@ LEEDS
BECKETT
UNIVERSIT

Internet of Things
for Industry and Human
Applications

Intermnet of Things Based Computing

o
C
g
>
I
T
C
i
g
z
;

Mobile and Hybrid
Internet of Things Based Computing

PRACTICUM

for Industry and Human Applications

Internet of Things

Ministry of Education and Science of Ukraine
National Aerospace University “KhAI”

V.0. Butenko, O.N. Odarushchenko, A.Y. Strjuk,
E.B. Odarushchenko, D.A. Butenko

Mobile and hybrid Internet of
Things based computing

Practicum

Edited by V. S. Kharchenko

Project
ERASMUS+ ALIOT “Modernization Internet of Things:
Emerging Curriculum for Industry and Human Applications
Domains” (573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP)

2019

UDC 004.382.74i0S _And:004.411](076.5)=111
MC77

Reviewers:

DrS, Prof. Volodymyr Mokhor, director of Pukhov Institute for Modelling
in Energy Engineering, corresponding member of NAS of Ukraine

Dr. Ah-Lian Kor, Leeds Beckett University, UK

M77 Butenko V.O., Odarushchenko O.N., Strjuk A.Y., Odarushchenko E.B.,
Mobile and hybrid Internet of Things based computing: Practicum /
Kharchenko V.S. (Ed.) — Ministry of Education and Science of Ukraine,
National Aerospace University “KhAI”, 2019. — 124 p.

ISBN 978-617-7361-87-8

The materials of the practical part of the master course “MC3. Mobile and
hybrid loT-based computing”, developed in the framework of the ERASMUS+
ALIOT project “Modernization Internet of Things: Emerging Curriculum for
Industry and Human Applications Domains” (573818-EPP-1-2016-1-UK-
EPPKA2-CBHE-JP).

Study material presented in this practical part of the master course is
covering the basic topics iOS and Android application development and
there use for 10T systems.

It is intended for engineers, developers and scientists engaged in the
development and implementation of of loT-based systems, for postgraduate
students of universities studying in areas of 10T, computer science, computer
and software engineering, as well as for teachers of relevant courses.

Ref. — 38 items, figures — 66.

Approved by Academic Council of National Aerospace University
“Kharkiv Aviation Institute” (record No 4, December 19, 2018).

ISBN 978-617-7361-87-8
© Butenko V.0., Odarushchenko O.N., Strjuk A.Y., Odarushchenko E.B.,
Butenko D.A.

This work is subject to copyright. All rights are reserved by the authors, whether
the whole or part of the material is concerned, specifically the rights of
translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms, or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or
by similar or dissimilar.

MinicTepcTBO OCBITH | HAYKH YKpaiHu
HauionajbHuii aepokocMiyHMii yHiBepcHTET
iMm. M. €. ’KykoBcbkoro «XapkiBcbkuil ABianiiinui Incruryr”

B.O.byrenko, O.M. Onapymenko, O.1O. Ctprok,
E.B. Onapymenko, J[.A. Byrenko

Mo0ijibHI i TiOpUIHI 00UYHCICHHSA
HAa OCHOBI IHTepHeTy peyent

IIpakTukym

Penakrop Xapuenko B.C.

IMpoekt ERASMUS+ ALIOT
“InTepHeT peyeii: HOBA OCBITHSI IpOrpama
JJIS1 HOTPed MPOMHUCI0BOCTI Ta CycnJIbCTBA”

(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP)

2019

VJIK004.382.74i0S_And:004.411](076.5)=111

M77

Penenzenru:

HA.1.H., npod. Bomogumup Moxop, AMPEKTOp IHCTUTYTY MPOOIIEM
MoJienmoBaHHs B eHepreruii iM. [.€. Tlyxosa, unen-kopecnonaenTr HAH
Ykpainu

Hp. A-Jliaa Kop, Leeds Beckett University, Benmka bpuranis

M77 Byrenxo B.O., Onapyuienxo O.M., Ctprok O.10., Onapymenko E.B., Byrenko
J.A. Mo0inbHi i riopuani o0umcienHs Ha ocHoBi IHTepHery peueii. / 3a pen.
Xapuenka B.C. — MOH VYxpainu, HamionanpHuit aepoxocMiuHuid yHiBepeuTeT iM. M. €.
Kyxoscbkoro «XAl». — 124 c.

ISBN 978-617-7361-87-8

Buknasieno matepiany npakTidHol dacturu Kypey “MC3. Mobile and hybrid
loT-based computing”, migroroeiaeHoro B pamkax npoekry ERASMUS+ ALIOT
“Internet of Things: Emerging Curriculum for Industry and Human Applications”
(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP).

HapuamsHmit Matepias, TpEACTaBICHWA Yy Mill TNPaKTUYHIA YacTHHI
MaricTepchbKoro Kypcy, BUCBITIIIOE OCHOBHI TeMH po3poOku ponatkiB mist i0S ta
Android ta BukopucTanHs ix s cuctem [oT.

[Tpu3HaueHo mjis iHXKEHEpiB, PO3POOHKKIB Ta HAyKOBILB, SIKiI 3aiiMarOThCs
PO3poOKOI0 Ta BHPOBaKEHHSAM [0T A7Is1 MPOMHCTIOBUX CHCTEM, JJIsl acIipaHTiB
YHIBEPCHUTETIB, SIKI HABYAIOTBCSI 3 HAIIPSIMOM KOMIT FOTEPHUX HayK, KOMIT FOTEPHOT
Ta MPOTPAMHOT IHXKEHepil, a TAKOXK VT BUKJIaIaqiB BiAMOBIAHIX KYPCiB.

Bi6n. — 38, pucyHkiB — 66.

3atBepkeHo BueHoro pagoro HamioHanmbHOro aepOKOCMIYHOTO
VHIBEPCHUTETY «XapKIiBChbKHUHN aBiamiHWi iHCTUTYT» (3amuc Ne 4, rpymeHp 19,
2018).

ISBN 978-617-7361-87-8

© Byrenko B.O., Opapymenko O.M., Ctprok O.1O., Onapymenko E.B.,
Byrenko [l A.

Lls poGoTta 3axuieHa aBTOPCHKHM IIpaBoM. Bci mpaBa 3ape3epBoBaHi aBTOpamH,
HE3aJIEXHO BiJ TOI'O, YU CTOCYETHCS I BCHOTO MaTrepiaxy abo HOro 4acTWHH, 30KpeMa
IpaBa Ha MEPEeKIaId Ha iHIII MOBH, IIEPEBHUIAHHSI, TOBTOPHE BUKOPUCTAHHS 1JIFOCTpaLiii,
JeKJIaMalilo, TPaHCISLII, BiTBOPeHHsS Ha MikpodineMax abo Oyab-SKUM IHIIUM
¢i3ugHEM cnocoOoM, a TakoX Iepenady, 30epiraHHsS Ta ENEKTPOHHY aJamTaliio 3a
JIOIIOMOTOI0 KOMIT'TOTEPHOTO IIPOTPaMHOr0 3a0e3NedeHHs B OyIb-IKOMY BHTIII, a0 X
aQHAJIOTIYHUM a00 IHIIMM BiOMHUM CIIOCOOOM, a00 K TakuM, SIKUi Oyne po3pobieHuii B
MalOyTHBOMY.

Abbreviations

ABBREVIATIONS

MC Master Course

APl Application Programming Interface
IDE Integrated Development Environment
ID Identifier

BLE Bluetooth Low Energy

UUID Universally Unique Identifier

Ul User Intrerface

Introduction

INTRODUCTION

The materials of the practical part of the master course “MC3. Mobile
and hybrid loT-based computing”, developed in the framework of the
ERASMUS+ ALIOT project “Modernization Internet of Things: Emerging
Curriculum for Industry and Human Applications Domains” (573818-EPP-
1-2016-1-UK-EPPKA2-CBHE-JP)™.

Study material presented in this practical part of the master course is
covering the basic topics i0OS and Android application development and
there using for loT systems.

The main topics of practical works are following:

- getting started with XCode and Android Studio - setting up your

development environment;

- design and basic layouts of the iOSand Android diabetic tracer

application “Glu”;

- translating design into code - add and setup basic “Glu”

components;

- getting started with data storages for iOS and Android;

- assessing user health information using HealthKit and Google Fit;

- Integrating third-party trackers and glucometers using API.

The course is intended for engineers, developers and scientists engaged
in the development and implementation of loT-based systems, for
postgraduate students of universities studying in areas of 10T, computer
science, computer and software engineering, as well as for teachers of
relevant courses.

Practicum prepared by Dr. Butenko V.O., Dr. Odarushchenko O.M.,
Dr. Strjuk O.Y., Butenko D.A. (National Aerospace University “KhAI”)
and Dr. Odarushchenko O.B. (Poltava State Agrarian Academy). General
editing was performed by DrS. Kharchenko V.S.

The authors are grateful to the reviewers, project colleagues, staff of
the departments of academic universities, industrial partners for valuable
information, methodological assistance and constructive suggestions that
were made during the course program discussion and assistance materials.

! The European Commission's support for the production of this publication does not
constitute an endorsement of the contents, which reflect the views only of the authors,
andthe Commission cannot be held responsible for any use which may be made of the
information contained therein.

4

Getting Started with XCode — Introduction to the IDE

1. Developing loT-based application for iOS
Practical work 1.1

GETTING STARTED WITH XCODE - INTRODUCTION TO
THE IDE

1.1.1 Synopsis

In this practical work we will discuss the Xcode basics — the
native IDE for iOS, macOS, watchOS and tvOS. This practical work is a
brief introduction to the Apple coding environment that aims to show
basic functionality of the IDE by creating a playground and a single view
application project, use git to make a version control and CocoaPods to
scale project with various libraries.

1.1.2 Brief theoretical information

Xcode — is an integrated development environment (IDE) for
software on macOS, i0S, watchOS and tvOS platforms developed by
Apple.

Xcode provides developers with documentation and Interface
Builder — imbedded application for graphic user interfaces construction.
The Xcode bundle consist of following sources: XCode supports source
code for the languages C, C++, Swift, Objective-C, Objective C++, Java,
Python, Ruby and ResEdit with a variety of programming models,
including but not limited to Cocoa, Carbon and Java. The third parties
have added the support of GNU Pascal, Free Pascal, Ada, C#, Haskell,
Perl and D. Xcode suite uses the LLDB debugger as the back-end for the
IDE's debugger.

During this course we will use Swift to develop the glucose
management application. Swift is a general-purpose, multi-paradigm,
compiled programming language created by Apple for iOS, macQOS,
watchQS, tvOS, Linux and z/OS platforms.

While supporting the most Objective-C concepts such as dynamic
dispatch, widespread late building, the Swift is intended to provide
“safer” way to ease the software bugs catching. Swift supports the
concept of protocol extensibility that can be applied to types, structures
and classes etc.

The given practical works are based on Swift 4.2 presented in

5

Getting Started with XCode — Introduction to the IDE

2018 by Apple along with i10S12 [1].

