The result is presented on Figure 3.10.

36

Translating Design Into Code – Add and Setup Basic Application Component

Figure 3.10

8. Connecting the History views with code

After placing the UITableView and labels in UITableViewCell in

the History tab they should be connected with the code in

ViewController.

As the table presents cells, let’s finish the configuration of the

UITableViewCell first. To do so the cell reuse identifier and

UITableViewCell subclass, which provide the custom cell behavior,

should be created.

Select the created cell in Main.storyboard file and in Attributes

inspector define the name of table cell Identifier, for example

“HistoryCell” (Figure 3.11).

Create new swift file with File/New/File and add initial connecting

information as in Code sample 3.8. Return to the Main.storyboard and

37

Translating Design Into Code – Add and Setup Basic Application Component

select the UITableViewCell. Choose the Identity inspector and select the

file cell View Controller (Figure 3.12).

With the help of Assistant editor create connections from

IBOutlets to each UILabel.

 Figure 3.11 Figure 3.12

import Foundation

import UIKit

class HistoryCellViewController:

UITableViewCell {

 @IBOutlet weak var measure: UILabel!

 @IBOutlet weak var meal: UILabel!

 @IBOutlet weak var date: UILabel!

 override func awakeFromNib() {

 super.awakeFromNib()

 }

}

Code sample 3.8.

Now let’s consider the initial configuration of UITableView [6].

Tables are data-driven elements of an interface. We need to provide app with

data, along with the views needed to render each piece of that data onscreen,

using a data source object that adopts the required UITableViewDataSource

38

Translating Design Into Code – Add and Setup Basic Application Component

protocol. The table view arranges views onscreen and works with data source

object to keep that data up to date.

The second required protocol to work with UITableView is

UITableViewDelegate. The following features can be managed while

accessing methods from this protocol:

- Creation and managing custom header and footer views.

- Specifying custom heights for rows, headers, and footers.

- Providing height estimates for better scrolling support.

- Indent row content.

- Respond to row selections.

- Respond to swipes and other actions in table rows.

- Support editing the table's content.

The table specifies rows and sections using NSIndexPath objects.

When we specify usage of UITableViewDataSource there are two

methods are required (Code sample 3.9):

func tableView (_ tableView: UITableView,

numberOfRowsInSection section: Int) -> Int

func tableView (_ tableView: UITableView,

cellForRowAt indexPath: IndexPath) ->

UITableViewCell

Code sample 3.9

 After providing the basic UITableView setup to the History tab

View Controller the file will contain following changes (Code sample 3.10):

import UIKit

import CoreData

class HistoryViewController:

UIViewController, UITableViewDataSource,

UITableViewDelegate {

 @IBOutlet weak var tableView: UITableView!

 override func viewDidLoad() {

 super.viewDidLoad()

 tableView.delegate = self

39

Translating Design Into Code – Add and Setup Basic Application Component

 tableView.dataSource = self

 }

override func viewDidAppear(_ animated: Bool) {

 tableView.reloadData()

 }

 func tableView(_ tableView: UITableView,

cellForRowAt indexPath: IndexPath) ->

UITableViewCell {

 if let cell =

tableView.dequeueReusableCellWithIdentifier("His

toryCell") as? HistoryCellViewController {

 return cell

 }

 else {

 return

HistoryCellViewController()

 }

 }

 func tableView(tableView: UITableView,

numberOfRowsInSection section: Int) -> Int {

 return 1

 }

}

Code sample 3.10

1.3.4 Report requirements and tasks

Practical work tasks:

1. Create the new project in Xcode and create the application

screens structure using Tab Bar Controller.

2. Set views in Measure tab; apply all necessary constraints so the

views will properly operate on various devices. Connect controls with

code and set initial methods. Build and run application.

3. Set views in History tab, create constrains for each view and

connect them with code. Add methods required by

UITableViewDataSource protocol. Build and run application on several

iPhone simulators.

The report should contain following sections:

7. Introduction – background, theory and practical work purpose;

40

Translating Design Into Code – Add and Setup Basic Application Component

8. Development – screenshots with explanation of each practical

work task completion. Screenshots of how applications views behave on

several iPhone simulators.

9. Summary – conclusions and result summary.

1.3.5 Test questions

1. What is an Xcode Interface Builder? Describe it logical parts.

2. How constraints to different views can be added inside of an

Interface Builder? Describe the constraints types.

3. Explain the difference between dynamic and static

UITableView?

4. Describe how we can create the segue between different View

Controllers.

5. What type of data we can set for UIView, UiButton, UILabel

and UITableView from Attributes Inspector?

1.3.6 Recommended literature and resources

1. Using Interface Builder. https://developer.apple.com/library/

archive/documentation/ToolsLanguages/Conceptual/Xcode_Overview/U

singInterfaceBuilder/

2. Adding Assets. https://developer.apple.com/library/archive/

documentation/

ToolsLanguages/Conceptual/Xcode_Overview/AddingImages/

3. Connecting Objects to Code. https://developer.apple.com/

library/archive/documentation/ToolsLanguages/Conceptual/

Xcode_Overview/ConnectingObjectstoCode/

4. UIAlertController Class Documentation. https://developer.

apple.com/documentation/uikit/uialertcontroller/

5. UIDatePicker Class Documentation. https://developer.

apple.com/ documentation/uikit/uidatepicker/

6. UiTableView Class Documentation. https://developer.

apple.com/ documentation/uikit/uitableview

41

Getting Started With Core Data

Practical work 1.4

GETTING STARTED WITH CORE DATA

1.4.1 Synopsis
In this practical work we will discuss what a Core Data is and how

we can use in inside of application. We will create the first Entity, add its

attributes, save glucose measures to it learn how to retrieve them and

present inside of the table.

1.4.2 Brief theoretical information

The Core Data is heavily used in many nowadays mobile applications

to save user permanent data for offline use, to cache temporary data etc. The

data types and relationships can be defined through Core Data’s Data Model

editor. This model editor also helps with generation of respective class

definitions [1]. Core Data abstracts the details of mapping app’s objects to a

store, making it easy to save data from Swift and Objective-C without

administering a database directly.

As it was stated before, the glucose management app should support

deleting the unnecessary data from history table. The Core Data’s undo

manager can help to track changes and can also roll them back individually,

in groups, or all at once, making it easy to add undo and redo support to the

app [2].

1.4.3 Practical steps

1. Creation of Core Data Model

The Core Data model was already made during project creation, but if

it is not the model can be added to the project in following way:

1. Choose File > New > File and select from the iOS templates.

Scroll down to the Core Data section, and choose Data Model (Figure 4.1).

2. Click Next. Name model file, and select its group and targets

(Figure 4.2).

3. An .xcdatamodeld file with the specified name is now added to

the project (Figure 4.3).

42

Getting Started With Core Data

Figure 4.1

Figure 4.2

Figure 4.3

43

Getting Started With Core Data

To start Core Data Model configuration we need to create its Entity.

An entity describes an object, including its name, attributes, and

relationships. It should be created for each application object.

Click Add Entity at the bottom of the editor area. A new entity with

placeholder name Entity appears in the Entities list. Double-click the newly

added entity, and change it name. This updates both the entity name and class

name visible in the Data Model inspector. In addition to the required name

and class name fields, entities have a default setting for the required code

generation field. If inheritance, unique constraints, versioning or other

optional information have to be added we need to configure entity attributes.

2. Creation of Entity Attributes

The attributes can be created in following way:

1. Select created entity and with button Add attribute placed in the

bottom of editor window add new one.

2. A new attribute with placeholder name attribute, of

type Undefined, appears in the Attributes list. In the Attributes list, double-

click the newly added attribute, and name it in place.

3. In the Attributes list, as shown in Figure 4.4, click

on Undefined and select the attribute’s data type from the Type dropdown

list.

Figure 4.4

44

Getting Started With Core Data

We can use the Data Model Inspector (View/Inspectors/Show Data

Model Inspector) to configure attributes (Figure 4.5).

Figure 4.5

By default, attributes are saved to the store. Selecting the Transient

attribute property forbids the saving to the persistent store. Transient

attributes are a useful place to temporarily store calculated or derived values.

Core Data does track changes to transient property values for undo purposes.

Optional attributes are not the same as Swift optionals. Optional

attributes aren’t required to have a value when saved to the persistent store.

The attribute’s data type reflects the selection made in the Attributes

list’s Type dropdown.

We can optionally set validation rules such as the minimum and

maximum values for a numeric type.

Most value types supply a default value. New object instances set the

attribute to this default value on initialization, unless another value have

already been specified.

In Advanced section with “Index in Spotlight” addition of the field to

the Spotlight index for instances created from this entity can be specified.

The second option here is “Preserve After Deletion”, which includes the

attribute in this entity’s tombstone.

4. Add two more attributes to the HistoryModel entity that reflect the

meal dependence and date with time information.

45

Getting Started With Core Data

3. Saving user data to Core Data Model with Save Measure button

Now we can save the data to created HistoryModel entity after user

presses Save Measure button on Measure tab. Start with importing CoreData

than apply the following changes (Code sample 4.1):

@IBAction func saveMeasureBtnPressed(btn:

UIButton!){

 getGlucoseMeasure()

 getDate()

 let app = UIApplication.shared.delegate as!

AppDelegate

 let context = app.managedObjectContext

 let entity =

NSEntityDescription.entity(forEntityName:

"HistoryModel", in: context)!

 let history = HistoryModel(entity: entity,

insertInto: context)

 history.measure = self.glucoseMeasure.text

 history.meal = self.meal.text

 history.date = self.date.text

 context.insertObject(history)

 do {

 try context.save()

 } catch {

 print("Could not save recipe")

 }

self.navigationController?.popViewController(ani

mated: true)

 }

Code sample 4.1

4. Configuration of the HistoryCellViewController class

Now we need to finish configuration of HistoryCellViewController

class to display the saved information. To do so we need to add following

function that will connect UILabel with info from HistoryModel and import

CoreData (Code sample 4.2).

46

Getting Started With Core Data

 func configureCell(history: HistoryModel) {

 measure.text = history.measure

 meal.text = history.meal

 date.text = history.date

}

Code sample 4.2

5. Configuration of the HistoryViewController class

Create an array with data from HistoryModel first and than function

that will fetch and set the obtained from data model results. Call the

fetchAndSetResults() with method that reloads table from viewDidAppear()

(Code sample 4.3)

var history = [HistoryModel]()

 override func viewDidAppear(animated:

Bool) {

 fetchAndSetResults()

 tableView.reloadData()

 }

func fetchAndSetResults() {

 let app = UIApplication.shared.delegate as!

AppDelegate

 let context = app.managedObjectContext

 let fetchRequest =

NSFetchRequest(entityName: "HistoryModel")

 do {

 let results = try

context.executeFetchRequest(fetchRequest)

self.history = results as! [HistoryModel]

 } catch let err as NSError {

 print(err.debugDescription)

 }

 }

Code sample 4.3

 Change the functions that set cells with data inside the table and show

all saved data into the rows (Code sample 4.4).
func tableView(_ tableView: UITableView,

47

Getting Started With Core Data

cellForRowAt indexPath: IndexPath) ->

UITableViewCell {

if let cell =

tableView.dequeueReusableCellWithIdentifier("His

toryCell") as? HistoryCellViewController {

 let history = history[indexPath.row]

 cell.configureCell(history)

 return cell

 }

 else {

 return

HistoryCellViewController()

 }

 }

func tableView(tableView: UITableView,

numberOfRowsInSection section: Int) -> Int {

 return history.count

 }

Code sample 4.4

1.4.4 Report requirements and tasks

Practical work tasks:

1. Check if a Core Data model was created along with project. If

it is not, add Core Data to application as it was discussed in section

1.4.3.

2. Create an Entity with attributes that will present a glucose

measurement that was added by user to an application.

3. Add methods to save the data inside Core Data model and

retrieve it to fill the table on History tab with data.

4. Add methods to delete the selected by user data from Core

Data.

The report should contain following sections:

1. Introduction – background, theory and practical work purpose;

2. Development – screenshots with explanation of each practical

work task completion; MeasureViewController.swift and

48

Getting Started With Core Data

HistoryViewController.swift code with comments; screenshot of

working application on several iPhone simulators.

3. Summary – conclusions and result summary.

1.4.5 Test questions

1. What is a Core Data?

2. Explain the idea of Core Data entity and its attributes. How a

new entity can be created in swift project?

3. What methods are applied to make a new data record to the

Core Data model?

4. How we can read data from Core Data?

5. What method can be applied to delete specific data from Core

Data model?

1.4.6 Recommended literature and resources

1. J.D.Gauchat. Core Data in iOS 12/ MinkBooks, 2018. – 60 p.

2. Core Data. Framework Documentation. https://developer.

apple.com/documentation/coredata

49

Accessing User Health Information Using HealthKit

Practical work 1.5

ACCESSING USER HEALTH INFORMATION USING

HEALTHKIT

1.5.1 Synopsis
In this practical work we will focus on interaction with HealthKit

framework, specifically how an application can access it, query for its

data samples and save the results.

1.5.2 Brief theoretical information

The glucose level depends not only on nutrition, but on physical

activity as well, thus designed management app needs an access to the

the data stored in HealthKit.

HealthKit provides a central repository for health and fitness data on

iPhone and Apple Watch. The applications can communicate with HealthKit

data only with user permission to access and share its data. The framework

was designed basically to share data between apps so it contains the types of

data and units to a predefined list, thus developers cannot create custom data

types or units using only those types that HealthKit provides.

The framework uses a large number of subclasses, which produces

deep hierarchy of similar classes with small but meaningful differences

between them. There are also closely related classes in HealthKit that must

be paired correctly.

The HealthKit saves a variety of data types to the HealthKit Store:

- Characteristic data – presents items that are constant, such as the

birthdate, blood type, biological sex, and skin type. This data can be accessed

directly from HealtHkit store using such methods as the dateOfBirth(),

bloodType(), biologicalSex() and fitzpatrickSkinType(). The application

cannot save this data type as the user must enter or modify it with Health app

directly. Your application cannot save characteristic data.

- Sample data – most users’ health data is stored in samples that

represent information at some particular moment of time. All sample classes

are subclasses of the HKSample class, which is a subclass of the HKObject

class.

- Workout data – data on fitness activities is stored as

HKWorkout samles, which is also a subclass of HKSample.

50

Accessing User Health Information Using HealthKit

- Source data – every sample stores data about its source. The

HKSourceRevision object contains info about each app or device that saved

those samples and the HKDevice object contains info about the hardware

device that produced the data.

- Deleted objects – the HKDeletedObject is used to temporarily

store the UUID (the unique identifier for some particular entity) of an item

that was deleted from the HealthKit store.

The HKObject class is the superclass of all HealthKit sample types

and all HKObject subclasses are immutable.

Each object of this class has the following properties:

- UUID – unique identifier for the particular entry.

- Metadata – dictionary that contains additional information about

the entry.

- Source Revision – the source (device that directly saves data into

HealthKit or application) of the sample.

- Device – the device that creates the data stored in the sample.

The HKSample class is a subclass of HKObject. Sample objects present

data at a some point in time, and all sample objects are subclasses of the

HKSample class, with following properties:

- Type - the sample type, such as a sleep analysis sample or a step

count sample.

- Start date - the sample’s start time.

- End date - the sample’s end time. If the sample represents a single

point in time, the end time should equal the start time.

To use HealthKit in an application is have to be enabled, checked it is

available on current device, the app’s HealthKit store should be created and

an app must send a request for permission to read and share data [1].

1.5.3 Practical steps

1. Enable HealthKit

To start using the HealthKit, we need to add HealthKit capabilities for

your app. In Xcode, select the project and turn on the HealthKit capability

(Figure 5.1). The Health Records checkbox must be enabled only if an app

needs to access the user’s clinical records. It should be noted that during App

Review application can be rejected is Health Records were enabled but app

actually doesn’t uses the Health Record data.

After enabling HealthKit in application, Xcode will add HealthKit to

the list of required device capabilities that prevents users from purchasing or

51

Accessing User Health Information Using HealthKit

installing the app on devices that do not support HealthKit. In case if

HealthKit is not required for the application correct operation we can delete

the record healthkit from the Required device capabilities array in

Info.plist. After enabling this feature in application we need to check the

availability on current device.

In glucose management application user can connect Health through

Settings tab, thus we need to build it and make some additional configuration

first.

Figure 5.1

2. Constructing Settings tab in the Interface Builder

Set up UINavigationBar. Drag from Object library the

UINavigation bar and set it in the top of Settings tab. Pin it Leading,

Trailing and Top edges to the container view. Set height and title

“Settings”.

Set up the static UITableView. The list of parameters presented on

Settings tab is presented in table form that have known number of rows and

sections, thus we need to create the static UITableView. The static table

views can only be created from UITableViewController that was already

added in Practical work 1.3.

Start with dragging UITableView to the Interface Builder canvas.

Place and size the table, pin Leading, Trailing and Bottom edges to the

container view and Top edge to the Bottom of UINavigationBar.

In the Attributes Inspector of UITableView change content type to

Static cells, set 2 sections, and by selecting each section change it name and

number of rows. Change the cells height.

Place UIImageView in the top cell. Pin it Leading edge to the

container view Leading edge. Set height and width and align vertically in

52

Accessing User Health Information Using HealthKit

container. Select image and change the UiImageView content mode to

Aspect Fit.

Add UILable near UiImageView. Pin it Leading edge to the Trailing

edge of the image with needed margin. Set height and width and align

vertically in container. Change UILable title.

Select Switch in the Objects library and place it near UILable. Pin it

Trailing edge to the container view, set height, width and align vertically in

container view. The Switch should be disabled by default, thus change it state

to Off.

 Repeat the same with UIImageView in the second section. The

Health authorization is performed through UIButton object, thus drug it fron

Object library and place near image. Pin it leading edge to the UIImageView

Trailing side, set height and width, give vertical alignment in the container

view, which is a static cell. Change title. The result should look as on Figure

5.2.

Figure 5.2

3. Connecting the History views with code

To handle events from UISwitch and UIButton we need to create

IBOutlets for switch and IBAction for button in code and connect outlet

and action with appropriate controls using control-drag from views to the

SettingsViewController.swift (Figure 5.3).

53

Accessing User Health Information Using HealthKit

Figure 5.3

4. Ensure HealthKit’s availability, create the HealthKit Store and

request Permission to read and share data

First we need to create an empty class HealthKitSetupAssistant with

an error type and the body of a method that will be used to authorize

HealthKit – autgorizeHealthKit(completion:) [2]. The method accepts no

parameters and has a completion handler which returns a Boolean value and

an optional error. Create new swift file and pass following code inside (Code

sample 5.1).

import HealthKit

class HealthKitSetupAssistant {

 private enum HealthkitSetupError: Error {

 case notAvailableOnDevice

 case dataTypeNotAvailable

 }

 class func authorizeHealthKit(completion:

@escaping (Bool, Error?) -> Swift.Void) {

 }}

Code sample 5.1

54

Accessing User Health Information Using HealthKit

To ensure HealthKit availability the isHealthDataAvailable()

method should be called in authorizeHealthKit() method (Code sample

5.2). This method should be called before any other HealthKit method as

if it is not available, for example iPad does not support the HealthKit, the

other methods will fail with “errorHealthDateUnavailable”. If use of

HealthKit is restricted on user device HealthKit methods will fail with

“errorHealthDataRestricted”.

guard HKHealthStore.isHealthDataAvailable() else

{

 completion(false,

HealthkitSetupError.notAvailableOnDevice)

 return

 }

Code sample 5.2

HealthKit requires fine-grained authorization to protect the user’s

privacy, thus application must request permission to both read and share each

data type before you any attempt to access or save the data [3].

For example, in the glucose application we can ask for permission to

read and share heart rate, cycling distance, walking or running distance and

swimming samples. In order to create an HKObjectType for given biological

characteristics or quantity we need to use

HKObjectType.characteristics(forIdentifier:) or

HKObjectType.QuantityType(forIdentifier:) in authorizeHealthKit()

method (Code sample 5.3).

guard let distanceCycling =

HKObjectType.quantityType(forIdentifier:

HKQuantityTypeIdentifier.distanceCycling),

 let distanceWalkingRunning =

HKObjectType.quantityType(forIdentifier:

HKQuantityTypeIdentifier.distanceWalkingRunning)

, let heartRate =

HKObjectType.quantityType(forIdentifier:

HKQuantityTypeIdentifier.heartRate),

 let distanceSwimming =

HKObjectType.quantityType(forIdentifier:

55

Accessing User Health Information Using HealthKit

HKQuantityTypeIdentifier.distanceSwimming) else

{

completion(false,

HealthkitSetupError.dataTypeNotAvailable)

 return

 }

Code sample 5.3

HealthKit expects a set of HKSampleType objects that represent the

kinds of data which user can write. The immutable data that can be only read

can be presented with HKObjectType objects. Add following code to

authorizeHealthKit() method (Code sample 5.4).

let healthKitTypes: Set<HKSampleType> =

[distanceCycling, distanceWalkingRunning,

heartRate, distanceSwimming]

Code sample 5.4

Now we need to request authorization from HealthKit and then call

completion handler from authorizeHealthKit() method (Code sample

5.5).

HKHealthStore().requestAuthorization(toShare

: healthKitTypes,

 read: healthKitTypes) { (success,

error) in completion(success, error)

}

Code sample 5.5

As is was stated before the authorizeHealthKit() have to be invoked on

pressing the Health authorization button. In SettingsViewController we

can add the following code that will print a message to the console to let

us know if HealthKit was successfully authorized and updates the button

state (Code sample 5.6). The HealthKit cannot be unauthorized directly

from the application as it can be disconnected only if user delete app

from device or turn off the connection if device Settings.

56

Accessing User Health Information Using HealthKit

@IBAction func healthAuthBtnPressed(_ sender:

UIButton){

HealthKitSetupAssistant.authorizeHealthKit {

(authorized, error) in

 guard authorized else {

 let baseMessage = "HealthKit Authorization

Failed"

 if let error = error {

 print("\(baseMessage). Reason:

\(error.localizedDescription)")

 } else {print(baseMessage)

 }

 return

 }

print("HealthKit Successfully Authorized.")

 sender.isEnabled = false

 }

 }

Code sample 5.6

5. Querying Samples

After passing the authorization stage we need to query for most recent

samples – heart rate, cycling, walking, running and swimming distances.

Querying the samples from HealthKit splits into two stages:

1. To specify the type of sample you want to query;

2. Set additional parameters to help filter and sort the data.

There are few similarities with Core Data, for example

HKSampleQuery is very similar to NSFetchRequest for an entity type.

Once the query is setup we call HKHealthStore’s executeQuery()

method to fetch the results.

For querying purpose, we will create a single generic function that

loads the most recent samples of any type. Create a ProfileDataStore

empty class and import HealthKit framework inside. This class represent

a point of access to all of the health-related data from HealthKit. Add a

getMostrecentSample() method (Code sample 5.7) inside that takes a

57

Accessing User Health Information Using HealthKit

sample type, builds a query to get the most recent data of that type. The

code in the completion handler occurs inside of a Dispatch block because

querying sample from HealthKit is an asynchronous process. We want

the completion handler to happen on the main thread, so the user

interface can respond to it in other case the application will crash. If all

goes well, the query will execute and return a sample to the main thread

where SettingsViewController can take that content.

import Foundation

import HealthKit

class ProfileDataStor{

 class func getMostRecentSample(for

sampleType: HKSampleType,

 completion: @escaping (HKQuantitySample?,

Error?) -> Swift.Void) {

 let mostRecentPredicate =

HKQuery.predicateForSamples(

 withStart: Date.distantPast,

 end: Date(),

 options: .strictEndDate)

 let sortDescriptor = NSSortDescriptor(

 key: HKSampleSortIdentifierStartDate,

 ascending: false)

 let limit = 1

 let sampleQuery = HKSampleQuery(

 sampleType: sampleType,

 predicate: mostRecentPredicate,

 limit: limit,

 sortDescriptors: [sortDescriptor]) {

 (query, samples, error) in

 DispatchQueue.main.async {

 guard let samples = samples,

 let mostRecentSample =

samples.first as? HKQuantitySample else

{completion(nil, error)

 return

58

Accessing User Health Information Using HealthKit

 }

 completion(mostRecentSample,

nil)

 }}

 HKHealthStore().execute(sampleQuery)

 }

}

Code sample 5.7

Now we can locate the displayMostRecentHeartRate() method in

SettingsViewController.swift. The method starts by creating a Heart Rate

sample type, then pass the sample type to getMostRecentSample() of

ProfileDataStore class which returns the latest record from HealthKit (Code

sample 5.8). This record can be used for all appropriated purposes inside of

an application.

func loadMostRecentHeartRate(){

 guard let heartRate =

HKSampleType.quantityType(forIdentifier:

.heartRate) else {

 print("Heart Rate Sample Type is no

longer available in HealthKit")

 return

 }

ProfileDataStore.getMostRecentSample(for:

heartRate) { (sample, error) in

 guard let sample = sample else {

 if let error = error {

 self.displayAlert(for: error)

 }

 return

 }

 }

Code sample 5.8

In case if something goes wrong user receives an alert message

(Code sample 5.9).
 private func displayAlert(for error: Error)

59

Accessing User Health Information Using HealthKit

{

 let alert = UIAlertController(

 title: nil, message:

error.localizedDescription,

 preferredStyle: .alert)

 alert.addAction(UIAlertAction(title: "OK.",

 style: .default, handler: nil))

 present(alert, animated: true, completion:

nil) }

Code sample 5.9

1.5.4 Report requirements and tasks

Practical work tasks:

1. Enable the Health Kit in project Settings, check its availability

on user device.

2. Create a Settings tab with static UITableView and connect it

with outlets and actions in code.