1.13 Practical steps

The Xcode is free and can be downloaded via AppStore. Being
multifunctional the Xcode have integrated iOS SDK package, code
editor, Interface Builder, debugger, iPhone/iPad/Apple Watch/Apple TV
simulators. The Xcode welcome screen is presented on Figure 1.1. Here
we can create a new project, playground, clone existing project or
navigate to the recent one.

¥ . a‘gg

Welcome to Xcode

$‘ Get xmedmm pI yaroun d
Explore ideas quickly and easily.

3] Creste ainew Xcode pr oject
s p for iPhone, iPad, Mac, Apple Watch, or Apple TV.

;\ 71 Clone an existing project
> Start working on something from a Git repository.

Show this window when Xcode launches Open another project.

Figure 1.1 — Xcode welcome screen

1. Creating a first playground

The playground is a perfect place to learn Swift, quickly write
some code, experiment with new syntax or to test algorithms. Here we
can test new code and immediately see the real-time results. The
playground window consists of two basic parts: code editor in the left
side and results view part on the right side (Figure 1.2).

Add following code to the playground (Code sample 1.1).

import UIKit

let frameView = CGRect(x: 0, y: 0, width:

150, height: 150)
let customView = UIView (frame: frameView)
customView.backgroundColor = UIColor.blue

Code sample 1.1
6

Getting Started with XCode — Introduction to the IDE

N = XS ==
BB a| MyPlayground

import UIKit

3 let frameView = CGRect(x: @, y: @, width: 158, height: 150)
4 let customvView = UIView(frame: frameView)

Figure 1.2

The first line imports a UIKit framework that construct and
manage a graphical, event-driven user interface for iOS and tvOS
applications. Next, we create a frame with CGRect(x:y:width:height)
method and use this frame to initialize UIView. Lastly, change it color to
blue.

2. Creating a first Xcode project.

Go back to the welcome screen and create a new Xcode project. In
following window (Figure 1.3) navigate to the iOS tab. There are several
project types that can be created by now:

- Single view application — is the most commonly selected
application type. The template includes default UlViewController and
it's class;

- Game — the template includes a GameViewController with basic
files to develop gaming scenes (GameScene.sks, Actions.sks and
GameScene.swift);

- Augmented Reality App — the template which contains a
default UlViewController and it's class with imported ARKit and some
methods from ARSCNViewDelegate;

- Document Based App - the template with the standard
Document Browser View Controller and several default classes;

- Master-Detail App — the template includes a predefined views
tree that incorporated Master View Controller with two Navigation
Controllers, Table View Controller and UiViewController;

- Page-Based App - the template gives a default
UlPageViewController with it's classes;

- Tabbed App — provides a template with UlTabBarController

7

Getting Started with XCode — Introduction to the IDE

that have a segue to the two UiViewControllers along with their classes;
- Sticker Pack App — the template has a Stickers.xcstikers file for
new stickers integration;

- iMessage App — the template gives a storyboard and controller
to create iMessage extension.

Choose a template for your new project:

Application
1 & o = =

Single View App Game Augmented Document Master-Detail App
Reality App Based App

Page-Based App Tabbed App Sticker Pack App iMessage App

Framework & Library

(LN

Cocoa Touch Cocoa Touch Metal Library
Framework Static Library

Cancel [Next |

Figure 1.3

Select the Single View App type and in the next window enter
following information (Figure 1.4):

- Product name — is a newly created project name, for example
«HelloWorld»;

- Team — is an account name created on developer.apple.com;

- Organization name — is a developer or organization name. If
nothing is defined the system will take the Mac account name;

- Organization identifier — mainly presents a domen organization
name written in backwards order (com.name) that aims to make a unique
application identifier;

- Bundle identifier — the unique application identifier that is
created with project name and organization ID, for example
«com.name.HelloWorld»;

- Language — is a project language (Swift or Objective-C). We
need to select Swift.

On the next screen we need to select a destination folder tor

8

Getting Started with XCode — Introduction to the IDE

newly created project and create the Git repository if it is needed.

Choose options for your new project

Product Name: HelloWorld

Team: None T}
Organization Name:
Organization Identifier: com.name
Bundle Identifier
Language: Swift 1T]
Use Core Data
Include Unit Tests
Include Ul Tests
Cancel rrevious (L
Figure 1.4

3. Xcode windows

The Figure 1.5 shows Xcode interface for the new «HelloWorld»
single view application that contains the Navigation (1), Editor (2),
Utility (3), Debug (4) and Toolbar (5) areas. We can change size of each
window and hide or show them using buttons in the right top corner.

Let us discuss each Xcode component;

1) The Navigation gives bunch of tools that can help to navigate
through project files a as well as build, debug and run stages. The first
tab presents project files tree (Figure 1.6). The files groups can be
created during project development, but it should be noted that creation
of a new group inside of Xcode doesn't mean that folder with the same
name was actually created in original project folder. To escape the
complications during final project debug all project folders should be
created manually and then added to Xcode with right button click on
specified folder and in popup menu «Add new files to «HelloWorld»»
selection. Using Search tool in Navigation bar we can easily look for
interested text information (Figure 1.7). The Issue tab presents all
problems that appear during compilation and helps to quickly jump to
that place in code (Figure 1.8).

Getting Started with XCode — Introduction to the IDE

Halksworc. Rasdy | Today 3t 171 PM

Fellabiork | - viewGomraber swi#t | o Seecton

4

o1l | P . illn) |
BRAMNSECE pgpapdoe=EDE
Find 7:Jext/ Conteinag PTG Runtime
Q- vie o

v ¥ /A HelloWorld 3 issues (1]
= j i <
= In Project lgncring Cas & v @ Swift Compiler Error
7 results in 2 files » @ Cannot override with a stored
= = v Main.storyboard (Base) Helloworld property 'title'
B R Qa o = o ViewController.swift

v & Helloworld

v HelloWorld
= AppDelegate.swift

a ViewController.swift

Main.storyboard
Bl Assets.xcassets
LaunchScreen.storyboard
Info.plist
> Products

Figure 1.6

View Controller: Class = "View
Controller"

¥ s ViewController.swift HelloWorld
1l ViewController.swift

class ViewController: UlView
Controller {

class ViewController: UlView
Controller {

- override func viewDidLoad() {
- super.viewDidLoad()

= [l Do any additional setup after
loading the view, typically from a nib.

Figure 1.7

@ Getter for 'title' with Objective-C
selector 'title' conflicts with getter
for ‘title' from superclass 'UlView...
ViewController.swift

@ Setter for ‘'title' with Objective-C
selector 'setTitle:" conflicts with
setter for 'title' from superclass ...
ViewController.swift

Figure 1.8

2) Code Editor is a place where developer spends main time
during application development (Figure 1.9). The navigation through
project files can be made using Navigation bar, as it was previously
discussed, or in Code Editor options directly. Those options present the
work files hierarchy and even give information on methods in each file

(Figure 1.10).

The Editor window can be presented in three possible types: single

10

Getting Started with XCode — Introduction to the IDE

window (Figure 1.11), Version Editor to see the changes in file (Figure
1.12) and Assistant Editor Window that shows two work files (Figure

1.13).

W < > [HelloWorld) [HolloWorld) 4 ViewController.swi [ViewController
.
[sayHellol)
/ @ el
4 /A

import UIKit

import UIKit
class ViewController: UIViewController {

override func viewDidLoad() {
super,viewDidLoad()

88 < & Helloworld * HelloWorld = ViewController.swift
Vs
// ViewController.swift
// HelloWorld
& //

class ViewController: UIViewController {

override func viewDidLoad() {
super.viewDidLoad()
1

func sayHellol(){
1

@IBAction func bip(_ sender: UIButtan){

}
Figure 1.9 Figure 1.10
oxa || Hetloworid: Ready | Today at 2:34 P N = s
88 ¢ > [Helloworid) B Hellowerld)+ ViewController.swift) Mo Selection fexe v 234 NL= 0o 0O
B < o WContrllrsmift) Mo Seiection <4
HelloWorld
;

class ViewContreller: UIViewController {

override func viewDidLoad() {
super.viewDidLoad()
¥

func sayHello(){
]

IBAction func bip(_ sender: UIButton){

}

import UIKit

func sayHellof M
)

SIBAction func bip(_ sender:
ulButton).

¥

roller:

viewDidioadl) {
woidLoad!)

Figure 1.11

Figure 1.12

Before we go to the next window there is one important thing that

should be highlighted in Editor Window — breakpoint. The breakpoints
are heavily used during code debug and mark the line to pause an
application as soon as it enters that line. Breakpoint are simply placed by
clicking on the number of needed line (Figure 1.14)

11

Getting Started with XCode — Introduction to the IDE

I8 iPhone Xa HelloWorld: Ready | Today at 2:34 PM e

=/ < B) B) B Mainst..«d (Base)) NoSelection < 4 > B8 @) Automati
/7
// ViewController.swift
// HelloWorld
&/
import UIKit

° B class ViewController: UlIViewController {

aram - 5 i
override func viewdDidLoad() {

super.viewDidLoad()
¥

func sayHello(){

® @IBAction func bip(_ sender: UIButton){
}

—) Hello World
1] View as:iPhone 8 (+C 'R) B B o] faf
Figure 1.13
B < HelloWorld) [7] Helloworld) « ViewController.swift)
1/
2 // ViewController.swift
3 // HelloWorld
. & //
5 import UIKit
6
class ViewController: UIViewController {
8
9 override func viewDidLoad() {
10 super.viewDidLoad()
1 ¥
12
func sayHello(){
14 }
15
@IBAction func bip(_ sender: UIButton){
17 }
18
93

Figure 1.14

12

Getting Started with XCode — Introduction to the IDE

3) Utility window. One of the most frequently used Utility tabs is
an Attributes Inspector (Figure 1.15), especially if the Ul components are
created with Interface Builder or XIB file.

O®B®3$E

Text Field

Text Plain B
Color WEEM Default B
Font System 14.0 T &
aignment = = = = [l
Placeholder
Background |~]
Disabled |~]
Border Style == —]
Clear Button Never appears B
Clear when editing begins
Min Font Size 1735
Adjust to Fit
Capitalization None B
Correction Default
Spell Checking Default B
Keyboard Type Default [T}
Appearance Default B
Return Key Default B
Auto-enable Return Key
Secure Text Entry
OO0 @aa8
Figure 1.15

This tab helps to make some basic setup on components appearance,
view and default behavior etc. In case of creating the custom objects this
panel is mostly hidden and can be called back if needed.

4) Debug gives information of results and states of various
variables during application run.

5) The Toolbar holds elements to build, run, test and analyze the
application. Here we can also select the simulation device or run on
actual one. Using the Xcode simulator we can emulate such events as
change of GPS coordinates, shake etc.

4. Git and CocoaPods basics
The control version tools are heavily used during development
of i0S applications. The Git is one of the most widely used systems that
can ease development process by splitting, merging and visualizing the
nonlinear project development history.
As we have seen before the local Git repository can be created

13

Getting Started with XCode — Introduction to the IDE

during new project creation. Let's briefly discuss main Git basic
commands.

There are two types of Git repository — local and remote. The
local repository is a .git catalog and if it was not created with project, we
can navigate in console to the project folder and with «git init» make it
initialization. If we need to copy information from nonempty parental
remote repository - put link on it and use git clone command.