3. When user selects the authorization to Health request an access

to the Health Kit data and disable “Authorize Health” button.

4. Download samples for walking and running, cycling and

swimming distances. Convert the received data and print it to the console.

5. Create a new Core Data entity that will hold the latest HealthKit

samples for walking and running, cycling, swimming distances and a heart

rate sample. Save samples measures into created Core Data entity.

6. Add the send notifications feature through triggering UISwitch

state change in Setting tab.

7. Advanced task: In navigation bar of History tab add right bar

button that will load a new View Controller as shown on Figure 5.4 – 5.5.

This View Controller should present received from HealthKit latest data

(heart rate, walking and running distance, swimming and cycling distances).

The report should contain following sections:

1. Introduction – background, theory and practical work purpose;

2. Development – screenshots with explanation of each practical

work task completion; code with comments from

SettingsViewController.swift, MeasureViewController.swift and

HistoryViewController.swift files; screenshot of working application on

several iPhone simulators.

3. Summary – conclusions and result summary.

60

Accessing User Health Information Using HealthKit

 Figure 5.4 Figure 5.5

1.5.5 Test questions

1. What is a HealthKit framework?

2. What steps should be performed to authorize in HealthKit?

3. How to make basic setup of static UITableView?

4. How we can trigger different the UISwitcher stages?

1.5.6 Recommended literature and recourses

1. About the HealthKit Framework. https://developer.apple.com/

documentation/healthkit/about_the_healthkit_framework

2. Setting Up HealthKit. https://developer.apple.com/

documentation/healthkit/ about_the_healthkit_framework

3. Protecting User Privacy. https://developer.apple.com/

documentation/healthkit/protecting_user_privacy

61

Integrating Third-party Devices Through Bluetooth

Practical work 1.6

INTEGRATING THIRD-PARTY DEVICES THROUGH

BLUETOOTH

1.6.1 Synopsis

In this practical work you will learn the key concepts of the Core

Bluetooth framework to discover, connect and retrieve data from compatible

devices such as glucometers or other third-party health trackers.

1.6.2. Brief theoretical information

Connection to the real-world devices such as glucometers, workout

equipment, heart-rate monitors can help to gather more accurate information

thus provide user with deep insights on his data. While we have already

created the way how to manually add data about last glucose measurement

into an application, we need to automate it as well. Apple has introduced the

Core Bluetooth framework, which can communicate with various third-party

devices via BLE (Bluetooth Low Energy) wireless technology [1].

We will use the iHealth Gluco the wireless smart gluco-monitoring

system for this laboratory work, but any Bluetooth glucometer should work

as well.

A Bluetooth device can be either central or peripheral. The central

device receives the data and the peripheral – publishes data that can be

consumed by other devices. For this practical work the iPhone 8 with iOS

12.1 will be the central device that receives glucose measurement data from

the peripheral.

In form of advertising packets the Bluetooth peripherals broadcast

some of the data. These packets basically contain information such as the

peripheral’s name and main functionality, sometimes providing additional

info about the kind of data they can give. The central device scan for these

packets, identify any peripherals it finds relevant and connect to individual

for more information.

The advertising packets are small thus presenting limited amount of

information. To share more data, a central must connect to a peripheral. The

peripheral’s data splits into to types – services and characteristics, that are

represented by UUID that can be 16-bit or 128-bit value:

- Service is a data collection and associated behaviors describing a

specific function or feature of a peripheral. For example, a glucometer has a

Glucose service. Note that peripheral can have more than one service.

62

Integrating Third-party Devices Through Bluetooth

- Characteristics provide further details about a peripheral’s service.

For instance, the Glucose service has a Glucose Measurement characteristic

that contains the mg/dl data. Each service of peripheral can have more than

one characteristic [2 – 3].

1.6.3. Practical steps

1. Set up the real device for build and run from XCode

The iOS simulator doesn’t support Bluetooth, thus we need to build

and run on an actual device. First connect the iPhone to MacOS machine

with USB line. In XCode go Product/Destination menu item in the top menu

bar (Figure 6.1 – 6.2) and then select the real iPhone device under Device

menu.

Figure 6.1 Figure 6.2

2. Create the Connect tab in the Interface Builder

The Connect tab contains UINavigationBar, UIView with UILable

and Activity Indicator, UITableView with UITableViewCell inside.

Drag the UINavigationBar to the Connect View Controller canvas and

place it in the top. Pin it Leading, Trailing and Top to the container view and

set height.

Add UIView under the bar. Pin it Leading and Trailing edges to the

container view and Top edge to the Bottom of UINavigationBar. Set height

and change background color.

Place the UILable inside and pin it Leading and Bottom edges to the

container view while keeping the margin. Change title text using Attributes

Inspector, set text color. Add Activity Indicator near UILable. Pin it Leading

63

Integrating Third-party Devices Through Bluetooth

edge to the label Trailing and Bottom edge to the container view. Set height

and width.

Add the UITableView and pin it Leading, Trailing and Bottom to the

container view, while Top edge should be pinned to the Bottom of UIView.

Drag from Objects library the prototype UITableViewCell inside the table.

This cell contains only one UILable inside and while being of custom style

uses a disclosure indicator as accessory type. The result is presented on

Figure 6.3

Add a new swift file that will present data from UITableViewCell

with following code inside (Code sample 6.1). Select the prototype cell in

Interface Builder and navigate to Identity Inspector to define a new class to

the cell.

Figure 6.3

import Foundation

import UIKit

class DeviceCell: UITableViewCell{

 @IBOutlet weak var nameLabel: UILabel!

64

Integrating Third-party Devices Through Bluetooth

 override func awakeFromNib() {

 super.awakeFromNib()

 }

}

Code Sample 6.1

3. Add required UITableView methods

In the ConnectViewController.swift file we need to add the

UITableViewDataSource and UITableViewDelegate protocols to process

table data and confirm two required methods from UITableViewDataSource

protocol (Code sample 6.2).

import UIKit

class ConnectViewController: UIViewController,

UITableViewDelegate, UITableViewDataSource {

 @IBOutlet weak var tableView: UITableView!

 override func viewDidLoad() {

 super.viewDidLoad()

 tableView.delegate = self

 tableView.dataSource = self

 }

 override func viewDidAppear(_ animated: Bool) {

 tableView.reloadData()

 }

 func tableView(_ tableView: UITableView, numberOfRowsInSection

section: Int) -> Int {

 return 0

 }

 func tableView(_ tableView: UITableView, cellForRowAt indexPath:

IndexPath) -> UITableViewCell {

 if let cell = tableView.dequeueReusableCell(withIdentifier:

"deviceCell") as? DeviceCell {

65

Integrating Third-party Devices Through Bluetooth

 return cell

 }

 else {

 return DeviceCell()

 }

 }

}

Code sample 6.2

4. Preparing for Core Bluetooth

First, we need to add the CoreBluetooth framework with: import

CoreBluetooth. Most of the work in the Core Bluetooth framework is

done through delegate methods. The central is represented by

CBCentralManager and its delegate is CBCentralManagerDelegate.

CBPeripheral presents the peripheral device and its delegate is

CBPeripheralDelegate.

To handle different states of the central device we need to add

following extension to the ConnectViewController class (Code sample

6.3).

extension ConnectViewController: CBCentralManagerDelegate{

 func centralManagerDidUpdateState(_ central: CBCentralManager) {

 switch central.state {

 case .unknown:

 print("central.state is .unknown")

 case .resetting:

 print("central.state is .resetting")

 case .unsupported:

 print("central.state is .unsupported")

 case .unauthorized:

 print("central.state is .unauthorized")

 case .poweredOff:

 print("central.state is .poweredOff")

 case .poweredOn:

 print("central.state is .poweredOn")}}}

Code sample 6.3

66

Integrating Third-party Devices Through Bluetooth

 Add to the ConnectViewController class the centralManager

variable and make it initialization on viewDidLoad() method (Code

sample 6.4). As the result the line “central.state is .poweredOn” will

appear in console.

var centralManager: CBCentralManager!

centralManager = CBCentralManager(delegate: self, queue: nil)

Code sample 6.4

 As the central device has entered the power on state (in case

.poweredOn) it must scan for nearby peripherals with following code (Code

sample 6.5).

 case .poweredOn:

 print("central.state is .poweredOn")

 centralManager.scanForPeripherals(withServices: nil)

Code sample 6.5

 Now we need to discover the peripheral devices nearby

implementing the following code (Code sample 6.6) in

ConnectViewController extension. The result in console gives a list of

devices that can be reached via Bluetooth, for instance: “<CBPeripheral:

0x2820a8000, identifier = F9D0E4DC-2FCE-372F-2358-

C05E479DB9C8, name = Dmitriy’s MacBook Pro, state =

disconnected> <CBPeripheral: 0x2820a8000, identifier = DF68E247-

B7C5-C285-6485-0D19ED04277A, name = iHealth Gluco, state =

disconnected>”

func centralManager(_ central: CBCentralManager, didDiscover

peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI:

NSNumber) {print(peripheral)}

Code sample 6.6

5. Scanning for Peripherals with Specific Services

We can scan for peripheral devices that provide only services that are

67

Integrating Third-party Devices Through Bluetooth

necessary for specific application, in this case – those devices which give

information on glucose measurements. To do that, we need the UUID for the

Glucose services (0x1808), which can be found on the Bluetooth services

specification page https://www.bluetooth.com/specifications/gatt/services/

and note the UUID for it (Figure 6.4).

Figure 6.4

Now we need to create the CBUUID object and pass it to the

scanForPeripherals(withServices:) that takes an array. The

glucoseServiceCBUUID have to be placed under the import statements and

referred from scanForPeripherals() method (Code sample 6.7).

let glucoseServiceCBUUID = CBUUID(string: "0x1808")

 case .poweredOn:

 print("central.state is .poweredOn")

 centralManager.scanForPeripherals(withServices:

[glucoseServiceCBUUID])

Code sample 6.7

 Next we need to store a reference to the glucose peripheral and then

can stop scanning for further peripherals. To do that we need to create the

glucosePeripheral variable and use the stopScan() method in

centralManager(_:didDiscover: advertisementData:rssi:) (Code sample 6.8).

After building and running an app we can find in console just one peripheral:

68

Integrating Third-party Devices Through Bluetooth

“<CBPeripheral: 0x2820a8000, identifier = DF68E247-B7C5-C285-

6485-0D19ED04277A, name = iHealth Gluco, state = disconnected>”.

var glucosePeripheral: CBPeripheral!

func centralManager(_ central: CBCentralManager, didDiscover

peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI:

NSNumber) {

 print(peripheral)

 glucosePeripheral = peripheral

 centralManager.stopScan() }

Code sample 6.8

6. Add Activity Indicator animation to the View Controller

An Activity Indicator is a spinning wheel that indicates a task is being

processed. If an action takes an unknown amount of time to process, we

should display an activity indicator to let user know that app is not frozen. As

the Activity Indicator starts working on Connect tab open and stops as all

devices were found we need to implement the startSpinning() in

viewDidLoad() and stopSpinning() after central.stopScan() method. The

Code sample 6.9 presents @IBOutlet for Activity Indicator and

startSpinning(), stopSpinnig() methods.

@IBOutlet weak var activityIndicator: UIActivityIndicatorView!

func activityStart(){

 activityIndicator.startAnimating()}

 func activityStop(){

 activityIndicator.stopAnimating() }

Code sample 6.9

7. Connecting to a peripheral

To obtain data from a peripheral we need to connect it. Call the

connect() method for centralManager after activityStop() and confirm the

69

Integrating Third-party Devices Through Bluetooth

connection by creating the centralManager(_:didConnect) delegate method

(Code sample 6.10).

func centralManager(_ central: CBCentralManager, didDiscover

peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI:

NSNumber) {

 print(peripheral)

 glucosePeripheral = peripheral

 centralManager.stopScan()

 self.activityStop()

 centralManager.connect(glucosePeripheral)

 }

 func centralManager(_ central: CBCentralManager, didConnect

peripheral: CBPeripheral) {

 print("Connected")

}

Code sample 6.10

8. Discovering a peripheral’s services

The next step after connection is to discover the services of the

peripheral. Even after specifically requesting a peripheral with the

glucose service we still need to discover the service to use it. After

connecting, call the discoveryServices(nil) on the peripheral from

centralManager(_:didConnect) delegate method. We can pass in UUID’s

for the services here, but for now we discover all available services to

see what else the glucose device can do.

Next we need to implement the

peripheral(_:didDiscoverServices:) delegate method. To do so we will

create one more class extension to conform the CBPeripheralDelegate

protocol (Code sample 6.11). The method

peripheral(_:didDiscoverServices:) doesn’t provide us a list of

discoverable services but only that one or more services has been

discovered by peripheral. This is because the peripheral object has a

property that gives you a list of services.

extension ConnectViewController: CBPeripheralDelegate{

 func peripheral(_ peripheral: CBPeripheral, didDiscoverServices

70

Integrating Third-party Devices Through Bluetooth

error: Error?) {

 guard let services = peripheral.services else { return }

 for service in services{

 print(service)

 }

 }

}

Code sample 6.11.

Finally, point glucosePeripheral at its delegate with

glucosePeripheral.delegate = self in centralManager(_:didDiscover:

advertisementData:rssi:) and pass the glucoseServiceCBUUID to the

glucosePeripheral.discoverServices() method. After building and running

the application the following line will be printed to the console:

<CBService: 0x1c046f280, isPrimary = YES, UUID = Glucose>.

9. Discovering a service’s characteristics

The glucose measurement is a characteristic of a glucose service.

To obtain the characteristics of a service we need to explicitly request the

discovery of the service’s characteristics. Add to the

peripheral(_:didDiscoverService) the

peripheral.discoverCharacteristics(nil, for:service).

After this implement

peripheral(_:didDiscoveCharacteristicsFor:error:) after

peripheral(_:didDiscoverDervices:). The CBPeripheralDelegate

extension will look as in Code sample 6.12.

extension ConnectViewController: CBPeripheralDelegate{

 func peripheral(_ peripheral: CBPeripheral, didDiscoverServices

error: Error?) {

 guard let services = peripheral.services else { return }

 for service in services{

 print(service)

 peripheral.discoverCharacteristics(nil, for: service)

 }

 }

71

Integrating Third-party Devices Through Bluetooth

 func peripheral(_ peripheral: CBPeripheral,

didDiscoverCharacteristicsFor service: CBService,

 error: Error?) {

 guard let characteristics = service.characteristics else { return }

 for characteristic in characteristics {

 print(characteristic)

 }

 }}

Code sample 6.12

Build and run the application. The console will show following

information: <CBCharacteristic: 0x1c00b0920, UUID = 2A18,

properties = 0x10, value = (null), notifying = NO> <CBCharacteristic:

0x1c00af300, UUID = 2A34, properties = 0x4, value = (null), notifying

= NO>. On the Bluetooth specification page in the characteristics section

we can see that 2A18 presents the glucose measurement and 2A34 shows

the glucose measurement context (Figure 6.5). For these values we can

add two constant values under the glucoseServiceCBUUID declaration

(Code sample 6.13).

Figure 6.5

let glucoseMeasurementCharacteristicCBUUID = CBUUID(string:

"0x2A18")

let glucoseMeasurementContextCharacteristicCBUUID =

CBUUID(string: "0x2A34")

Code sample 6.13

10. Checking a characteristic’s properties

72

Integrating Third-party Devices Through Bluetooth

Each characteristic has a property called properties of type

CBCharacteristicsProperties and is an OptionSet. In this application we

will focus on the .read only.

In peripheral(_:didDiscoverCharacteristicsFor:error:) method add

code that helps to see the characteristics properties (Code sample 6.14).

Build and run the application. We can see the result in console: 2A18:

properties contain .read 2A34: properties contain .read. This means that

both characteristics can let us read from them directly.

func peripheral(_ peripheral: CBPeripheral,

didDiscoverCharacteristicsFor service: CBService,

 error: Error?) {

 guard let characteristics = service.characteristics else { return }

 for characteristic in characteristics {

 print(characteristic)

 if characteristic.properties.contains(.read) {

 print(“\(characteristic.uuid): properties contains .read”)

 }

 }

}

Code sample 6.14

11. Obtaining the Glucose Measurement data

The Core Bluetooth framework requires the implementation of

peripheral(_:didUpdateValueFor:error:) method to read a characteristic’s

value. The read operation is asynchronous, which means that we request

to read, and are then notified when the value has been read. Add

peripheral(_:didUpdateValueFor:error:) to the CBPeripheralDelegate

extension and peripheral.readValue(for:) in

peripheral(_:didDiscoverCharacteristicsFor: error). The

ConnectViewController extension is presented in Code sample 6.15.

extension ConnectViewController: CBPeripheralDelegate{

 func peripheral(_ peripheral: CBPeripheral, didDiscoverServices

error: Error?) {

 guard let services = peripheral.services else { return }

73

Integrating Third-party Devices Through Bluetooth

 for service in services{

 print(service)

 peripheral.discoverCharacteristics(nil, for: service)

 }

 }

 func peripheral(_ peripheral: CBPeripheral,

didDiscoverCharacteristicsFor service: CBService,

 error: Error?) {

 guard let characteristics = service.characteristics else { return }

 for characteristic in characteristics {

 print(characteristic)

 if characteristic.properties.contains(.read) {

 print("\(characteristic.uuid): properties contains .read")

 peripheral.readValue(for: characteristic)

 }

 }

 }

 func peripheral(_ peripheral: CBPeripheral, didUpdateValueFor

characteristic: CBCharacteristic,

 error: Error?) {

 switch characteristic.uuid {

 case glucoseMeasurementCharacteristicCBUUID:

 print(characteristic.value ?? "no value")

 case glucoseMeasurementContextCharacteristicCBUUID:

 print(characteristic.value ?? "no value")

 default:

 print("Unhandled Characteristic UUID: \(characteristic.uuid)")

 }

 } }

Code sample 6.15

1.6.4 Report requirements and tasks

Additional tasks:

74

Integrating Third-party Devices Through Bluetooth

1. Create the initial Connect page with empty table and UIButton

that will segue to the ViewController described in section 1.6.3.

2. Perform all stages described in section 1.6.3 of searching,

connecting and querying for data from connected peripheral device.

3. Display the names of found via Bluetooth appropriate devices

to the table in Connect tab.

4. Call for default UIAlertController to ask user permission for

connecting with peripheral devices.

5. Read information from selected peripheral and store it in the

CoreData HistoryModel entity.

6. Store the name of connected device in Core Data and load all

names to UITableView on initial Connect ViewController.

The report should contain following sections:

1. Introduction – background, theory and practical work purpose;

2. Development – the code with comments from

ConnectViewController described in section 1.6.3 and

InitialConnectViewController created while solving the task 1. Code and

screenshots of all additional tasks solution with comments.

3. Summary – conclusion and result summary.

1.6.5 Test questions

1. What are the central and peripheral devices?

2. Describe two types of peripherals data?

3. How peripheral device can be found using CoreBluetooth

framework?

4. How we can search for specific peripheral devices?

5. How we connect with peripheral devices, search for their

services and characteristics?

1.6.6 Recommended literature
1. Core Bluetooth Framework Documentation.

https://developer.apple.com/ documentation/ corebluetooth

2. Working With CoreBluetooth in iOS 11. Tutorial.

https://www.appcoda.com/core-bluetooth/

3. Matt Neuburg. Programming iOS 12: Dive Deep Into Views,

View Controllers and Frameworks/ o’Reilly Media, 2018 – 1176 p.

75

Getting Started With Android Studio – Intro to the Development Environment”

2. Developing IoT-based applications for Android

Practical work 2.1

GETTING STARTED WITH ANDROID STUDIO –

INTRO TO THE DEVELOPMENT ENVIRONMENT

2.1.1 Synopsis

There aren’t any prerequisites for this practical work, other than a

willing mind and a Mac or PC. You can develop for Android on both a

Mac or a PC. The instructions mostly similar but slightly different

between macOS, Windows and Linux.

You’ll learn how to set up all the tools needed to start you on your

way to creating an Android application.

2.1.2 Brief theoretical information

Android Studio – is the official integrated development

environment for Google's Android operating system, built on JetBrains'

IntelliJ IDEA software and designed specifically for Android

development. It is available for download on Windows, macOS and

Linux based operating systems.

You can download Android studio on the following link:

https://developer.android.com/studio/index.html.

2.1.3 Practical steps

1. Welcome screen and creating a project

You’ll start by creating a new Android app that you’ll use to

explore Android Studio and to learn about its capabilities and interface.

Fire up Android Studio and, in the Welcome to Android Studio window,

select Start a new Android Studio project (Figure 1.1).

In the Choose your project window (Figure 1.2), there is bunch

of possible options to choose from. We would be interested in the

Empty Activity and Bottom Navigation Activity projects futher on.

Also there are additional tabs on the top if you need to create an

application for Wearables, Android TV, Android Auto or different other

devices, which can be connected to Android through different channels.

https://developer.android.com/studio/index.html

76

Getting Started With Android Studio – Intro to the Development Environment”

Figure 1.1. Android Studio – Welcome screen

Figure 1.2. Android Studio – Welcome screen

After you choose a project type, you would need to fill the core

fields for the application, which you can see on the Figure 1.3. Fields can

be slightly different for different project types, but the main items are the

same.

77

Getting Started With Android Studio – Intro to the Development Environment”

Figure 1.3. Android Studio – Configure screen

You are able to fulfill the following fields:

– Name: Your project actual name, you can pick Glu, or any

other name

– Package name: Name of the package, Occasionally it’s

necessary to know the package name of an Android app. The package

name is a unique name to identify a specific app. Generally, the

package name of an app is in the format domain.company.application,

but it’s completely up to the app’s developer to choose the name. The

domain portion is the domain extension, like com or org, used by the

developer of the app. The company portion is usually the name of the

developer’s company or product. The final application portion usually

describes the app itself. This could be one word or multiple words

separated by periods.

– Save location: Address of the folder location

– Language: You can choose the language to code, it would be

Java or Kotlin in most of the cases. For our practical work we use

Kotlin.

78

Getting Started With Android Studio – Intro to the Development Environment”

– Minimum API Level: Actual support of different android

Versions, we would use the latest 28 version, but feel free to use

anything after version 22 to have Kotlin support available.

After you press Finish and Within a short amount of time you’ll

land on an application screen main UI, which would be your main

screen for most of the time while working on any Android application.

2. Main window user interface

The Android Studio main window is made up of several logical

areas identified in Figure 1.4.

1 2

3

4

7

6

5

Figure 1.4. Android Studio – Main Window UI

– The Navigation bar (1) helps you navigate through your

project and open files for editing. It provides a more compact view of

the structure visible in the Project window.

– The Toolbar (2) lets you carry out a wide range of actions,

including running your app and launching Android tools.

– The Editor Window (3) is where you create and modify code.

Depending on the current file type, the editor can change. For

79

Getting Started With Android Studio – Intro to the Development Environment”

example, when viewing a layout file, the editor displays the Layout

Editor.

– The Tool Window Bar (4) runs around the outside of the IDE

window and contains the buttons that allow you to expand or collapse

individual tool windows.

– The Tool Windows (5) give you access to specific tasks like

project management, search, version control, and more. You can

expand them and collapse them.

– The Status Bar (6) displays the status of your project and the

IDE itself, as well as any warnings or messages.

– The Preview window (7) is one of the tool windows (5), but is

particularly interesting for us, as it contains application UI. You can

also switch between the code and preview windows in the

development process.

You can organize the main window to give yourself more screen

space by hiding or moving toolbars and tool windows. You can also

use keyboard shortcuts to access most IDE features.

At any time, you can search across your source code, databases,

actions, elements of the user interface, and so on, by double-pressing

the Shift key, or clicking the magnifying glass in the upper right-hand

corner of the Android Studio window. This can be very useful if, for

example, you are trying to locate a particular IDE action that you have

forgotten how to trigger.

3. Project Structure

Each project in Android Studio contains one or more modules

with source code files and resource files.

Types of modules include:

– Android app modules

– Library modules

– Google App Engine modules

By default, Android Studio displays your project files in the

Android project view, as shown in Figure 1. This view is organized by

modules to provide quick access to your project's key source files.

All the build files are visible at the top level under Gradle

Scripts and each app module contains the following folders:

– manifests: Contains the AndroidManifest.xml file.

80

Getting Started With Android Studio – Intro to the Development Environment”

– java: Contains the Java source code files, including JUnit test

code.

– res: Contains all non-code resources, such as XML layouts, UI

strings, and bitmap images

 The Android project structure on disk differs from this

flattened representation. To see the actual file structure of the project,

select Project from the Project dropdown (in Figure 1.5, it's showing

as Android).

You can also customize the view of the project files to focus on

specific aspects of your app development. For example, selecting

the Problems view of your project displays links to the source files

containing any recognized coding and syntax errors, such as a

missing XML element closing tag in a layout file.

Figure 1.5 Android product structure

4. Version control basics

Android Studio supports a variety of version control systems

(VCS’s), including Git, GitHub, CVS, Mercurial, Subversion, and

Google Cloud Source Repositories.

After importing your app into Android Studio, use the Android

Studio VCS menu options to enable VCS support for the desired version

control system, create a repository, import the new files into version

control, and perform other version control operations:

From the Android Studio VCS menu, click Enable Version

Control Integration.

From the drop-down menu, select a version control system to

associate with the project root, and then click OK.

81

Getting Started With Android Studio – Intro to the Development Environment”

The VCS menu now displays a number of version control options

based on the system you selected.

You can read more about git as an example in iOS part of the

practical work.

2.1.4 Report requirements and tasks.

There aren’t any prerequisites for this practical work, other than a

willing mind and a Mac or PC.

1. Using the links in the practical work successfully install the

Android studio.