Basically there are three types of objects in git repository — file,
tree and commit. File is a version of a user file, tree is a group of user
files from different catalogs and commit is a tree with some additional
information.

The “git commit” and “git merge” are the most frequently used
Git operations:

- “git commit” saves changes to the local repository. The Git
requires to explicitly show what exactly must be saved with this commit,
thus we need to use “git add” command previously. For example, we
need to save changes in HelloWorldVC.swift to the local repository. To
do that use following commands, where “-m<message>" presents a
comment to the commit:

git add HelloWorldView.swift
git commit -m “Create custom view for
basic screen”

If we need to add changes from many different files, the prefix “-
a” can be applied that add all changed files to this commit:

git commit -a -m “Create custom view for
basic screen”

- git merge can be applied to merge parallel tree branches. For
example, we need to create a new branch in project version tree, make
several changes on it and then merge this new branch with a main one
(master branch). To do so, we can use the following commands:

create a branch new
git checkout -b new master
commit of all changes made in branch new

git commit -a -m “Change and add some
14

Getting Started with XCode — Introduction to the IDE

features”

merge of branch new with master
git checkout master

git merge new

deletion of branch new

git branch -d new

It should be noted that almost all common Git operations are
processed locally and can be synched with remote repository using push
and pull commands. The push sends new data from local repository to
the remote. It should be noted that remote repository must have only up
to date information. If it was changed, first call the git pull command that
will load all changes in remote repository to the local and merge those
changes into the local. The pull command makes a local copy of changes
made in remote repository and if one branch has independent history in
local and remote repositories the pull will immediately merge it. The
fetch command is also heavily used to work with remote and local
repositories, as it present a partial pull. The fetch takes changes from the
remote repository and copy them to the local. For more details about git
commands please visit the official git site [2].

The CocoaPods is a one of the best dependency manager in Swift
and Objective-C projects. The CocoaPods provide developers with over
64 thousand libraries that help to easily scale iOS projects. It is build
with Ruby and is installable with the default Ruby available on macOS.

To setup CocoaPods we need to update the packages list with
update command and as the list became up to date install pods and setup
them (Code sample 1.2).

sudo gem update —-system
sudo gem install cocoapods
pod setup

Code sample 1.2

Then navigate to the project folder and create the Podfile with the
command vim Podfile. After this check the project folder for the Podfile
presence. Now we can use this file to setup CocoaPods simply using
pod‘NameOfNeededPod’. For more detailed information and list of

available libraries visit [3].
15

Getting Started with XCode — Introduction to the IDE

1.1.4 Report requirement and tasks

Practical work tasks:

1. Download Xcode from App Store and install it to the local
machine.

2. Create the playground project with custom UlView inside. Add
a UlLabel with “Hello World” text as a subview to the custom UlView
and change it text and background color.

3. Create a HelloWorld swift project as in practical work steps.
As you have added changes to it commit them to the master branch.
Create a new branch and on this branch add a UlLable to the Interface
builder. Commit this change and merge the new branch with a master.

4. Install CocoaPods. From the Podfile in HelloWorld project
install AFNetworking and SwiftyJSON pods.

The report should contain following sections:

1. Introduction — background, theory and practical work purpose;

2. Development — screenshots with explanation of each practical
work task completion, code from ViewController.swift file and
screenshot from HelloWorld Interface Builder with simulator screenshot.

3. Summary — conclusions and result summary.

1.1.5 Test questions

1. What is a playground in Xcode? For what purpose it can be
applied?

2. What types of template projects does Xcode provide?

3. What is an Interface Builder? How we can change controls
common attributes in it?

4. Explain three types of Code Editor presentation. What is the
main difference between them?

5. What is Git? Explain git commit, git merge, git push, git pull
and git fetch commands.

6. What is a CocoaPods?

1.1.6 Recommended literature and resources

1. Matt Neuburg. Programming i0S 12: Dive Deep Into Views,
View Controllers and Frameworks/ o’Reilly Media, 2018 — 1176 p.
2. Git. Documentation. https://git-scm.com/docs
3. CocoaPods. https://cocoapods.org/
16

Design and Basic Layout of the iOS Diabetic Tracer Application “Glucose”

Practical work 1.2

DESIGN AND BASIC LAYOUTS OF THE 10S DIABETIC
TRACER APPLICATION “GLUCOSE”

1.2.1 Synopsis

This practical work presents a step-by-step analysis of how the
health-related application can be designed according to Apple Review
Guidelines and official HIG recommendations.

1.2.2 Brief theoretical information

Apple gives a list of requirements and recommendations that have
to fulfilled during the development of an application that is planned to be
subscribed to App Store [1,3]. Those questions include guidelines
arranged into five sections: safety, performance, business, design and
legal. As for this and following practical works 1.3 — 1.6 the key
application that helps to trace the everyday glucose level in blood we
need to focus on section «5.1.3 Health and Health Research» in App
Store Review Guidelines.

They provide some special rules to ensure customer privacy is
protected:

- apps may not use or disclose to third parties data gathered in the
health, fitness, and medical research context—including from the Clinical
Health Records APl, HealthKit APl, Motion and Fitness,
MovementDisorderAPIs, or health-related human subject research, etc. The
specific health data that is collected from devices should by disclosed.

- apps must not write false or inaccurate data into HealthKit or any
other medical research or health management apps;

- personal user health information may not be stored in iCloud;

- apps conducting health-related human subject research must obtain
consent from participants or, in the case of minors, their parent or guardian

[1].

Accounting those recommendations can remove inappropriate
functions which are forbidden by App Store as well as decrease the
application development time.

Now, let's set the basic functions that diabetic tracer application
«Glucose» should provide:

17

Design and Basic Layout of the iOS Diabetic Tracer Application “Glucose”

- Give a information about previously made glucose test in a table
form;

- The user should have an option to edit this glucose history table;

- Manually add new glucose measurement: set data in mil/dg,
dependence on meal, data and time;

- Synchronize an application with glucometers and get data from
those third-party devices;

- Ability to send reminders for the next glucose measurement
time;

- Connect to the Health application and get data about latest
trainings and heart rate measurement.

The internal data storage will be organized using Core Data

store. Within this practical works the «Glucose» application will use
mainly native iOS 12 components.

1.2.3 Practical steps

1. Measure page design

Now let’s discuss the basic organization of application pages. As
we can see from previously made app functions list there are four logical
groups of functions — management of the glucose history data, addition
of a new measurement, synchronization with devices and few settings.
Thus we can present app in as set of four tabs — Settings, Connect,
History and Management. The app is heavily dependent on the most
frequently used page that allows user to add a new glucose measurement,
thus Measure tab will be the first screen that appears after app launch.

The Figure 2.1 presents tab Measure that is basically based on
native iOS 12 components. User can add a new measure with
UlTextField that holds an example of the required data. Selection of
meal dependence can be organized with UlAlertController (Figure 2.2)
that keep user on the same page and avoid additional forward/backward
navigation on page.

Note, that in official Human Interface Guidelines (HIG) [2] the
default Cancel button is strictly recommended during the work with
Action Sheets component. We can set the meal dependence field as non-
required because user can simply forget when this measurement was
made, thus Cancel button will switch to the default “No details” variant.
The UlDatePicker component is applied to select date and time. This is
also an optional field that will keep the default value of date and time

18

i

Design and Basic Layout of the i0S Diabetic Tracer Application “Glucose’

when measurement was saved in the application.

il Sketeh = 9:41 AM # 100% -

Add Measure
MEASUREMENT NUMBER (MG/DL } ‘
a0 [x}

MEAL ‘

No details

DATE & TIME ‘

Today 5 00 PM

Select the meal dependance

Before meal

After meal

Save measure Bedtime

& 0 M+ Cancel

fistory Measure

Figure 2.1 Figure 2.2

One of the basic HOG recommendations on Date Picker element
use is to decrease the time interval if it is possible, thus we will set the
time interval to value 5 on the scale [0; 59] (Figure 2.1).

2. History page design

In the History tab user can view and edit the data on previously
made glucose measurements (Figure 2.3). For this purpose, we use
UiTableView component. Each cell of the table holds three labels that
are based on gathered data. The unnecessary row can be deleted from the
table.

3. Connect page design

The user can not only manually add data but also get it from third-
party glucometers or other appropriate devices with Bluetooth inside.
The initial page presents list of devices that have been already connected.
«Add device» button can be used to search for new connection (Figure
2.4).

19

Design and Basic Layout of the iOS Diabetic Tracer Application “Glucose”

wil Sketch & 9:41AM % 100% (- il Sketch = 9:41 AM % 1007 -
Measurement History Devices
90 mg/d! Jan 10, 04:25PM iHealth Smart
After meal
118 mg/dl Jan 10, 06:36AM iHealth Align
Before meal
130 mg/d| Jan 10, 06:36AM FORA 6 Connect
After meal
80 mg/d| Jan 10, 04:25PM
Before meal
95 mg/d| Jan 10, 04:25PM
Before meal
83 mg/d| Jan 10, 02:27PM
No deatils
125 mgyd| Jan 10, 02:27PM
After meal
132 mg/dl Jan 10, 02:27PM Add device
Bedtime
e Q ih + e © 11 +
settings Connec History Measure settings Gomnect History easure

Figure 2.

3 Figure 2.4

While searching the nearby devices via Bluetooth user can view
all appropriate for connection devices in a table and by selecting one get

connection request (Fig

ure 2.5 — 2.6).

il Sketch = 9:41 AM

LOOKING FOR SENSORS... %

FORA G31 Smart
Sybercare Magic Mirror

Trividia True Metrix Air

£ Devices Add Device

#100% -

Paring with FORA G31 Smart

Connect "Glu” app with FORA G31
Smart?

Figure 2.5 Figure 2.6

20

Design and Basic Layout of the iOS Diabetic Tracer Application “Glucose”

The process of search is presented to user with Refresh Connect
control, and according to HIG the list of found devices should be
constantly updated. The Figure 2.6 shows an Alert message that asks for
permission to connect with selected peripheral device. In HIG we can see
the recommendation to use mainly two-button Alerts with clear and short
names for message and buttons. Additionally, user can dismiss this
message by simply moving to another tab.

4. Settings page design

In the Settings tab user can activate native iOS notifications to
send reminders on next glucose measurement time (Figure 2.7 — 2.8).
For this practical works we will forward user to the Notifications tab in
iPhone device settings. There is a list of official recommendations in
HIG that can help to increase an effectiveness of notifications instrument
[2]. One of the most important conditions, that can be found in this list,
are notifications relevance, absence of multiple notifications for the same
thing, even if the user hasn’t responded and recommendations on
badging use. To expand application functionality, we can also ask for
authorization to Health data, if Health is available on current user device
and collect data from last trainings and heart rate measure.

al sketch & 9:41 AM % 100% -
Settings
NOTIFICATIONS
0 Glucose measurement
AUTHORIZATION AND UPDATE

@] Authorize Health

"Glu" Would Like to Send You

& o il T

Figure 2.7 Figure 2.8
21

Design and Basic Layout of the iOS Diabetic Tracer Application “Glucose”

1.2.4 Report requirements and tasks

Practical work tasks:

1. Download Sketch or Figma, install the software and design the
basic «Glucose» application screens. You can use the partial or full
design and data organization of «Glucose» application as it was
presented in 1.2.3 Practical steps. Use thenounproject.com and
material.io to find icons for buttons and other control elements.