2. Get an overview of the tool, using the steps of the practical

work.

3. Write down questions, if there are any left.

2.1.5 Test questions.

1. What types of template projects does Android studio provide?

2. Describe the core parts of the project structure.

3. What is VCS? Name at least 3 of the most popular ones.

4. Which tool window can you use for application UI?

82

Design and Basic Layouts of the Android Diabetic Tracker Application “Glucose”

Practical work 2.2

DESIGN AND BASIC LAYOUTS OF THE ANDROID DIABETIC

TRACKER APPLICATION “GLUCOSE”

 2.2.1 Synopsis

 This practical work presents a pointed analysis of how the

Material Design patterns and guidelines can be applied to design a

health-related application

 2.2.2 Brief theoretical information

 The Google Play Market gives a list of recommendations about

content policy that should be fulfilled if application is going to be

published in Android applications market. It should be noted that

recommendations are less strict than presented by App Store Review

team, but still highlight the most important issues such as violent content

restrictions, handling user data, monetization plans, advertisement etc.

While there are no specific requirements for working with user health

data we can steel use information on how app must handle sensitive user

data [1]:

- limit collections and use this data to purpose directly to

providing and improving the feature of the app;

- post a privacy policy that comprehensively disclose how app

collects, uses and shares user data;

- handle all personal data securely, including transmitting it using

modern cryptography.

Additionally, Google Play Market set no specific recommendation

on application design that is planned to be submitted to the store. Still,

starting from 2014 Google develop a specific design language, known as

Material Design. Material is an adaptable system of guidelines,

components and tools that support the best practices of user interface

design. Material Design can be used in all supported versions of Android

and Google has also released APIs for third-party developers to

incorporate the design language into their applications. Thus, the

Android diabetic tracker application “Glucose” design will be built upon

Material design approach.

Now, let’s list the basic functions that glucose tracker application

will provide:

83

Design and Basic Layouts of the Android Diabetic Tracker Application “Glucose”

- manually add new glucose measurement: set data in ml/dg,

dependence on meal, date and time;

- synchronize and app with third-party glucometers to upload the

recent data;

- present a glucose measurement history to the user;

- edit the glucose measurement history data;

- send reminders for the next measurement time.

2.2.3 Practical steps

1. Measure page design

First, let’s discuss how basic application pages can be organized.

There are four logical groups can be derived from apps functions listed

above – management of the history data (History); creation of a new

measurement (Measure); connection to the third-party devices (Connect)

and user notifications (Settings). We can present this data with lateral

navigation that refers to movement between screens at the same

hierarchy level.

According to Material Design essentials this type of navigation

can be created with bottom navigation bar in case if there are 2 – 5 top-

level destinations and application is developed for mobile device. The

bottom navigation must be ergonomic, consistent and present only

equally important items. In case of four destinations both active and

inactive items should be presented with icons and titles and have

sufficient contrast with the container [2].

The Figure 2.1 presents Measure tab that let user add following

information to an app: ongoing glucose measure, dependence of this data

on meal and date with time. There first two inputs are required but the

last one can be optional. As the new data record is created the system

will simply use the present time.

There are three options for meal selection: Before, After and

Bedtime which can be accessed through filled exposed dropdown menu

(Figure 2.2).

84

Design and Basic Layouts of the Android Diabetic Tracker Application “Glucose”

 Figure 2.1 Figure 2.2

Menu items should be easy to open, scan, close and interact with.

Menu height should be at least one row less than the height of app’s UI.

This item typically appears next to the element that generates them. The

filled exposed dropdown menu displays the currently selected menu item

above the menu and applied only when a single variant can be chosen at

a time.

Date selection can be organized with date picker element that is

activated with date picker field. This control can display past, present or

future dates based on task relevance, clearly indicate important dates and

ensure picking a day or time is intuitive. For our purpose the classic

Material Design mobile calendar date picker is the most suitable one

(Figure 2.3). The time picker can be organized using the filled text fields.

There are three main principles for text fields design: easy to discover,

clearly differentiate from one another and efficient.

2. History page design

 The previously glucose measurement history can be organized in

85

Design and Basic Layouts of the Android Diabetic Tracker Application “Glucose”

a table form (Figure 2.4). The grid-like format or rows and columns is

one of the most essential for presenting such data sets. Material Design

guidelines draw three main principles for data tables design: organize

internal content in meaningful way (hierarchy or alphabetization); allow

user interactions for additional user customization; easy to use with clear

logical structure [3].

The History tab presents a simple table that contains glucose

measure information in clear and readable way. Each row presents a

previously made glucose record with a dropdown menu with “Delete”

option.

Figure 2.3 Figure 2.4

3. Connect page design

 According to the apps functions list, the user has an option to

connect through Bluetooth some third-party devices to read the most

recent data. Figure 2.5 presents an initial page in Connect tab that

provide an editable list of recently connected devices. New connection

can be established with “Add device” button located in page bottom

section. This button will take user to the next screen where search of new

device is performed (Figure 2.6). All buttons under Material Design

86

Design and Basic Layouts of the Android Diabetic Tracker Application “Glucose”

guidelines should be highly identifiable, easy to find and present clear

actions. In this app we use the contained button type as it has more

emphasis while using the color and shadow.

 Figure 2.5 Figure 2.6

We can show a search feedback to user with updated list of

nearby devices that have turned on Bluetooth module and loader

“Scanning…” that will animate during search. User can connect to the

needed device by simply clicking on “+” in the row near its name. As the

result the dialog alert window will appear that asks to confirm paring to

device (Figure 2.7). Dialog components are of high-priority components,

which mean that it will block app usage until the user takes a dialog

action or exits the dialog. Based on this the dialogs should be used

carefully and applied for handling the critical information that requires a

specific user tasks, decisions or acknowledgement.

4. Settings page design

 The developed application presents only one additional setup

that can be made by user – set reminders on the next glucose

measurement (Figure 2.8). The notifications may be noticed by user by

87

Design and Basic Layouts of the Android Diabetic Tracker Application “Glucose”

showing a status bar icon, appearing on the lock screen, playing a sound

or vibrating, peeking onto the current screen or blinking the device’s

LED. Android platform guidance set a list of information when

notifications should not be used and when they should [4] .

 From the Settings page notifications can be enabled with switch

control. When user toggles a switch, its corresponding action takes effect

immediately. If a switch cannot be turned on, the switch should

automatically turn back off letting the user know that it is unavailable.

 Figure 2.7 Figure 2.8

2.2.4 Report requirements and tasks

Practical work tasks:

4. Download Sketch or Figma, install the software and design the

basic «Glucose» application screens. You can use the partial or full

design and data organization of «Glucose» application as it was

presented in 2.2.3 Practical steps. Use thenounproject.com and

material.io to find icons for buttons and other control elements.

5. Read the official Material Design guidelines following

elements: buttons, labels, date pickers, switchers, text fields, dialogs and

tables.

88

Design and Basic Layouts of the Android Diabetic Tracker Application “Glucose”

6. Add into the Settings tab following additional setup functions:

select the glucose units from mg/dL to mmol/L; clear measurements

history; delete measurement history for data later than month ago; setup

reminder with custom settings inside an application.

The report should contain following sections:

10. Introduction – background, theory and practical work purpose;

11. Development – screenshots with explanation of each practical

work task completion.

12. Summary – conclusions and result summary.

1.2.5 Test questions

1. What is a Material Design?

2. What are the basic Material Design requirements for layout

organization?

3. What type of information is presented in Measure screen? Why

did you used such controls to get user data?

4. What type of information is presented in History screen? How

we can alternate the data presentation in this screen?

5. Name the representation stages of searching and connecting to

the peripheral device in Connect page.

1.2.6 Recommended literature and resources

1. Developer Content Policy. https://play.google.com/intl/en_us/

about/developer-content-policy/

2. Bottom Navigation.

https://material.io/design/components/bottom-navigation.html

3. Data Tables. https://material.io/design/components/data-

tables.html#

4. Android Notifications. https://material.io/design/platform-

guidance/android-notifications.html#

https://play.google.com/intl/en_us/%20about/developer-content-policy/
https://play.google.com/intl/en_us/%20about/developer-content-policy/
https://material.io/design/components/bottom-navigation.html
https://material.io/design/components/data-tables.html
https://material.io/design/components/data-tables.html
https://material.io/design/platform-guidance/android-notifications.html
https://material.io/design/platform-guidance/android-notifications.html

89

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

Practical work 2.3

TRANSLATING DESIGN INTO CODE - ADD AND SETUP

BASIC “GLUCOSE” FRAGMENTS

2.3.1 Synopsis

In this practical work, we’ll learn how to use the basic

components of Android application, such as lists, bottom navigation,

different input fields and datepicker. We would use the material

component library to make it easier.

i. Brief theoretical information
Material Components for Android (MDC Android) unites

design and engineering with a library of components for creating

consistency across your app. As the Material Design system evolves,

these components are updated to ensure consistent pixel-perfect

implementation and adherence to Google's front-end development

standards.

You can check any additional information about the material

components and guidelines, native android components and on [1].

Additional guides for different components are presented at [2].

There are libraries, which allows to simplify design to

development process by replacing XML files, one of those is Anko.

Anko is a Kotlin library [3], which makes Android application

development faster and easier. It makes your code clean and easy to

read.

ii. Practical steps

1. Create a project

Create a project (Figure 3.1), similar to what you did in the first

practical work. Use the template for bottom navigation.

90

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

Figure 3.1. Android Studio – Configure your project

2. Setting up a bottom navigation bar

To use Anko and Navigation Architecture Component on module

level we need to implement dependencies in build.gradle.

implementation

"org.jetbrains.anko:anko:$anko_version"

implementation "org.jetbrains.anko:anko-

constraint-layout:$anko_version" implementation

"com.android.support.constraint:constraint-

layout:2.0.0-alpha3"

implementation

'android.arch.navigation:navigation-

fragment:1.0.0-beta02'

implementation

'android.arch.navigation:navigation-fragment-

ktx:1.0.0-beta02'

implementation

'android.arch.navigation:navigation-ui-

ktx:1.0.0-beta02'

implementation

'com.google.android.material:material:1.0.0'

91

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

Next step is to create the structure of our application. To draw

the main activity instead of xml-file we can create MainActivityUI,

based on the AnkoComponent class. Therefore, it would be an override

of the AnkoComponent class.

class MainActivityUI:

AnkoComponent<MainActivity> {

 override fun createView(ui:

AnkoContext<MainActivity>): View = with(ui)

{

 constraintLayout { }

 }

}

Replace MainActivity setContentView(R.layout.activity_main)

with MainActivityUI().setContentView(this) in the MainActivity class.

Then we create package fragments which would contain our

fragments and package ui for the classes, which are used for drawing the

screens of the corresponding fragments. Here is how the structure would

look like, according to the design:

fragments

 ui

 SettingsUI

 ConnectUI

 HistoryUI

 MeasureUI

 SettingsFragment

 ConnectFragment

 HistoryFragment

 MeasureFragment

Now we would start actually working on Navigation and creation

of Bottom Navigation Bar. Detailed guide on how to add new navigation

components and Navigation Editor work guide you can find at [4].

To create a graph navigation file between the application

screens, we would need to add an additional folder, named navigation

into the res folder and create the navigation_graph.xml inside.

92

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

<navigation

xmlns:android="http://schemas.android.com/apk/re

s/android"

xmlns:app="http://schemas.android.com/apk/res-

auto"

 android:id="@+id/navigation_graph"

app:startDestination="@id/settingsFragment">

 <fragment

 android:id="@+id/settingsFragment"

android:name="com.arsinde.ankobottomnavbar.fragm

ents.SettingsFragment"

 android:label="SettingsFragment">

 <action

android:id="@+id/action_settingsFragment_to_meas

ureFragment"

app:destination="@id/measureFragment"/>

 </fragment>

 <fragment

 android:id="@+id/historyFragment"

android:name="com.arsinde.ankobottomnavbar.fragm

ents.HistoryFragment"

 android:label="HistoryFragment">

 <action

android:id="@+id/action_historyFragment_to_conne

ctFragment"

app:destination="@id/connectFragment"/>

 </fragment>

 <fragment

 android:id="@+id/connectFragment"

android:name="com.arsinde.ankobottomnavbar.fragm

ents.ConnectFragment"

 android:label="ConnectFragment">

93

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

 <action

android:id="@+id/action_connectFragment_to_measu

reFragment"

app:destination="@id/measureFragment"/>

 </fragment>

 <fragment

 android:id="@+id/measureFragment"

android:name="com.arsinde.ankobottomnavbar.fragm

ents.MeasureFragment"

 android:label="MeasureFragment"/>

</navigation>

For the current project we would need four items, based on

design. Also we are using the default material icons which were taken

from [5].