2. Read the official HIG requirements and recommendations for
following controls: buttons, labels, pickers, refresh content controls,
switchers and text fields. Read the official HIG requirements and
recommendations for following views: action sheets, alerts, tables.

3. Add into the Settings tab following additional setup functions:
select the glucose units from mg/dL to mmol/L; clear measurements
history; delete measurement history for data later than month ago; setup
reminder inside an application.

The report should contain following sections:

4. Introduction — background, theory and practical work purpose;

5. Development — screenshots with explanation of each practical
work task completion.

6. Summary — conclusions and result summary.

1.2.5 Test questions

1. What is an official Apple HIG and what type of information it
presents?

2. What are the basic requirements in Apple Review Guidelines to
the health-related applications?

3. What type of information is presented in Measure screen? Why
did you used such controls to get user data?

4. What type of information is presented in History screen? How
we can alternate the data presentation in this screen?

1.2.6 Recommended literature and resources

1. App Store Review Guidelines. https://developer.apple.com/
app-store/review/guidelines/

2. Human Interface Guidelines for iOS https://developer.apple.
com/design/human-interface-guidelines/ios/overview/themes/

3. Joshua Greene. Design Patterns by Tutorials: Learning Design
Patterns in Swift 4/ Razeware LL, 2018. - 364 p.

22

https://developer.apple.com/%20app-store/review/guidelines/
https://developer.apple.com/%20app-store/review/guidelines/

Translating Design Into Code — Add and Setup Basic Application Component

Practical work 1.3

TRANSLATING DESIGN INTO CODE - ADD AND SETUP
BASIC APPLICATION COMPONENT

1.3.1 Synopsis

In this practical work we will focus on presenting of already
created application design inside Xcode Interface Builder. We will setup
Ul components, set constraints for each view, ink the appropriate views
with outlets and actions in code. Finally, we will apply the initially
required methods.

1.3.2. Brief theoretical information

After design creation and as we have screens for each application
reaction on various user interactions with it, it is time to create a new
project file and setup user interface in Xcode. This can be performed
through Interface Builder storyboard that gives rather flexible tools to
customize and set controls on View Controllers or without storyboard. In
the second case we can create and customize all views from code using
various imbedded Xcode frameworks or download appropriate from
CocoaPods. Xcode doesn't permit usage of both storyboard files with no-
storyboard designed views, thus we can easily combine the needed
variants. As «Glucose» application consists of four main screens, does
not provide user with wide functionality and it was designed upon native
iOS 12 element — we can use storyboard to construct application
interface.

1.3.2. Practical steps

1. Project creation and Interface Builder overview

Create new single view application project in Xcode. Check the
Core Data during new project creation as we will need it later to store
user data. Accept the Git repository creation if you will use version
control during application development.

Inside of new project go to the Main.storyboard file (Figure 3.1)
that presents a default View Controller at the Interface Builder canvas
[1].

Interface Builder consists of four main areas:

23

Translating Design Into Code — Add and Setup Basic Application Component

a) Interface elements hierarchy along with their constraints
(placing rules);

b) Interface elements canvas;

¢) Toolbar for setting the items constraints;

d) Selection of devices on which the application will run and
device orientation modes;

e) Tools to setup elements connections, behaviors, appearance,
basic graphical features etc.

B < B Glucose) B Glucose) | Main.storyheard) - Main.storyboard (Base)) [View Contralier Scens) () View Comralier) [view <
iew

000000000000 | 0 ¢
Figure 3.1

An app consist of four tabs, thus we can use the
UlTabBarController to present it's content. Imbed it into the project with
Editor — Embed In — Tab Bar Controller. As a result you can see that
Main.storyboard file now presents UlTabBarController connected with
empty View Controller (Figure 3.2).

Drag from the Objects library two more View Controllers and one
Table View Controller for Settings page. Add to each new controller the
Tab Bar Item and holding ctrl create segue between Tab Bar Controller
and each new controller selecting the«Relationship segue — view
controllers» (Figure 3.3).

24

Translating Design Into Code — Add and Setup Basic Application Component

< B oy) oty) B Mainstaryboard) [l Main.storyboard (Base) Tab Bar Cantroller Scena) (£ Tab Bar Controliar D e E 9 I 6
v 5 ham Scene simulated Matrics
¥ O ttem Size Infarred B
v [view Tp Bar _Interres B
Safa Ares Batom gar _Infarred B
* tem
) First Rospondar

View Controller
B Bt Qs = Tite
¥ | Tab Bar Controller Sce. . - - o - & s initia! View Controlier
¥ | Tab Bar Controlier Layout Adjust Scroll View Insets.
. TabBar Hide Bottom Bar on Pugh
0 First Respondar
B Exit

Resiza Viaw From NIB
Use Full Screen (Deprecated)
Extent Edgss B Undsr Top Bars
£ Under Bottom Bars.
Under Opaque Bars

=+ Storyboard Entry Poi
Relationship “view c.

Transiton Style Cover Vertical B
— Tab Bar Controller —— B

Prosentation Full Scresn

Defines Context
Content Siza
Wit Hight
Key Commands
=]
¥
ey
Selectar
i) View as: iPhone 8 Plus [-C 'R) 1% G B Mo bay
UO00O00oo000e |0 e
@ Deice Grientation
B < B Glucose) B GLucose) [l Main storybaard) [l Main.storyboard (Base))] Tab Bar Controller Scene) () Tab Bar Controller < /L > DeoeE eI
v [ttom Scane. Simulated Metrics
v O tam Sizs Inferred
v [view Top Bar _inferred E
Sofe Area Bottom Bar _Inferred E
* itam
) First Respander View Contraller
Eex - . e
v [hem Scene € 15 Initisl View Contraller
¥ O tom = Lagout Adjust Scroll View Insets
L4 View bt - = Hide Bottom Bar on Push
* em € Resize View From NIE
@ Frst Raspander Use Full Scroen (Deprocar
[Exit Extend Edges @ Under Top Bars
o p—— Under Bottom Bars
¥ () item 4 — > Under Gpaque Bars
v [view 1 Transition Style Cover Vertical B
Safe Arsa | Presontation_Full Scraen E
* ltem | Detines Context
@ First Respander . . Provides Context
[exit | - Content Size Use Preferred Explicit Size
l & J
Tab Bar Controller Sca... | ¥ 1
¥ . Tab Bar Controller \ e e
. TebBer \ Kay Commands
@) First Respander —
& Exit |
- Storyboara Entry Poi
¥
Relationsnip “viaw . Key
o Selector
Rem Scene
v O em
» || Table view
* item -
@ First Respander .
B £1 View as: iPhane B (-C 1R} — 30% +

E & iof tal

000000000000 | 0 ==
Figure 3.3

25

Translating Design Into Code — Add and Setup Basic Application Component

2. Constructing the Measure tab in the Interface Builder and
programming the basic connections between view and code

First, add to the Assets.xcassets file the app icons in three sized
(1x, 2x u 3x) [2] and using Attribute Inspector in the Interface Builder
assign icons to each Tab Bar Item or newly created controllers. Change
the Title of each.

The tab Measure consists of three fields — measurement number
(mg/ml), meal and date and time. This page can be presented as a static
table with determined number of sections and rows or as following views
hierarchy, namely:

- Navigation bar with “Add Measure title”;

- Top UlView with imbedded UlLabel titled as “Measurement
number (mg/ml) inside”;

- UlTextField with centered text alignment and placeholder “90”;

- Second UIView with UlLabel titled as “Meal” inside;

- UIButton that calls for UIAlertController with “No details” title;

- Third UlView with “Date & Time” UlLable inside;

- UIDatePicker on mode “Date and time” and 5 minute interval;

- “Save measure” UlButton placed on page footer.

Let’s consider the second presentation type to show the Interface
Builder flexibility. Construction and initial setup of UlTableView will be
considered in the description of the History tab.

3. Constructing the Measure tab in the Interface Builder

Set up UlINavigationBar. Select in Objects library NavigationBar
and drag it to the Interface Builder canvas. Resize and position it as
needed. After you have placed view on canvas Interface Builder will
automatically create a set of prototyping constraints that define the
view’s current size and position relative to the upper left corner. This can
be done for fast prototyping purpose, as by now app can be build and
run, but should always be replaced by own explicit constraints. After
creation of the first explicit constraint, the system will remove all
prototyping constraints from views referred by the constraint.

Interface Builder provides four Auto Layout tools, namely Stack,
Align, Pin and Resolve Auto Layout Issues in the bottom-right corner of
the Editor window:

1) The Stack tool (Figure 3.4) allows to quickly create a stack
view by selecting one or more items in layout and clicking on Stack tool

26

Translating Design Into Code — Add and Setup Basic Application Component

button. Interface Builder created a stack view from selected items and
resizes the stack to its current fitting size based on its contents.

2) The Resolve Auto Layout Issues tool (Figure 3.5) provides a
number of options for fixing common Auto Layout issues. The top
options affect only the currently selected views. The bottom options will
affect on all views in the scene.

3) The Align tool (Figure 3.6) is used to quickly align items in
layout. After selection of the items that have to be aligned click Align
tool and choose among presented alignment types the appropriate. The
Interface builder will create the constraints needed to ensure those
alignments.

4) The Pin tool (Figure 3.7) let us quickly define a view’s position
relative to its neighbors or define its size. Select the item that has to be
pinned and call Pin tool from Editor Window. Interface Builder presents
a popover view containing a number of options. The top part of popover
helps to pin selected item’s Leading, Top, Trailing, or Bottom edge to its
nearest neighbor. The associated number indicates the current spacing
between the items in the canvas. The lower part let us set the items’
width and height.

View

View Without Inset] Add Missing Constraints

Scroll View | Reset to Suggested Constraints
Stack View Clear Constraints

Navigation Controller
Tab Bar Controller Add Missing Constraints
] Reset to Suggested Constraints
Clear Constraints

& & o] Al e & 10! Al) Clears Graphics Conte

Figure 3.4 Figure 35

Add New Alignment Constraints Add New Constraints
20

[#] Horizontally in Container 0

[vertically in Container 0
0l Aspect Ratio |

Figure 3.6 Figure 3.7

27

Translating Design Into Code — Add and Setup Basic Application Component

For UINavigationBar set height and pin it to the Leading, Trailing
and Top canvas edges with 0. Change it title to “Add Measure”.

Set up top UlView with UlLabel “Measurement number
(mg/dl)”. The same principles are used to set constraints on the rest of
views. Select in Objects library the UIView and drag it to the Interface
Builder canvas. Set it under the UlnavigationBar and give it the proper
size. Change the background color, pin it to the bottom of
UINavgationBar, Leading and Trailing edges of the screen and give it
the proper height. Align it horizontally in container view.

Drag the UlLabel from the Objects library and set it inside the
UlView by pinning it to the UlViews Bottom and Leading edges.
Change title and give it the needed height.

Set up UlTextField. Drag the UlTextField from the Objects
library to the designed screen. Pin it Top to the Bottom of previously
added UlView, Leading and Trailing to the edges of container view. Set
proper height and align horizontally in container.

As the UlTextField has no initial text inside use put “90” to the
placeholder settings in the Attribute Inspector. Select None as Border
Style, set Font Size and make centered text alignment.

Set up UIView with UlLabel “Meal”. This UIView and UlLabel
can be added to the designed screen the same way as UlView with
UlLabel “Measurement number (mg/dl)”. The mane difference is that
Top edge of UIView must be pinned to the Bottom edge of UiTextField.

Set up UlButton with title “No details”. Drag the UlButton to
the Interface Builder canvas. Place it under the last added UlView and
pin it Top to the UlView Bottom edge, Leading and Trailing edges to the
container view. Set height, change title to “No details” as this parameter
goes as default is user will not choose the meal dependence option. The
UlButton should be in enables state. Give it the needed background color
and title color.

Set up UlView with UlLabel “Date & Time”. Use the UlView
with UlLabel “Measurement number (mg/dl)” as an example, with main
difference is that Top edge of UIView should be pinned to the Bottom
edge of UlButton.

Set up UlDatePicker . Select the UlDatePicker in the Object
library and drag it under the last added UiView. Pin it edges as follows:
Top edge to the Bottom of UlView, Leading and Trailing edges to the
container view and set needed height. Set the horizontal in container

28

Translating Design Into Code — Add and Setup Basic Application Component

alignment in the Align tool.

Make additional settings in the Attributes Inspector: set 5 minutes
interval, the current date must be applied as default; alignment should
have center value for both horizontal and vertical lines.

Set up UIButton with title “Save measure”. Drag the UIButton
from Objects library and place it in the bottom part of the designed
screen. Pin it Bottom edge to the bottom of the container view with
needed margin, for instance 28, Leading and Trailing edges to the
container view with equal margin sizes, for example 16. The UlButton
should be horizontally aligned in container. Set it height size, change
title to the “Save measure”, check the state as it should be enabled, set
background color and title color.

4. Connecting the Measure views with code

After placing all views in the Measure tab they should be
connected with the code in ViewController [3]. The XCode have already
created be default following files:

- AppDelegate.swift. As in IOS the delegate is a class that does
something on behalf of another class, and the AppDelegate is a place to
handle special UlApplication states, with a lot of functionalities inside.

- ViewController.swift. This file manages the app interface setup
and interaction between interface and underlying data.

- Main.storyboars. This file contains the canvas for building and
setting up the user interface.

- Assets.xcassets. Holds images that are used in application.

- LaunchScreen.storyboard. This file contains an initial user interface
that is loaded when the user taps on app’s icon. The system displays launch
screen immediately, letting the user know that app is now launching. When
app is ready, the system hides the launch screen and reveals app’s actual
interface.

- Info.plist. This document describes the keys and corresponding
values that can be included in an information property list file.

- yourAppName.xcdatamodeld. This file is created by default is
during the project creation the use of Core Data was enabled and
contains tools for creating and managing database models.

As the MVC is the officially recommended architectural pattern
the files can be separated in three folders by its Model, View or
Controller features. Each screen (view) presented in the Interface builder

29

Translating Design Into Code — Add and Setup Basic Application Component

is connected to its own ViewController that will manage the views inside
of it. As app consist of four tabs — there have to be four ViewControllers,
each managing its own tab. To see this connection go to
Main.storyboard, select needed tab and in Identity inspector check the
class (ViewController) (Figure 3.8).

The Assistant Editor tool can be applied to ease the connection of
views to code. Call the Assistant Editor and place Main.storyboard with
designed Measure tab on the left-hand side and connected to Measure tab
ViewController on the right-hand side (Figure 3.9).

e Main.storyboard Main.storyboard (Base) Measure Scene Measure <A> 0D G T B
l , Loaded by ! Custom Class
Class measureViewController (¥}
Module [~]

Inherit Module From Target

241 AM -
Add Measure
identity

Storyboard ID

Restoration 1D
Use Storyboard ID

User Defined Runtime Attributes
No details
KeyPath Type Value

t
Document
WedApr24 3 55 PM Label
x
Object 1D BAG-r9-JrR
Lack Inherited - (Nothing) B

Localizer Hint

+

Figure 3.8

There are four controls on Measure tab that give us user
information:

- UlTextField that present ongoing glucose measure;

- UIButton that calls the UlAllertController for selection of meal
dependence;

- UlDatePicker to select the date of ongoing glucose
measurement;

- UIButton to save the entered data.

The UlTextField and UlDatePicker views are can be refereed in

30

Translating Design Into Code — Add and Setup Basic Application Component

ViewContoller as 1BOutlet. In iOS an outlet is a property of an object
that references another object. The reference is archived through
Interface Builder. The containing object holds an outlet declared as a
property with the type qualifier of IBOutlet and a weak option.

@IBOutlet weak var glucoseMeasure: UlTextField!
@IBOutlet weak var datePicker: UIDatePicker!

Code sample 3.1

The UlButtons are referred in ViewController as IBAction that
perform function on its activation.

@IBAction func mealBtnPressed (btn: UIButton!) {}
@IBAction func saveMeasureBtnPressed (btn:
UIButton!) {}

Code sample 3.2

After adding 1BOutlet and IBActions for each component they
have to be connected with according views in Interface Builder. This can
be made by holding the dragging from the circle created near the new
@I1BOutler or @IBAction to the view (Figure 3.9).

L LosdSABYS [Fing ~ mealinf <]

Add Measure

WedApr24 3 55 PM

[[] View as: iPhone 8 (.C R} 72% €] 1B to] kAl

Figure 3.9
31

Translating Design Into Code — Add and Setup Basic Application Component

5. Receiving data from Measure views

As the connection was enabled we can start getting the user
information from those controllers. To do so we can create three
variables that will hold received data for following use as Core Data
entities (Code sample 3.3):

var glucoseData: Double?
var meal = "No details"
var date: String?

Code sample 3.3

Let’s consider the process of obtaining the glucose measurement
data from UlTextField (Code sample 3.4). The guard statement
combines two powerful concepts: optional unwrapping and where
clauses, thus giving a safe way of avoiding nil, invalid values or the very
long if let statement.

func getGlucoseMeasure () {

guard let measure = Double(glucoseMeasure.text!)

else {

print ("Not a number: \ (glucoseMeasure.text!)")
return

}

self.glucoseData = measure }
Code sample 3.4

As a result of code sample 3.4 the constant measure of double type
is obtained and if user skips this measure we can process what to do
next, for instance — give the warning message (Code sample 3.5).

func alertMessageMeasurement () {

let alert = UIAlertController(title:
"Oops...", message: "Please enter the
glucose measurement", preferredStyle:

UIAlertController.Style.alert)

32

Translating Design Into Code — Add and Setup Basic Application Component

alert.addAction (UIAlertAction(title: "OK",
style: UIAlertAction.Style.default,
handler: nil))

self.present (alert, animated: true,
completion: nil)
}

Code sample 3.5

When user presses UlButton to enter the measurement dependence
on eaten meal we present UlAlertController [4]. The UlAlertController
shows four options: “After meal”, “Before meal”, “Bedtime” or
“Cancel” that will chance the UlButton title thus showing user the
selected variant. The “Cancel” will leave the default data — “No details”.
This can be performed in following way (Code sample 3.6).

@IBAction func mealBtnPressed (btn: UIButton!) {

let optionMenu = UIAlertController(title:
nil, message: "Select the meal dependance",
preferredStyle:
UIAlertController.Style.actionSheet)

let beforeMeal = UIAlertAction(title: "Before
meal", style: .default, handler: {(action) ->

Void in
self.meal = "Before meal"
btn.titlelabel?.text = "Before meal"

)

let afterMeal = UIAlertAction(title: "After
meal", style: .default, handler: {(action) ->

Void in
self.meal = "After meal"
btn.titleLabel?.text = "After meal"

b

let bedtime = UIAlertAction(title:
"Bedtime", style: .default, handler: { (action) -
33

Translating Design Into Code — Add and Setup Basic Application Component

>

Void in

self.meal = "Bedtime meal"

btn.titleLabel?.text = "Bedtime meal"

})
let cancel = UIAlertAction(title: "Cancel",
style: .cancel, handler: {(action) ->
Void in
self.meal = "No details"
btn.titlelLabel?.text = "No details"

b

beforeMeal)
afterMeal)
bedtime)
cancel)

optionMenu.addAction
optionMenu.addAction
optionMenu.addAction
optionMenu.addAction

—~ o~~~

self.present (optionMenu, animated: true,
completion: nil)

}
Code sample 3.6

Date and time from UlDatePicker can be obtained with
DateFormetter() class (Code sample 3.7) [5]:

func getDate () {
let dateFormatter = DateFormatter ()
dateFormatter.dateStyle
DateFormatter.Style.medium
dateFormatter.timeStyle
DateFormatter.Style.short
let strDate =
dateFormatter.string (from: datePicker.date)
self.date = strDate
self.datePicker.endEditing (true)

Code sample 3.7
34

Translating Design Into Code — Add and Setup Basic Application Component

6. Constructing the History tab in the Interface Builder and
programming the basic connections between view and code

The tab History is presented as UlTableView with
UlTableViewCell inside which present the following user information:

- UlLabel with saved glucose measurement;

- UlLabel showing the meal dependence;

- UlLabel with data and time of corresponding measurement.

The designed cell can be created using default cell settings but for
learning purpose we will consider creation of custom UlTableViewCell.

7. Constructing the History tab in the Interface Builder

Set up UINavigationBar. As in previous case with Measure tab
select in Objects library UINavigationBar and drag it to the Interface
Builder canvas. Resize and position it as needed. Pin it’s Top to the Top,
Leading and Trailing edges to the container view, set height and give
name to the Title “Measurement History”.

Set up UlTableView. Select in Object library the UlTable view
and drag it under the UINavigationBar. Change the size and pin Leading,
Trailing and Bottom edges to the container view and Top to the Bottom
edge of UINavigation bar, give it Horizontal alignment.

Set up UTableViewCell. From the Object library drag on the
UlTableView the UlTableViewCell and place it in the top of the table
and change it size.

This cell contains three UlLabels, thus we need to place them
properly and set all constraints. The first UlLabel that contains glucose
measurement appears in top left corner of the cell, thus pin it Top and
Leading edge to the UlTableViewCell, give it height and with Aspect
ratio make it half-long of cell width.

Place second UlLabel under the measures label and pin it Top
edge to the Bottom of first one with margin 8, Leading edge to the cell,
set height and make as long as previous label.

The last UlLabel which presents date and time have to be placed
in the upper right corner. Pin it Trailing to the cell, Leading edge to the
Trailing of first UlLabel with measurement data and make the right text
alignment.

Set text colors for each created labels, as well as consider text
truncation mode. The result is presented on Figure 3.10.