We would need to create another resource folder to show the Bar

itself, which would be responsible for visuals view of the bar. Here is

how it would look like:

<menu

xmlns:android="http://schemas.android.com/apk/re

s/android">

 <item

 android:id="@id/settingFragment"

 android:icon="@drawable/ic_settings"

android:title="@string/menu_title_settings"

/>

 <item

android:id="@id/connectFragment"

android:icon="@drawable/ic_watch"

android:title="@string/menu_title_history"

/>

 <item

android:id="@id/historyFragment"

android:icon="@drawable/ic_history"

android:title="@string/menu_title_measure"

/>

94

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

 <item

android:id="@id/measureFragment"

android:icon="@drawable/ic_add"

android:title="@string/menu_title_more"

/>

</menu>

Now we can connect everything together and check how it

works. We would add the container for fragments into the

MainActivityUI, and define the container for navigation bar

</menu> constraintLayout {

 val fragmentContainer = frameLayout {

 id = R.id.fragment_container

 }.lparams {

 width = matchParent

 height = matchConstraint

 }

 val bottomNavigation = bottomNavigation

{

 id = R.id.bottom_nav_view

inflateMenu(R.menu.bottom_navigation_menu)

 }

 applyConstraintSet {

 fragmentContainer {

 connect(

 START to START of PARENT_ID,

 END to END of PARENT_ID,

 TOP to TOP of PARENT_ID,

 BOTTOM to TOP of

R.id.bottom_nav_view

)}

 bottomNavigation {

 connect(

 START to START of PARENT_ID,

 END to END of PARENT_ID,

 TOP to BOTTOM of

R.id.fragment_container,

95

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

 BOTTOM to BOTTOM of

PARENT_ID

)}}}

Also keep in mind, that bottomNavigation in this practical work

is an extension function:

inline fun ViewManager.bottomNavigation(init:

BottomNavigationView.() -> Unit = {}) =

 ankoView({ BottomNavigationView(it) },

theme = 0, init = init)

Now we need to define NavHostFragment in

MainActivity:

private val host by lazy {

NavHostFragment.create(R.navigation.navigation_g

raph) }

And define it in onCreate():

supportFragmentManager.beginTransaction()

 .replace(R.id.fragment_container, host)

 .setPrimaryNavigationFragment(host)

 .commit()

The last step in creating navigation is adding the NavControllel

class object into onStart() MainActivity, which would make the switch

between the fragments, choosing the corresponding object in navigation

bar

override fun onStart() {

 super.onStart()

 val navController = host.findNavController()

findViewById<BottomNavigationView>(R.id.bottom_n

av_view)?.setupWithNavController(navController)

navController.addOnDestinationChangedListener{_,

destination, _ ->

 val dest: String = try {

resources.getResourceName(destination.id)

96

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

 } catch (e: Resources.NotFoundException)

{

 Integer.toString(destination.id)

 }

 Log.d("NavigationActivity", "Navigated

to $dest")

 }}

Here’s how the basic version would look as presented on Figuew

3.2.

Figure 3.2. Bottom navigation

3. Datepicker setup

We would leave the easier parts for the tasks in the end, and

would check the most complex component, among those we have in our

app, the datepicker:

Create a fresh project. Add the following code into the

activity_main.xml layout file, where button have the method to perform

onClick action

<?xml version="1.0" encoding="utf-8"?>

97

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

<android.support.constraint.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/re

s/android"

xmlns:app="http://schemas.android.com/apk/res-

auto"

xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="16dp"

 android:text="Hello World!"

app:layout_constraintLeft_toLeftOf="parent"

app:layout_constraintRight_toRightOf="parent"

app:layout_constraintTop_toTopOf="parent" />

 <Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_margin="16dp"

 android:text="Open Date Picker"

 android:onClick="clickDataPicker"

app:layout_constraintEnd_toEndOf="parent"

app:layout_constraintStart_toStartOf="parent"

app:layout_constraintTop_toBottomOf="@+id/textVi

ew" />

</android.support.constraint.ConstraintLayout>

98

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

Setup the MainActivity.kt. On clicking button – Creates a new

date picker dialog for the current date using the parent context’s default

date picker dialog theme (Figure 3.3). Context is requires the application

context.

var year: It shows the the current year that’s visible when the

dialog pops up

var month: It shows the the current month that’s visible when

the dialog pops up

var dat: It shows the the current day that’s visible when the

dialog pops up

package `in`.eyehunt.androiddatepickerdialog

import android.app.DatePickerDialog

import android.icu.util.Calendar

import android.os.Build

import android.support.v7.app.AppCompatActivity

import android.os.Bundle

import android.support.annotation.RequiresApi

import android.view.View

import android.widget.Toast

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState:

Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 }

 @RequiresApi(Build.VERSION_CODES.N)

 fun clickDataPicker(view: View) {

 val c = Calendar.getInstance()

 val year = c.get(Calendar.YEAR)

 val month = c.get(Calendar.MONTH)

 val day = c.get(Calendar.DAY_OF_MONTH)

99

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

 val dpd = DatePickerDialog(this,

DatePickerDialog.OnDateSetListener { view, year,

monthOfYear, dayOfMonth ->

 // Display Selected date in Toast

 Toast.makeText(this, """$dayOfMonth

- ${monthOfYear + 1} - $year""",

Toast.LENGTH_LONG).show()

 }, year, month, day)

 dpd.show()

 }

}

Figure 3.3. Date picker after implementing to the system

iii. Report requirements and tasks

1. Using the links and code in the implement the navigation

menu.

2. Using the links and code implement the datepicker.

100

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

3. Check material library and android guides at

https://developer.android.com/docs and https://material.io/develop/

4. Adapt the design colors using XML or Anko

5. Implement any 2 other features, which were done in design

(inputs and settings for example)

iv. Test questions.

1. How do you create the package fragments?

2. What are the core variables for datepicker?

3. What is the advantage of using Anko over XML?

v. Literature

1. Material Design. Develop. https://material.io/develop/

2. Material Design. Developer Tutorials. https://material.io/

collections/developer-tutorials/#android-kotlin

3. Anko. https://github.com/Kotlin/anko

4. Developers. BottomNavigationView. https://developer.

android.com/reference/android/support/design/widget/BottomNavigation

View

5. Material Design. Icons. https://material.io/resources/icons/

101

Getting Started With Databases On Android

Practical work 2.4

GETTING STARTED WITH DATABASES ON ANDROID

2.4.1 Synopsis
In this practical work we will discuss how user data can be stored

on Android device on the example of SQLite database. Starting with

creation of a new database, insert of a new record into it, updating

information, editing existed data and deleting its content we will learn

the basic operations with SQLite database.

2.4.2 Brief theoretical information

 There are several options that can be applied to store user data:

- Internal file storage – store application files on the device;

- External file storage – store files on the shared external file

system;

- Shared preferences – store private primitive data in key-value

pairs;

- Databases – store structured data in a private database.

As it was stated before, the application stores glucose

measurements along with meal dependence data and date with time as it

was made, thus the databases will be a good place where to store this

information.

Android provides full support of SQLite databases that will be

only accessible from app that have created it. However, the official

documentation suggests to communicate with database with Room

persistence library instead simple SQLite APIs. The Room library

provides an object-mapping abstraction layer that allows fluent databases

access and thus takes care of many concerns. The Android SDK includes

a sqlite3 database tool that allows browsing table contents, run SQL

commands etc [1].

2.4.3 Practical steps

1. Creating a Measure.java class

 Create several packages, namely database and database/model.

Inside of database/model packages create a Measure.java (Code sample

102

Getting Started With Databases On Android

4.1) that will define the SQLite table and column names and create table

SQL query along with get and set methods.

The “measure” table have five columns:

- “id” column is defined as Primary Key and Auto Increment

which means that every measurement record will be uniquely identified

by its id;

- “glucose” stores a string with glucose measurement data from

the text field;

- “meal” stores a string with definition of meal dependence

selected from the dropdown menu;

- “date” stores string created from Date Picker and time entered

from text fields. This data is optional, thus if user did not set this

information here will be stored data and time of when the new record

was created;

- “timestamp” stored the data and time of the record that is

created. This data can help in refreshing table if the user has edited its

data.

public class Measure {

 public static final String TABLE_NAME =

"measure";

 public static final String COLUMN_ID = "id";

 public static final String COLUMN_GLUCOSE =

"glucose";

 public static final String COLUMN_MEAL =

“meal”;

 public static final String COLUMN_DATE =

“date”;

 public static final String COLUMN_TIMESTAMP

= "timestamp";

 private int id;

 private String glucose;

 private String meal;

 private String date;

 private String timestamp;

 public static final String CREATE_TABLE =

103

Getting Started With Databases On Android

 "CREATE TABLE " + TABLE_NAME + "("

 + COLUMN_ID + " INTEGER PRIMARY KEY

AUTOINCREMENT,"+ COLUMN_GLUCOSE + " TEXT,"

 + COLUMN_MEAL + " TEXT,"+ COLUMN_DATE + "

TEXT,"+ COLUMN_TIMESTAMP + " DATETIME DEFAULT

CURRENT_TIMESTAMP"+ ")";

 public Measure() {}

 public Measure(int id, String glucose,

String meal, String date, String timestamp) {

 this.id = id;

 this.glucose = glucose;

 this.meal = meal;

 this.date = date;

 this.timestamp = timestamp;

 }

 public int getId() { return id; }

 public void setId(int id) { this.id = id; }

 public String getGlucose() { return glucose;}

 public void setGlucose(String glucose) {

 this.glucose = glucose; }

 public String getMeal() { return meal; }

 public void setMeal(String meal) { this.meal

= meal; }

 public String getDate() { return date; }

 public void setDate(String date) {

 this.date = date; }

 public String getTimestamp() {

 return timestamp;}

 public void setTimestamp(String timestamp) {

 this.timestamp = timestamp;}

Code sample 4.1

2. Creating SQLite Helper class

First we need to create the SQLite helper class

(DatabaseHelper.java) in database package, that will extend from

SQLiteOpenHelper (Code sample 4.2) [2]. The SQLiteOpenHelper is a

helper class for managing database creation and version management.

104

Getting Started With Databases On Android

The DatabaseHelper.java will implement onCreate(SQLiteDatabase),

ouUpgrade(SQLiteDatabase, int, int) methods.

The onCreate() is called only once when the app is installed as this

method executes and the sql statement which creates a table.

The onUpdate() will be called when an update is released.

public class DatabaseHelper extends

SQLiteOpenHelper {

 private static final int DATABASE_VERSION =

1;

 private static final String DATABASE_NAME =

"measure_db";

 public DatabaseHelper(Context context) {

 super(context, DATABASE_NAME, null,

DATABASE_VERSION);

 }

// Create Tables

 @Override

 public void onCreate(SQLiteDatabase db) {

 db.execSQL(Measure.CREATE_TABLE);

 }

 // Upgrade database

 @Override

 public void onUpgrade(SQLiteDatabase db, int

oldVersion, int newVersion) {

 db.execSQL("DROP TABLE IF EXISTS " +

Measure.TABLE_NAME);

 onCreate(db);

 } }

Code sample 4.2

3. Insert data to Measure database table

New data insertion requires getting the writable instance with

getReadableDatabase() on database. The ContentValue() is applied to

define column name and data that it stores. The “id” and “timestamp”

columns do not require setting up as these two will be inserted

105

Getting Started With Databases On Android

automatically. It should be noted that database connection have to be

closed with db.close() as soon the following work does not require the

database use. As soon as glucose, meal and data values are inserted, the

“id” of new insertion will be returned. The code sample 4.3 presents

method for new data insertion to the database.

 public long insertMeasure(String measure) {

SQLiteDatabase db =

this.getWritableDatabase();

 ContentValues values = new ContentValues();

 values.put(Measure.COLUMN_GLUCOSE,

glucose);

values.put(Measure.COLUMN_MEAL, meal);

values.put(Measure.COLUMN_DATA, data);

 long id = db.insert(Measure.TABLE_NAME,

null, values);

 db.close();

 return id;

}

Code sample 4.3

4. Reading data from Measure database table

With the same public method of SQLiteOpenHelper class

getReadableDatabase() we can open a database for reading it data. The

code sample 4.4 presents an application of getAllMeasures() method that

fetches all measures in descending order by timestamp. It returns an

ArrayList that can be further used for presenting data in History tab

table.

public List<Measure> getAllMeasures() {

 List<Measure> measure = new ArrayList<>();

 // Select All Query

 String selectQuery = "SELECT * FROM " +

Measure.TABLE_NAME + " ORDER BY " +

Measure.COLUMN_TIMESTAMP + " DESC";

106

Getting Started With Databases On Android

 SQLiteDatabase db =

this.getWritableDatabase();

 Cursor cursor = db.rawQuery(selectQuery,

null);

 if (cursor.moveToFirst()) {

 do {

 Measure measure = new Measure();

 measure.setId(cursor.getInt(cursor.getColumn

Index(Measure.COLUMN_ID)));

measure.setGlucose(cursor.getString(cursor.getCo

lumnIndex(Measure.COLUMN_GLUCOSE)));

measure.setMeal(cursor.getString(cursor.get

ColumnIndex(Measure.COLUMN_MEAL)));

measure.setData(cursor.getString(cursor.get

ColumnIndex(Measure.COLUMN_DATA)));

 measure.setTimestamp(cursor.getString(curs

or.getColumnIndex(Measure.COLUMN_TIMESTAMP)));

 measure.add(measure);

 } while (cursor.moveToNext());

 }

 db.close();

 return measure;

}

Code sample 4.3

5. Updating data from Measure table database

The data update requires the writable access provided with

getWritableDatabase(). In code sample 4.4 the data is updated using its

“id”.

public int updateMeasure(Measure measure) {

 SQLiteDatabase db =

this.getWritableDatabase();

 ContentValues values = new ContentValues();

 values.put(Measure.COLUMN_GLUCOSE,

107

Getting Started With Databases On Android

measure.getGlucose());

 values.put(Measure.COLUMN_MEAL,

measure.getMeal());

 values.put(Measure.COLUMN_DATA,

measure.getData());

 return db.update(Measure.TABLE_NAME, values,

Measure.COLUMN_ID + " = ?",

 new

String[]{String.valueOf(measure.getId())});}

Code sample 4.4

6. Deleting data from Measure table database

The same as above, if we need to delete data from databases there

should be writable access to it. Method presented in Code sample 4.5

deletes a measure by finding its “id”.

public void deleteMeasure(Measure measure) {

 SQLiteDatabase db =

this.getWritableDatabase();

 db.delete(Measure.TABLE_NAME,

Measure.COLUMN_ID + " = ?",

 new

String[]{String.valueOf(Measure.getId())});

 db.close();

}

Code sample 4.5

2.4.4 Report requirements and tasks

Practical work tasks:

6. Create a new SQLite database in existing glucose measurement

application project.