35

Translating Design Into Code — Add and Setup Basic Application Component

ltem View Tab...iew Table View Cell)| | Content View ¢ [> O @ @ ¢ B &
View
Content Mode Center | <}
) Semantic Unspecified | <]
9:41 AM - =
Tag 0°
Measurement History Interaction User Interaction Enabled

Multiple Touch
Prototype Cells

Alpha 1
90 mg/dl
Background Default

<) < N

Tint NN Default

Drawing Opaque
Hidden
Clears Graphics Context
Clip to Bounds
Autoresize Subviews

Stretching 02 02

" Width Height
Table View ‘ e

Prototype Content

Figure 3.10

8. Connecting the History views with code

After placing the UlTableView and labels in UlTableViewCell in
the History tab they should be connected with the code in
ViewController.

As the table presents cells, let’s finish the configuration of the
UlTableViewCell first. To do so the cell reuse identifier and
UlTableViewCell subclass, which provide the custom cell behavior,
should be created.

Select the created cell in Main.storyboard file and in Attributes
inspector define the name of table cell Identifier, for example
“HistoryCell” (Figure 3.11).

Create new swift file with File/New/File and add initial connecting
information as in Code sample 3.8. Return to the Main.storyboard and

36

Translating Design Into Code — Add and Setup Basic Application Component

select the UlTableViewCell. Choose the Identity inspector and select the

file cell View Controller (Figure 3.12).
With the help of Assistant editor create connections from

IBOutlets to each UlLabel.

Prototype Calls

Figure 3.11 Figure 3.12

import Foundation
import UIKit

class HistoryCellViewController:
UITableViewCell {

@IBOutlet weak wvar measure: UILabel!
@IBOutlet weak var meal: UILabel!
@IBOutlet weak wvar date: UILabel!

override func awakeFromNib () {
super.awakeFromNib ()

}

Code sample 3.8.

Now let’s consider the initial configuration of UlTableView [6].
Tables are data-driven elements of an interface. We need to provide app with
data, along with the views needed to render each piece of that data onscreen,
using a data source object that adopts the required UlTableViewDataSource

37

Translating Design Into Code — Add and Setup Basic Application Component

protocol. The table view arranges views onscreen and works with data source
object to keep that data up to date.

The second required protocol to work with UlTableView is
UlTableViewDelegate. The following features can be managed while
accessing methods from this protocol:

- Creation and managing custom header and footer views.

- Specifying custom heights for rows, headers, and footers.

- Providing height estimates for better scrolling support.

- Indent row content.

- Respond to row selections.

- Respond to swipes and other actions in table rows.

- Support editing the table's content.

The table specifies rows and sections using NSIndexPath objects.

When we specify usage of UlTableViewDataSource there are two
methods are required (Code sample 3.9):

func tableView (tableView: UlITableView,
numberOfRowsInSection section: Int) -> Int

func tableView (tableView: UlTableView,
cellForRowAt indexPath: IndexPath) ->
UlITableViewCell

Code sample 3.9

After providing the basic UlTableView setup to the History tab
View Controller the file will contain following changes (Code sample 3.10):

import UIKit
import CoreData

class HistoryViewController:
UIViewController, UlITableViewDataSource,
UlTableViewDelegate {

@IBOutlet weak wvar tableView: UITableView!

override func viewDidLoad () {
super.viewDidLoad ()
tableView.delegate = self
38

Translating Design Into Code — Add and Setup Basic Application Component

tableView.dataSource = self

}

override func viewDidAppear(animated: Bool) {

tableView.reloadData ()
}

func tableView(tableView: UITableView,
cellForRowAt indexPath: IndexPath) ->
UlTableViewCell {
if let cell =
tableView.dequeueReusableCellWithIdentifier ("His
toryCell") as? HistoryCellViewController {
return cell
}
else {
return
HistoryCellViewController ()
}

}
func tableView (tableView: UlITableView,

numberOfRowsInSection section: Int) -> Int {
return 1

Code sample 3.10

1.3.4 Report requirements and tasks

Practical work tasks:

1. Create the new project in Xcode and create the application
screens structure using Tab Bar Controller.

2. Set views in Measure tab; apply all necessary constraints so the
views will properly operate on various devices. Connect controls with
code and set initial methods. Build and run application.

3. Set views in History tab, create constrains for each view and
connect them with code. Add methods required by
UlTableViewDataSource protocol. Build and run application on several
iPhone simulators.

The report should contain following sections:

7. Introduction — background, theory and practical work purpose;

39

Translating Design Into Code — Add and Setup Basic Application Component

8. Development — screenshots with explanation of each practical
work task completion. Screenshots of how applications views behave on
several iPhone simulators.

9. Summary — conclusions and result summary.

1.3.5 Test questions

1. What is an Xcode Interface Builder? Describe it logical parts.

2. How constraints to different views can be added inside of an
Interface Builder? Describe the constraints types.

3. Explain the difference between dynamic and static
UlTableView?

4. Describe how we can create the segue between different View
Controllers.

5. What type of data we can set for UIView, UiButton, UlLabel
and UlTableView from Attributes Inspector?

1.3.6 Recommended literature and resources

1. Using Interface Builder. https://developer.apple.com/library/
archive/documentation/ToolsLanguages/Conceptual/Xcode_Overview/U
singInterfaceBuilder/

2. Adding Assets. https://developer.apple.com/library/archive/
documentation/
ToolsLanguages/Conceptual/Xcode_Overview/Addinglmages/

3. Connecting Objects to Code. https://developer.apple.com/
library/archive/documentation/ToolsLanguages/Conceptual/
Xcode_Overview/ConnectingObjectstoCode/

4. UlAlertController Class Documentation. https://developer.
apple.com/documentation/uikit/uialertcontroller/

5. UlDatePicker Class Documentation. https://developer.
apple.com/ documentation/uikit/uidatepicker/

6. UiTableView Class Documentation. https://developer.
apple.com/ documentation/uikit/uitableview

40

Getting Started With Core Data

Practical work 1.4
GETTING STARTED WITH CORE DATA

1.4.1 Synopsis

In this practical work we will discuss what a Core Data is and how
we can use in inside of application. We will create the first Entity, add its
attributes, save glucose measures to it learn how to retrieve them and
present inside of the table.

1.4.2 Brief theoretical information

The Core Data is heavily used in many nowadays mobile applications
to save user permanent data for offline use, to cache temporary data etc. The
data types and relationships can be defined through Core Data’s Data Model
editor. This model editor also helps with generation of respective class
definitions [1]. Core Data abstracts the details of mapping app’s objects to a
store, making it easy to save data from Swift and Objective-C without
administering a database directly.

As it was stated before, the glucose management app should support
deleting the unnecessary data from history table. The Core Data’s undo
manager can help to track changes and can also roll them back individually,
in groups, or all at once, making it easy to add undo and redo support to the

app [2].

1.4.3 Practical steps

1. Creation of Core Data Model

The Core Data model was already made during project creation, but if
it is not the model can be added to the project in following way:

1. Choose File > New > File and select from the i0S templates.
Scroll down to the Core Data section, and choose Data Model (Figure 4.1).

2. Click Next. Name model file, and select its group and targets
(Figure 4.2).

3. An .xcdatamodeld file with the specified name is now added to
the project (Figure 4.3).

41

Getting Started With Core Data

Choose a template for your new file:

warchOS wOS macos
Source
s rie Cree - e—
User Intertace
Storyboard View Empty Launch Sereen
Core Data
L
Data Model Mapping Model
Apple Watch
Cancel Next
Tags
=v | B I Glucose 02| Q
Fvarites Name Date Modified Size Kind |
[Documents.
© Downoad » I Assets.xcassets A at 3:02 PM Foldd
o) » W Baselproj day at 1:20 PM Folde
23 Dropbox !
e Moplications > W Fonts Apt 24,2019 at 4:09 PM Folde
Group Glucose I
i
Targets @ A Glucose
|
|
New Folder Cancel
B 2 QAN o 3 88 < > [Glucose) [7]) [1) {3) g HistoryModel.xcdatamodel) [&) Default < 4 >
v
B Glucose M | enmimies v Entities
¥ | Glucose
» | Controller R | FETCHREQUESTS Entity A Abstract Class
> B3 View CONFIGURATIONS
¥ [Model
— 3 Default
I8 HistoryMod...cdatamodeld A
|10 Assets.xcassets }
Info.plist
> Fonts

» . Products

Figure 4.3

42

Getting Started With Core Data

To start Core Data Model configuration we need to create its Entity.
An entity describes an object, including its name, attributes, and
relationships. It should be created for each application object.

Click Add Entity at the bottom of the editor area. A new entity with
placeholder name Entity appears in the Entities list. Double-click the newly
added entity, and change it name. This updates both the entity name and class
name visible in the Data Model inspector. In addition to the required name
and class name fields, entities have a default setting for the required code
generation field. If inheritance, unique constraints, versioning or other
optional information have to be added we need to configure entity attributes.

2. Creation of Entity Attributes

The attributes can be created in following way:

1. Select created entity and with button Add attribute placed in the
bottom of editor window add new one.

2. A new attribute with placeholder name attribute, of
type Undefined, appears in the Attributes list. In the Attributes list, double-
click the newly added attribute, and name it in place.

3. In the Attributes list, as shown in Figure 4.4, click
on Undefined and select the attribute’s data type from the Type dropdown
list.

ENTITIES Vv Attributes
3 HistoryModel
Attribute A Type
FETCH REQUESTS @measure v Undefined 2
Integer 16
CONFIGURATIONS Integer 32
| Default Integer 64
= Decimal
Double
¥ Relationships Float
String
Relationship Boolean Inverse
Date
Binary Data
uuID
URI
+ Transformable
Figure 4.4

43

Getting Started With Core Data

We can use the Data Model Inspector (View/Inspectors/Show Data
Model Inspector) to configure attributes (Figure 4.5).

@ @
Attribute |
|

Name measure

Properties Transient Optional i
Attribute Type String 2 '

Validation Min Length .
Max Length I
Default Value

Reg. Ex.

Advanced Index in Spotlight
Preserve After Deletion

Deprecated

Spotlight Store in External Record File

Figure 4.5

By default, attributes are saved to the store. Selecting the Transient
attribute property forbids the saving to the persistent store. Transient
attributes are a useful place to temporarily store calculated or derived values.
Core Data does track changes to transient property values for undo purposes.

Optional attributes are not the same as Swift optionals. Optional
attributes aren’t required to have a value when saved to the persistent store.

The attribute’s data type reflects the selection made in the Attributes
list’s Type dropdown.

We can optionally set validation rules such as the minimum and
maximum values for a numeric type.

Most value types supply a default value. New object instances set the
attribute to this default value on initialization, unless another value have
already been specified.

In Advanced section with “Index in Spotlight” addition of the field to
the Spotlight index for instances created from this entity can be specified.
The second option here is “Preserve After Deletion”, which includes the
attribute in this entity’s tombstone.