7. Apply the insertMeasure(string measure) method on “Add

measure” button pressed event.

8. Present the ArrayList returned with getAllMeasures() method

inside of table in History tab.

108

Getting Started With Databases On Android

9. Using updateMeasure() and deleteMeasure() methods organize

the according editing options for table in History tab.

The report should contain following sections:

13. Introduction – background, theory and practical work purpose;

14. Development – screenshots with explanation of each practical

work task completion; DatabaseHelper.java class code with comments;

History tab classes code with comments.

15. Summary – conclusions and result summary.

2.4.5 Test questions

1. How user data can be stored on Android devices?

2. Explain the difference between different Android storages?

3. What methods are applied to make a new data record to the

SQLite?

4. How we can read, update, delete and edit data from SQLite?

 2.4.6 Recommended literature and resources

1. Data and File Storage Overview. https://developer.android.com/

guide/topics/data/data-storage#db

2. android.database.sqlite Documentation. https://developer.

android.com/reference/android/database/sqlite/package-summary

https://developer.android.com/%20guide/topics/data/data-storage#db
https://developer.android.com/%20guide/topics/data/data-storage#db

109

Abstract and contents

Practical work 2.5

INTEGRATING THIRD - PARTY TRACKERS AND

GLUCOMETERS USING API.

2.5.1 Synopsis

In this practical work we’ll learn how to use the third party trackers

and glucometers using API based on the example of iHealth API.

2.5.2 Brief theoretical information

iHealth is a healthcare management company striving to revitalize

old healthcare devices with modern technology everyone is familiar with.

The MyVitals and Gluco-Smart Mobile App can synchronize with all
iHealth products and allow you to view every result in one app. It also

have simple custom API for the third-party applications, so everyone can

track the progress as a developer, using iHealth devices.

There are also multiple other companies, which devices can be use

with the same idea in mind: GlucoWise, DarioHealth, Abbott Diabetes

Care, Integrity Applications, Senseonics etc.

2.5.3 Practical steps

1. Direct methods

iHealth Wireless Smart Gluco-Monitoring System have the basic

API Calls, which are pretty simple, they are:

- BG_GET for getting the data, using the following query:
sc

sv

client_id

client_secret

- BGALL_GET for getting the full set of data, using the

following query:
sc

sv

client_id

client_secret

- BG_POST for sending the data to device, using the

following body items:

110

Abstract and contents

MDATE

TIMEZONE

BG

DINNERSITUATION

DRUGSITUATION

BGUNIT

- BG_PUT for putting the data, using the following body

items:
MDATE

TIMEZONE

BG

DINNERSITUATION

DRUGSITUATION

BGUNIT

- query:
sc

sv

We can use this information to work with basic API.

2. Complex integrations using SDK

For more complex integrations or seamless work with different

devices it is more reliable to use an SDK. There are some examples of code

for iOS on official iHealth github, which you can check and adapt to

Android, as iHealth does not have official guides for Android yet [1, 2].

We can use an Android SDK from [3] to work further.

iHealth Device SDK can accomplish the major operations such as:

Connection Device, Online Measurement, Offline Measurement and iHealth

Device Management. To start using SDK you would need to initialize it

first, you can do it with the following code.

iHealthDevicesManager.getInstance().init(MainActivi

ty.this);

To register a callback and get a callback ID use:

int callbackId =

iHealthDevicesManager.getInstance().registerClientC

allback(iHealthDevicesCallback);

111

Abstract and contents

We can also use a callback filter in the similar way:

iHealthDevicesManager.getInstance().addCallbackFilt

erForAddress(clientCallbackId, ...);

iHealthDevicesManager.getInstance().addCallbackFilt

erForDeviceType(clientCallbackId, ...);

Now let’s get to devices itself: To verify the iHealth device user

permission you would need to use the following code:

iHealthDevicesManager.getInstance().sdkUserInAuthor

(MainActivity.this, userName, clientId,

clientSecret, callbackId);

If verify success, all the api avaliable, else you will get 10 trial day,

and would need to contact the iHealth to get the developer license for it. But

we can use the trial for the learning purposes.

Now we would need to discover the device:

int type = iHealthDevicesManager.DISCOVERY_BP5

iHealthDevicesManager.getInstance().startDiscov

ery(type);

private iHealthDevicesCallback

iHealthDevicesCallback = new

iHealthDevicesCallback() {

 @Override

 public void onScanDevice(String mac, String

deviceType) {

 }

};

After the device is discovered successfully, use connectDevice to

make a connection with the phone app.

iHealthDevicesManager.getInstance().connectDevi

ce(userName, mac, type);

112

Abstract and contents

private iHealthDevicesCallback

iHealthDevicesCallback = new

iHealthDevicesCallback() {

 @Override

 public void

onDeviceConnectionStateChange(String mac, String

deviceType, int status) {

 }

};

To get the iHealth device controller in our case it’s BG5 based on

specs [4] we use the following:

Bg5Control bg5Control =

iHealthDevicesManager.getInstance().getBg5Control(m

ac);

3. iHealth device integration example

Before working with iHealth devices SDK you need to learn

android multithreading communication pattern with Handlers and Messages.

You must have complete understanding of those two classes and how they

are used to communicate and pass data between two threads.

Therefore, how the SDK works – you need to register a callback

(iHealthDevicesCallback) to receive connection state and perform

operations on it. This callback will be triggered with startDiscovery()

method within iHealthDevices singleton instance. This callback interface

has several methods that needs to be overridden:

onScanDevice(String mac, String deviceType, int

rssi)

onScanFinish()

onDeviceConnectionStateChange(String mac, String

deviceType, int status, int errorID)

If any iHealth device is found onScanDevice() method will be

called. To connect to that device send a command to the handler

CONNECT_DEVICE

myHandler.sendEmptyMessage(CONNECT_DEVICE);

113

Abstract and contents

Those command codes needs to be declared first as constants.

private static final int ADD_SUCCESS = 101;

private static final int ADD_FAIL = 102;

private static final int SCAN_DEVICE = 103;

private static final int CONNECT_DEVICE = 104;

private static final int DISCONNECT_DEVICE = 105;

If a device is connected or disconnected or failed

onDeviceConnectionStateChange() method will be called. Constants to

determine the states are:

iHealthDevicesManager.DEVICE_STATE_CONNECTED

iHealthDevicesManager.DEVICE_STATE_CONNECTIONFAIL

iHealthDevicesManager.DEVICE_STATE_DISCONNECTED

In addition, others like these. Take control over your device if

connection is successful. In our case it’s BG5:
Bg5Control bg5Control =

iHealthDevicesManager.getInstance().getBp7Control(m

Address);

For different devices this control classes will be different. But

naming conventions are the same.

Okay it was a brief overview. Lets follow some steps so that we can

successfully connect our iHealth Device within out app.

After you put your binaries(.jar, .so) into /app/libs folder of your

project, compile all of the files on build.gradle, Initialize iHealth SDK on

your application class

iHealthDevicesManager.getInstance().init(this);

Create a Class named MeasureHelperIHealth that is responsible for

connecting to the device.

Register a callback and add device filter (bg5 in our case)

public MeasureHelperIHealth(Context context) {

this.context = context;

114

Abstract and contents

callbackId =

iHealthDevicesManager.getInstance().registerClientC

allback(miHealthDevicesCallback);

iHealthDevicesManager.getInstance().addCallbackFilt

erForDeviceType(callbackId,

iHealthDevicesManager.TYPE_BG5);

iHealthDevicesManager.getInstance().sdkUserInAuthor

(context, userName, clientId,

clientSecret, callbackId);

myHandler = new MyHandler();

}

Remember to call sdkUserInAuthor() method to verify your

identity. Client ID and Client Secret can be found registering iHealth

website and adding new app there.

Use the iHealth Device Callback like it was described before.

Use myHandler to send message to the background thread in which

we can call connectDevice(), startDiscovery(), disconnect() methods on

background.

On onDeviceConnectionStateChange() method check if device is

connected. If yes then open an activity or fragment of whatever.

Perform operation on that fragment/activity like measuring etc.

And at last - Trigger Device discovery for the first time so that

callback is operational.

iHealthDevicesManager.getInstance().startDiscovery(

iHealthDevicesManager.DISCOVERY_BG5);

Now you can step further and work on the measurements itself, you

can do it by yourself, depending on the device you have. Do not forget to

unregister after you finish measurements Unregister on destroy:

iHealthDevicesManager.getInstance().unRegisterClien

tCallback(clientCallbackId);

2.5.4 Report requirements and tasks.

1. Learn the information about the iHealth SDK

2. Learn Android multithreading communication pattern with

Handlers and Messages, links are in the literature, [1,2]

3. Successfully connect any device via Bluetooth or usb.

115

Abstract and contents

4. Try to write the measurements for any device.

2.5.5 Test questions.

1. Which methods can you use directly via API?

2. What is Handlers, in Android, how is it working?

3. What is Messages in Android, how is it working?

2.5.6 Literature

1. iHealthLabs. OpenAPI-V2-IOS. https://github.com/iHealth

Labs/OpenAPI-V2-IOS

2. iHealthLabs. OpenAPI-V2. https://github.com/iHealthLabs

/OpenAPI-V2/

3. rimonxyz. ihdevicexamples. https://github.com/rimonxyz/

ihdevicesexamples/tree/master/examples/Android_SDK

4. Wireless Smart Gluco-Monitoring System. https://cloud.c2m.

net/ihealth/wireless-smart-gluco-monitoring-system

116

Appenxix A. Teaching program of the Master course “Mobile and hybrid IoT computing”

APPENDIX А. TEACHING PROGRAM OF THE MASTER COURSE

“MOBILE AND HYBRID IoT COMPUTING”

DESCRIPTION OF THE MODULE

TITLE OF THE MODULE Code

Mobile and hybrid IoT-based computing MC3

Teacher(s) Department

Coordinating: Dr. Butenko V.O.

Others: Dr. Odarushchenko O.M., Dr. Strjuk O.Y.,

Dr. Odarushchenko O.B., Butenko D.A.

Computer Systems,

Networks and

Cybersecurity

Study cycle Level of the module Type of the module

MC A Full-time tuition

Form of delivery Duration Langage(s)

full-time tuition, distance

tuition

Five weeks English

Prerequisites

Prerequisites:
Need for training of developers creating

software for connected devices or the

Internet of Things

Co-requisites (if necessary):

Credits of the

module

Total student

workload

Contact hours Individual work

hours

7,5 230 148 82

Aim of the module (course unit): competences foreseeen by the study

programme

The aim of the module is to introduce the students to design and of mobile and IoT

applications and services.

Learning outcomes of module

(course unit)

Teaching/learning

methods
Assessment methods

At the end of course, the

successful student will be able to:

1.Evaluate critical design tradeoffs

for different mobile and IoT

technologies, architectures,

Interactive lectures,

Practicals

Module Evaluation

Questionnaire

117

Appenxix A. Teaching program of the Master course “Mobile and hybrid IoT computing”

interfaces impact on usability,

security, privacy of mobile and

IoT computing services and

applications; design, develop and

publish their apps on different OS

2. Perform the basic of cloud

computing on various

architectures, such as SaaS, PaaS,

IaaS

Lectures,

Practicals and

seminars

Module Evaluation

Questionnaire

3. Сapture, analyze, search, share,

store, process and intergrade big

data for mobile applications

Lectures,

Practicals and

seminars

Module Evaluation

Questionnaire

Themes

Contact work hours
Time and tasks for

individual work

L
ec

tu
re

s

C
o

n
su

lt
at

io
n

s

S
em

in
ar

s

P
ra

ct
ia

cl
 w

o
rk

L
ab

o
ra

to
ry

 w
o

rk

P
la

ce
m

en
ts

T
o

ta
l

c
o

n
ta

ct
 w

o
rk

In
d

iv
id

u
a

l
w

o
rk

Tasks

1.Mobile and Networking 44 36 80 38 1.1

Introduction

to the course:

history of

mobile, cloud

and IoT

development,

basic

standards,

development

guidelines.