4. Add two more attributes to the HistoryModel entity that reflect the
meal dependence and date with time information.

44

Getting Started With Core Data

3. Saving user data to Core Data Model with Save Measure button

Now we can save the data to created HistoryModel entity after user
presses Save Measure button on Measure tab. Start with importing CoreData
than apply the following changes (Code sample 4.1):

@IBAction func saveMeasureBtnPressed (btn:
UIButton!) {

getGlucoseMeasure ()
getDate ()

let app = UIApplication.shared.delegate as!
AppDelegate

let context = app.managedObjectContext

let entity =
NSEntityDescription.entity (forEntityName:
"HistoryModel", in: context) !

let history = HistoryModel (entity: entity,
insertInto: context)

history.measure = self.glucoseMeasure.text

history.meal = self.meal.text

history.date = self.date.text

context.insertObject (history)

do {
try context.save ()
} catch ({
print ("Could not save recipe")

}
self.navigationController?.popViewController (ani
mated: true)

}

Code sample 4.1

4. Configuration of the HistoryCellViewController class
Now we need to finish configuration of HistoryCellViewController
class to display the saved information. To do so we need to add following
function that will connect UlLabel with info from HistoryModel and import
CoreData (Code sample 4.2).
45

Getting Started With Core Data

func configureCell (history: HistoryModel) ({
measure.text = history.measure
meal.text = history.meal
date.text history.date

Code sample 4.2

5. Configuration of the HistoryViewController class

Create an array with data from HistoryModel first and than function
that will fetch and set the obtained from data model results. Call the
fetchAndSetResults() with method that reloads table from viewDidAppear()
(Code sample 4.3)

var history = [HistoryModel] ()
override func viewDidAppear (animated:
Bool) {
fetchAndSetResults ()
tableView.reloadData ()
}
func fetchAndSetResults () {
let app = UIApplication.shared.delegate as!
AppDelegate
let context = app.managedObjectContext
let fetchRequest =
NSFetchRequest (entityName: "HistoryModel'")
do {
let results = try
context.executeFetchRequest (fetchRequest)
self.history = results as! [HistoryModel]
} catch let err as NSError {
print (err.debugDescription)

}
Code sample 4.3

Change the functions that set cells with data inside the table and show
all saved data into the rows (Code sample 4.4).
func tableView(tableView: UlITableView,

46

Getting Started With Core Data

cellForRowAt indexPath: IndexPath) ->
UlITableViewCell {

if let cell =
tableView.dequeueReusableCellWithIdentifier ("His
toryCell") as? HistoryCellViewController

let history = history[indexPath.row]
cell.configureCell (history)
return cell

}

else {

return
HistoryCellViewController ()

}

}
func tableView (tableView: UlITableView,

numberOfRowsInSection section: Int) -> Int
return history.count

Code sample 4.4

1.4.4 Report requirements and tasks

Practical work tasks:

1. Check if a Core Data model was created along with project. If
it is not, add Core Data to application as it was discussed in section
1.4.3.

2. Create an Entity with attributes that will present a glucose
measurement that was added by user to an application.

3. Add methods to save the data inside Core Data model and
retrieve it to fill the table on History tab with data.

4. Add methods to delete the selected by user data from Core
Data.

The report should contain following sections:

1. Introduction — background, theory and practical work purpose;

2. Development — screenshots with explanation of each practical
work task completion; MeasureViewController.swift and

47

Getting Started With Core Data

HistoryViewController.swift code with comments; screenshot of
working application on several iPhone simulators.
3. Summary — conclusions and result summary.

1.4.5 Test questions

1. What is a Core Data?

2. Explain the idea of Core Data entity and its attributes. How a
new entity can be created in swift project?

3. What methods are applied to make a new data record to the
Core Data model?

4. How we can read data from Core Data?

5. What method can be applied to delete specific data from Core
Data model?

1.4.6 Recommended literature and resources

1. J.D.Gauchat. Core Data in iOS 12/ MinkBooks, 2018. — 60 p.

2. Core Data. Framework Documentation. https://developer.
apple.com/documentation/coredata

48

Accessing User Health Information Using HealthKit

Practical work 1.5

ACCESSING USER HEALTH INFORMATION USING
HEALTHKIT

1.5.1 Synopsis

In this practical work we will focus on interaction with HealthKit
framework, specifically how an application can access it, query for its
data samples and save the results.

1.5.2 Brief theoretical information

The glucose level depends not only on nutrition, but on physical
activity as well, thus designed management app needs an access to the
the data stored in HealthKit.

HealthKit provides a central repository for health and fitness data on
iPhone and Apple Watch. The applications can communicate with HealthKit
data only with user permission to access and share its data. The framework
was designed basically to share data between apps so it contains the types of
data and units to a predefined list, thus developers cannot create custom data
types or units using only those types that HealthKit provides.

The framework uses a large number of subclasses, which produces
deep hierarchy of similar classes with small but meaningful differences
between them. There are also closely related classes in HealthKit that must
be paired correctly.

The HealthKit saves a variety of data types to the HealthKit Store:

- Characteristic data — presents items that are constant, such as the
birthdate, blood type, biological sex, and skin type. This data can be accessed
directly from HealtHkit store using such methods as the dateOfBirth(),
bloodType(), biologicalSex() and fitzpatrickSkinType(). The application
cannot save this data type as the user must enter or modify it with Health app
directly. Your application cannot save characteristic data.

- Sample data —most users’ health data is stored in samples that
represent information at some particular moment of time. All sample classes
are subclasses of the HKSample class, which is a subclass of the HKObject
class.

- Workout data — data on fitness activities is stored as
HKWorkout samles, which is also a subclass of HKSample.

49

Accessing User Health Information Using HealthKit

- Source data — every sample stores data about its source. The
HKSourceRevision object contains info about each app or device that saved
those samples and the HKDevice object contains info about the hardware
device that produced the data.

- Deleted objects —the HKDeletedObject is used to temporarily
store the UUID (the unique identifier for some particular entity) of an item
that was deleted from the HealthKit store.

The HKObject class is the superclass of all HealthKit sample types
and all HKObject subclasses are immutable.

Each object of this class has the following properties:

- UUID — unique identifier for the particular entry.

- Metadata — dictionary that contains additional information about
the entry.

- Source Revision — the source (device that directly saves data into
HealthKit or application) of the sample.

- Device —the device that creates the data stored in the sample.

The HKSample class is a subclass of HKObject. Sample objects present
data at a some point in time, and all sample objects are subclasses of the
HKSample class, with following properties:

- Type - the sample type, such as a sleep analysis sample or a step
count sample.

- Start date - the sample’s start time.

- End date - the sample’s end time. If the sample represents a single
point in time, the end time should equal the start time.

To use HealthKit in an application is have to be enabled, checked it is
available on current device, the app’s HealthKit store should be created and
an app must send a request for permission to read and share data [1].

1.5.3 Practical steps

1. Enable HealthKit

To start using the HealthKit, we need to add HealthKit capabilities for
your app. In Xcode, select the project and turn on the HealthKit capability
(Figure 5.1). The Health Records checkbox must be enabled only if an app
needs to access the user’s clinical records. It should be noted that during App
Review application can be rejected is Health Records were enabled but app
actually doesn’t uses the Health Record data.

After enabling HealthKit in application, Xcode will add HealthKit to
the list of required device capabilities that prevents users from purchasing or

50

Accessing User Health Information Using HealthKit

installing the app on devices that do not support HealthKit. In case if
HealthKit is not required for the application correct operation we can delete
the record healthkit from the Required device capabilities array in
Info.plist. After enabling this feature in application we need to check the
availability on current device.

In glucose management application user can connect Health through
Settings tab, thus we need to build it and make some additional configuration
first.

] General Capabilities Resource Tags Info Build Settings Build Phases Build Rules
PROJECT
B Glucose

TARGETS

HealthKit | on [

HomeKit

Figure 5.1

2. Constructing Settings tab in the Interface Builder

Set up UlNavigationBar. Drag from Object library the
UlNavigation bar and set it in the top of Settings tab. Pin it Leading,
Trailing and Top edges to the container view. Set height and title
“Settings”.

Set up the static UlTableView. The list of parameters presented on
Settings tab is presented in table form that have known number of rows and
sections, thus we need to create the static UlTableView. The static table
views can only be created from UlTableViewController that was already
added in Practical work 1.3.

Start with dragging UlTableView to the Interface Builder canvas.
Place and size the table, pin Leading, Trailing and Bottom edges to the
container view and Top edge to the Bottom of UINavigationBar.

In the Attributes Inspector of UlTableView change content type to
Static cells, set 2 sections, and by selecting each section change it hame and
number of rows. Change the cells height.

Place UllmageView in the top cell. Pin it Leading edge to the
container view Leading edge. Set height and width and align vertically in

51

Accessing User Health Information Using HealthKit

container. Select image and change the UilmageView content mode to
Aspect Fit.

Add UlLable near UilmageView. Pin it Leading edge to the Trailing
edge of the image with needed margin. Set height and width and align
vertically in container. Change UlLable title.

Select Switch in the Objects library and place it near UlLable. Pin it
Trailing edge to the container view, set height, width and align vertically in
container view. The Switch should be disabled by default, thus change it state
to Off.

Repeat the same with UllmageView in the second section. The
Health authorization is performed through UlIButton object, thus drug it fron
Object library and place near image. Pin it leading edge to the UllmageView
Trailing side, set height and width, give vertical alignment in the container
view, which is a static cell. Change title. The result should look as on Figure
5.2.

Settings

Figure 5.2

3. Connecting the History views with code

To handle events from UISwitch and UIButton we need to create
IBOutlets for switch and IBAction for button in code and connect outlet
and action with appropriate controls using control-drag from views to the
SettingsViewController.swift (Figure 5.3).

52

Accessing User Health Information Using HealthKit

Tettngs
saram - 2|
]]]]] t UIKit
Settings inport HealthKit
Notifications class SettingsViewController: UIViewController {
,[:], Glucose measurement ® eIBOutlet weak var notificationSwitch: ulSwitcht
Cennection averride func viewDidload() {
— super.viewbidLoad()
Authorize Hefsith——_ }
— @IBAction func healthAuthBtnPressed(_ sender:
UIButton){
@IBAction func notificationTrigger(_ sender: Any) {
Table View
]
A
)
setings

4. Ensure HealthKit’s availability, create the HealthKit Store and
request Permission to read and share data
First we need to create an empty class HealthKitSetupAssistant with
an error type and the body of a method that will be used to authorize
HealthKit — autgorizeHealthKit(completion:) [2]. The method accepts no
parameters and has a completion handler which returns a Boolean value and
an optional error. Create new swift file and pass following code inside (Code
sample 5.1).

import HealthKit

class HealthKitSetupAssistant ({
private enum HealthkitSetupError: Error {
case notAvailableOnDevice
case dataTypeNotAvailable
}
class func authorizeHealthKit (completion:
@escaping (Bool, Error?) -> Swift.Void) {

b}

Code sample 5.1
53

Accessing User Health Information Using HealthKit

To ensure HealthKit availability the isHealthDataAvailable()
method should be called in authorizeHealthKit() method (Code sample
5.2). This method should be called before any other HealthKit method as
if it is not available, for example iPad does not support the HealthKit, the
other methods will fail with “errorHealthDateUnavailable”. If use of
HealthKit is restricted on user device HealthKit methods will fail with
“errorHealthDataRestricted”.

guard HKHealthStore.isHealthDataAvailable () else
{
completion (false,
HealthkitSetupError.notAvailableOnDevice)
return
}
Code sample 5.2

HealthKit requires fine-grained authorization to protect the user’s
privacy, thus application must request permission to both read and share each
data type before you any attempt to access or save the data [3].