Developing

applications

for Android.

Basic

interaction

types of IoT

and Android

applications.

118

Appenxix A. Teaching program of the Master course “Mobile and hybrid IoT computing”

Developing

applications

for iOS. Basic

interaction

types of IoT

and iOS

applications.

Usability,

security and

privacy

concepts for

Android and

iOS apps.
Basics of

wearable

programming

Applications

development

for Android

wearable.

Applications

development

for iOS

wearable.

2. Cloud Computing and

IoT

20 6 12 38 22 2.1

Introduction

to the Cloud

Computing.

Dynamic

interactions

and

computing

architectures –

SaaS, PaaS,

IaaS benefits,

issues and

concerns

Economics of

Cloud

Computing.

Service

models, value

119

Appenxix A. Teaching program of the Master course “Mobile and hybrid IoT computing”

and risks.

Perform

computing in

Android

applications

on the cloud.

Perform

computing of

iOS

applications

on the cloud.

3. Intregration of big data

and IoT/IoE technologies

18 6 6 30 22 3.1 Integration

of Big Data

and IOT

Technologies.

Foundations

for Big Data

Systems for

IoT. Big Data

characteristics

and tyeps.

Big Data

platform stack

and tools.

Architectures

of Big Data

systems.

Requirements

for Big Data

systems

Total

82 1

2

54 148 82 230

Assessment

strategy

Weig

ht in

%

Dead

lines

Assessment criteria

Lecture activity,

learning in

laboratories

40 4 85% – 100% Outstanding work, showing a

full grasp of all the questions answered.

70% – 84% Perfect or near perfect answers

to a high proportion of the questions

answered. There should be a thorough

understanding and appreciation of the

120

Appenxix A. Teaching program of the Master course “Mobile and hybrid IoT computing”

material.

60% – 69% A very good knowledge of

much of the important material, possibly

excellent in places, but with a limited

account of some significant topics.

50% – 59% There should be a good grasp of

several important topics, but with only a

limited understanding or ability in places.

There may be significant omissions.

45% – 49% Students will show some

relevant knowledge of some of the issues

involved, but with a good grasp of only a

minority of the material. Some topics may

be answered well, but others will be either

omitted or incorrect.

40% – 44% There should be some work of

some merit. There may be a few topics

answered partly or there may be scattered or

perfunctory knowledge across a larger

range.

20% – 39% There should be substantial

deficiencies, or no answers, across large

parts of the topics set, but with a little

relevant and correct material in places.

0% – 19% Very little or nothing that is

correct and relevant.

Module Evaluation

Quest

60 4 The score corresponds to the percentage of

correct answers to the test questions

Author Year

of

issue

Title No of

periodic

al or

volume

Place of printing.

Printing house or

intrenet link

Compulsory literature

 2017 The Swift

Programming

Language (Swift

4.0.3)

 Apple Inc., p. 500

 2017 Using Swift with

Cocoa and

Objective-C (Swift

4.0.3)

 Apple Inc., p. 100

121

Appenxix A. Teaching program of the Master course “Mobile and hybrid IoT computing”

Matt Neuburg 2017 iOS 11

Programming

Fundamentals with

Swift

 O’Reilly Media,

October 2017, 646

P.

Marko Gargenta,

Masumi

Nakamura

2014 Learning Android,

Develop Mobile

Apps Using Java

and Eclipse, 2nd

Edition

 O’Reilly Media,

2014, 286 p.

John Horton 2015 Learning Java by

Building Android

Games

 John Horton, 2015,

392 P.

Justin Garrison,

Kris Nova

2017 Cloud Native

Infrastructure:

pattern for

Scalable

Infrastructure and

Applications in

Dynamic

Environment

 O’Reilly Media,

160P.

Additional literature

Fei Hu 2016 Security and

Privacy in Internet

of Things (IoTs)

Models,

Algorithms, and

Implementations

 2016 by Taylor &

Francis Group, LLC

CRC Press is an

imprint of Taylor &

Francis Group, an

Informa business

Adrian McEwen,

Hakim Cassimally

2014 Designing the

Internet of Things

 2014 John Wiley and

Sons, Ltd.

 2016 Digitising the

Industry Internet

of Things

Connecting the

Physical, Digital

and Virtual

Worlds

 River Publishers

122

Abstract and contents

АНОТАЦІЯ

УДК 004.382.74iOS _And:004.411](076.5)=111

Бутенко В.O., Одарущенкo O.М., Стрюк О.Ю., Oдарущенко E.B.

Мобільні і гібридні обчислення на основі інтернету речей. / За ред.

Харченка В.С. – МОН України, Національний аерокосмічний

університет ім. М. Є. Жуковського «ХАІ». – 124 с.

Викладено матеріали практичної частини курсу “MC3. Mobile and

hybrid IoT-based computing”, підготовленого в рамках проекту

ERASMUS+ ALIOT “Internet of Things: Emerging Curriculum for

Industry and Human Applications” (573818-EPP-1-2016-1-UK-EPPKA2-

CBHE-JP).

Навчальний матеріал, представлений у цій практичній частині

магістерського курсу, висвітлює основні теми розробки додатків для

iOS та Android та використання їх для систем IoT.

Основні теми практичних робіт наступні:

- початок роботи з XCode та Android Studio - налаштування

середовища розробки;

- дизайн та основні схеми діабетичної програми відстеження

діагнозу «Глюкоза» для iOS та Android;

- переклад дизайну в код - додавання та налаштування

основних компонентів «Глюкози»;

- початок роботи зі сховищами даних для iOS та Android;

- оцінювання інформації про стан здоров’я користувачів за

допомогою HealthKit та Google Fit;

- Інтеграція сторонніх трекерів та глюкометрів за допомогою

API.

Призначено для інженерів, розробників та науковців, які

займаються розробкою та впровадженням IoT для промислових

систем, для аспірантів університетів, які навчаються за напрямом

комп’ютерних наук, комп’ютерної та програмної інженерії, а також

для викладачів відповідних курсів.

Бібл. – 38, рисунків – 66.

123

Abstract and contents

ЗМІСТ

СКОРОЧЕННЯ 3

ВСТУП 4

1. РОЗРОБЛЕННЯ IOT ЗАСТОСУНКІВ ДЛЯ IOS 5

1.1. ПОЧАТОК РОБОТИ З XCODE – ВСТУП ДО IDE 5

1.2. ПРОЕКТУВАННЯ ТА БАЗОВІ СХЕМИ ЗАСТОСУНКА

ДІАБЕТИЧНОГО ТРЕКЕРА НА IOS “GLUCOSE” 17

1.3. ПЕРЕТВОРЮВАННЯ ПРОЕКТУ В КОД – ДОДАВАННЯ ТА

НАСТРОЮВАННЯ БАЗОВОГО КОМПОНЕНТУ ЗАСТОСУНКУ 23

1.4. ПОЧАТОК РОБОТИ З CORE DATA 41

1.5. ДОСТУП ДО ІНФОРМАЦІЇ ПРО ЗДОРОВ’Я КОРИСТУВАЧА

ЗА ДОПОМОГОЮ HEALTHKIT 49

1.6. ІНТЕГРУВАННЯ СТОРОННІХ ПРИСТРОЇВ ЗА ДОПОМОГОЮ

BLUETOOTH 61

2.РОЗРОБЛЕННЯ IOT ЗАСТОСУНКІВ ДЛЯ ANDROID 75

2.1. ПОЧАТОК РОБОТИ З ANDROID STUDIO – ВВEДЕННЯ ДО

ІНТЕГРОВАНОГО СЕРЕДОВИЩА РОЗРОБКИ 75

2.2 ПРОЕКТУВАННЯ ТА БАЗОВІ СХЕМИ ЗАСТОСУНКА

ДІАБЕТИЧНОГО ТРЕКЕРА НА ANDROID “GLUCOSE” 82

2.3. ПЕРЕТВОРЮВАННЯ ПРОЕКТУ В КОД – ДОДАВАННЯ ТА

НАСТРОЮВАННЯ БАЗОВИХ ЕЛЕМЕНТІВ ЗАСТОСУНКУ

“GLUCOSE” 89

2.4. ПОЧАТОК РОБОТИ З БАЗАМИ ДАНИХ НА ANDROID 101

2.5. ІНТЕГРУВАННЯ СТОРОННІХ ТРЕКЕРІВ ТА ГЛЮКОМЕТРІВ

ЗА ДОПОМОГОЮ ПРИКЛАДНОГО ПРОГРАМНОГО

ІНТЕРФЕЙСУ 109

ДОДАТОК А. НАВЧАЛЬНА ПРОГРАМА МАГІСТЕРСЬКОГО

КУРСУ “MOBILE AND HYBRID IOT COMPUTING” 116

АНОТАЦІЯ ТА ЗМІСТ 123

124

Abstract and contents

CONTENTS

ABBREVIATIONS 3

INTRODUCTION 4

1. DEVELOPING IOT-BASED APPLICATIONS FOR IOS 5

1.1. GETTING STARTED WITH XCODE – INTRODUCTION TO THE

IDE

5

1.2. DESIGN AND BASIC LAYOUTS OF THE IOS DIABETIC

TRACER APPLICATION “GLUCOSE”

17

1.3. TRANSLATING DESIGN INTO CODE - ADD AND SETUP

BASIC APPLICATION COMPONENT

23

1.4. GETTING STARTED WITH CORE DATA 41

1.5. ACCESSING USER HEALTH INFORMATION USING

HEALTHKIT

49

1.6. INTEGRATING THIRD-PARTY DEVICES THROUGH

BLUETOOTH

61

2. DEVELOPING IOT-BASED APPLICATIONS FOR ANDROID 75

2.1. GETTING STARTED WITH ANDROID STUDIO – INTRO TO

THE DEVELOPMENT ENVIRONMENT

75

2.2 DESIGN AND BASIC LAYOUTS OF THE ANDROID DIABETIC

TRACKER APPLICATION “GLUCOSE”

82

2.3. TRANSLATING DESIGN INTO CODE – ADD AND SETUP

BASIC “GLUCOSE” ELEMENTS

89

2.4. GETTING STARTED WITH DATABASES ON ANDROID 101

2.5. ACCESSING USER HEALTH INFORMATION USING GOOGLE

FIT

109

2.6. INTEGRATING THIRD-PARTY TRACKERS AND

GLUCOMETERS USING API

116

APPENDIX А. TEACHING PROGRAM OF THE MASTER COURSE

“MOBILE AND HYBRID IoT COMPUTING”

ABSTRACT AND CONTENTS 136

Бутенко Валентина Олегівна

Одарущенко Олег Миколайович

Стрюк Олексій Юрійович

Одарущенко Олена Борисівна

Бутенко Дмитро Анатолійович

МОБІЛЬНІ І ГІБРИДНІ ОБЧИСЛЕННЯ

НА ОСНОВІ ІНТЕРНЕТУ РЕЧЕЙ

Практикум
(англійською мовою)

Редактор Харченко В.С.

Комп'ютерна верстка

В.С. Харченко,
О.О. Ілященко

Зв. план, 2019
Підписаний до друку 20.02.2017

Формат 60х84 1/16. Папір офс. No2. Офс. друк.
Умов. друк. арк. 7,27. Уч.-вид. л. 7,81. Наклад 150 прим.

Замовлення 220819-4.

Національний аерокосмічний університет ім. М. Є. Жуковського
"Х а р к і в с ь к и й а в і а ц і й н и й і н с т и т у т"

61070, Харків-70, вул. Чкалова, 17
http://www.khai.edu

Випускаючий редактор: ФОП Голембовська О.О.
03049, Київ, Повітрофлотський пр-кт, б. 3, к. 32.

Свідоцтво про внесення суб'єкта видавничої справи до державного реєстру видавців,

виготовлювачів і розповсюджувачів видавничої продукції

серія ДК No 5120 від 08.06.2016 р.

Видавець: ТОВ «Видавництво Юстон»
01034, м. Київ, вул.. О. Гончара, 36-а, тел.: +38 044 360 22 66

www.yuston.com.ua
Свідоцтво про внесення суб‟єкта видавничої справи до державного реєстру видавців,

виготовлювачів і розповсюджувачів видавничої продукції

серія ДК No 497 від 09.09.2015 р.

	ALIOT_MC3_Mobile and hybrid IoT_cover
	ALIOT_MC3_Mobile and hybrid IoT
	MC3_Mobile and hybrid IoT_4Publisher