For example, in the glucose application we can ask for permission to
read and share heart rate, cycling distance, walking or running distance and
swimming samples. In order to create an HKObjectType for given biological
characteristics or quantity we need to use
HKODbjectType.characteristics(forldentifier:) or
HKObjectType.Quantity Type(forldentifier:) in authorizeHealthKit()
method (Code sample 5.3).

guard let distanceCycling =
HKObjectType.quantityType (forIdentifier:
HKQuantityTypeldentifier.distanceCycling),

let distanceWalkingRunning =
HKObjectType.quantityType (forIdentifier:
HKQuantityTypeldentifier.distanceWalkingRunning)
, let heartRate =
HKObjectType.quantityType (forIdentifier:
HKQuantityTypeldentifier.heartRate),

let distanceSwimming =
HKObjectType.quantityType (forIdentifier:

54

Accessing User Health Information Using HealthKit

HKQuantityTypeldentifier.distanceSwimming) else
{
completion (false,
HealthkitSetupError.dataTypeNotAvailable)
return
}
Code sample 5.3

HealthKit expects a set of HKSampleType objects that represent the
kinds of data which user can write. The immutable data that can be only read
can be presented with HKObjectType objects. Add following code to
authorizeHealthKit() method (Code sample 5.4).

let healthKitTypes: Set<HKSampleType> =
[distanceCycling, distanceWalkingRunning,
heartRate, distanceSwimming]

Code sample 5.4

Now we need to request authorization from HealthKit and then call
completion handler from authorizeHealthKit() method (Code sample
5.5).

HKHealthStore () .requestAuthorization (toShare
healthKitTypes,
read: healthKitTypes) { (success,
error) in completion (success, error)
}
Code sample 5.5

As is was stated before the authorizeHealthKit() have to be invoked on
pressing the Health authorization button. In SettingsViewController we
can add the following code that will print a message to the console to let
us know if HealthKit was successfully authorized and updates the button
state (Code sample 5.6). The HealthKit cannot be unauthorized directly
from the application as it can be disconnected only if user delete app
from device or turn off the connection if device Settings.

55

Accessing User Health Information Using HealthKit

@IBAction func healthAuthBtnPressed(_ sender:
UIButton) {

HealthKitSetupAssistant.authorizeHealthKit {
(authorized, error) in

guard authorized else {

let baseMessage = "HealthKit Authorization
Failed"

if let error = error {
print ("\ (baseMessage) . Reason:
\ (error.localizedDescription)")
} else {print (baseMessage)
}
return
}
print ("HealthKit Successfully Authorized.™)
sender.iskEnabled = false
}
}
Code sample 5.6

5. Querying Samples

After passing the authorization stage we need to query for most recent
samples — heart rate, cycling, walking, running and swimming distances.

Querying the samples from HealthKit splits into two stages:

1. To specify the type of sample you want to query;

2. Set additional parameters to help filter and sort the data.

There are few similarities with Core Data, for example
HKSampleQuery is very similar to NSFetchRequest for an entity type.

Once the query is setup we call HKHealthStore’s executeQuery()
method to fetch the results.

For querying purpose, we will create a single generic function that
loads the most recent samples of any type. Create a ProfileDataStore
empty class and import HealthKit framework inside. This class represent
a point of access to all of the health-related data from HealthKit. Add a
getMostrecentSample() method (Code sample 5.7) inside that takes a

56

Accessing User Health Information Using HealthKit

sample type, builds a query to get the most recent data of that type. The
code in the completion handler occurs inside of a Dispatch block because
querying sample from HealthKit is an asynchronous process. We want
the completion handler to happen on the main thread, so the user
interface can respond to it in other case the application will crash. If all
goes well, the query will execute and return a sample to the main thread
where SettingsViewController can take that content.

import Foundation
import HealthKit

class ProfileDataStor/{
class func getMostRecentSample (for
sampleType: HKSampleType,
completion: (@escaping (HKQuantitySample?,
Error?) -> Swift.Void) {
let mostRecentPredicate =
HKQuery.predicateForSamples (
withStart: Date.distantPast,
end: Date(),
options: .strictEndDate)
let sortDescriptor = NSSortDescriptor (
key: HKSampleSortIdentifierStartDate,
ascending: false)
let limit = 1
let sampleQuery = HKSampleQuery (
sampleType: sampleType,
predicate: mostRecentPredicate,
limit: limit,
sortDescriptors: [sortDescriptor]) {
(query, samples, error) in
DispatchQueue.main.async {

guard let samples = samples,
let mostRecentSample =
samples.first as? HKQuantitySample else
{completion (nil, error)
return

57

Accessing User Health Information Using HealthKit

1
completion (mostRecentSample,
nil)
1}
HKHealthStore () .execute (sampleQuery)
}

Code sample 5.7

Now we can locate the displayMostRecentHeartRate() method in
SettingsViewController.swift. The method starts by creating a Heart Rate
sample type, then pass the sample type to getMostRecentSample() of
ProfileDataStore class which returns the latest record from HealthKit (Code
sample 5.8). This record can be used for all appropriated purposes inside of
an application.

func loadMostRecentHeartRate () {
guard let heartRate =
HKSampleType.quantityType (forIdentifier:
.heartRate) else {
print ("Heart Rate Sample Type is no
longer available in HealthKit")
return
}
ProfileDataStore.getMostRecentSample (for:
heartRate) { (sample, error) in
guard let sample = sample else {
if let error = error {
self.displayAlert (for: error)
}

return

Code sample 5.8

In case if something goes wrong user receives an alert message
(Code sample 5.9).
private func displayAlert (for error: Error)
58

Accessing User Health Information Using HealthKit

let alert = UIAlertController(
title: nil, message:
error.localizedDescription,
preferredStyle: .alert)
alert.addAction (UIAlertAction(title: "OK.",
style: .default, handler: nil))
present (alert, animated: true, completion:
nil) }
Code sample 5.9

1.5.4 Report requirements and tasks

Practical work tasks:

1. Enable the Health Kit in project Settings, check its availability
on user device.

2. Create a Settings tab with static UlTableView and connect it
with outlets and actions in code.

3. When user selects the authorization to Health request an access
to the Health Kit data and disable “Authorize Health” button.

4. Download samples for walking and running, cycling and
swimming distances. Convert the received data and print it to the console.

5. Create a new Core Data entity that will hold the latest HealthKit
samples for walking and running, cycling, swimming distances and a heart
rate sample. Save samples measures into created Core Data entity.

6. Add the send notifications feature through triggering UISwitch
state change in Setting tab.

7. Advanced task: In navigation bar of History tab add right bar
button that will load a new View Controller as shown on Figure 5.4 — 5.5.
This View Controller should present received from HealthKit latest data
(heart rate, walking and running distance, swimming and cycling distances).

The report should contain following sections:

1. Introduction — background, theory and practical work purpose;

2. Development — screenshots with explanation of each practical
work task completion; code with comments from
SettingsViewController.swift, MeasureViewController.swift and
HistoryViewController.swift files; screenshot of working application on
several iPhone simulators.

3. Summary — conclusions and result summary.

59

Accessing User Health Information Using HealthKit

ull Sketch ¥ 9:41 AM £ 100% (= il Sketch & 9:41 AM * 100% (-
_a2
Measurement History = ¢ Back Latest Activities
90 mg/d| Jan 10, 04:25PM DISTANCES
Aflter mea.
% Cycling 0 km
118 mg/d| Jan 10, 06:36AM
Fasting
g Swimming 0.8 km
Jan 10, 04:25PM hatas
Delete
L]
.’F—_: Running or walking 4.5 km
130 mg/dl Jan 10, 06:36AM
Fasting HEALTH
80 mg/dl Jan 10, 04:25PM @ Heart Rate 82 bpm
Before meal
95 mgy/dl Jan 10, 04:25PM
Before meal
83 mg/dl an 10, 02:27PM
Snacks
125 mg/d| Jan 10, 02:27PM
Alter mea.
132 mg/dl Jan 10, 02:27PM Update Health Data
Fasting
& Q ih -+ & Q ih +
: Jistory : stery
Figure 5.4 Figure 5.5

1.5.5 Test questions

1. What is a HealthKit framework?

2. What steps should be performed to authorize in HealthKit?
3. How to make basic setup of static UITableView?

4. How we can trigger different the UlSwitcher stages?

1.5.6 Recommended literature and recourses

1. About the HealthKit Framework. https://developer.apple.com/
documentation/healthkit/about_the_healthkit_framework

2. Setting Up HealthKit. https://developer.apple.com/
documentation/healthkit/ about_the_healthkit_framework
3. Protecting User Privacy. https://developer.apple.com/
documentation/healthkit/protecting_user_privacy

60

Integrating Third-party Devices Through Bluetooth

Practical work 1.6
INTEGRATING THIRD-PARTY DEVICES THROUGH
BLUETOOTH

1.6.1 Synopsis

In this practical work you will learn the key concepts of the Core
Bluetooth framework to discover, connect and retrieve data from compatible
devices such as glucometers or other third-party health trackers.

1.6.2. Brief theoretical information

Connection to the real-world devices such as glucometers, workout
equipment, heart-rate monitors can help to gather more accurate information
thus provide user with deep insights on his data. While we have already
created the way how to manually add data about last glucose measurement
into an application, we need to automate it as well. Apple has introduced the
Core Bluetooth framework, which can communicate with various third-party
devices via BLE (Bluetooth Low Energy) wireless technology [1].

We will use the iHealth Gluco the wireless smart gluco-monitoring
system for this laboratory work, but any Bluetooth glucometer should work
as well.

A Bluetooth device can be either central or peripheral. The central
device receives the data and the peripheral — publishes data that can be
consumed by other devices. For this practical work the iPhone 8 with iOS
12.1 will be the central device that receives glucose measurement data from
the peripheral.

In form of advertising packets the Bluetooth peripherals broadcast
some of the data. These packets basically contain information such as the
peripheral’s name and main functionality, sometimes providing additional
info about the kind of data they can give. The central device scan for these
packets, identify any peripherals it finds relevant and connect to individual
for more information.

The advertising packets are small thus presenting limited amount of
information. To share more data, a central must connect to a peripheral. The
peripheral’s data splits into to types — services and characteristics, that are
represented by UUID that can be 16-bit or 128-bit value:

- Service is a data collection and associated behaviors describing a
specific function or feature of a peripheral. For example, a glucometer has a
Glucose service. Note that peripheral can have more than one service.

61

Integrating Third-party Devices Through Bluetooth

- Characteristics provide further details about a peripheral’s service.
For instance, the Glucose service has a Glucose Measurement characteristic
that contains the mg/dl data. Each service of peripheral can have more than
one characteristic [2 — 3].

1.6.3. Practical steps

1. Set up the real device for build and run from XCode

The i0S simulator doesn’t support Bluetooth, thus we need to build
and run on an actual device. First connect the iPhone to MacOS machine
with USB line. In XCode go Product/Destination menu item in the top menu
bar (Figure 6.1 — 6.2) and then select the real iPhone device under Device
menu.

. Choose a connected devics to set up) | Device setup complete

Device setup was successful. ‘

Figure 6.1 Figure 6.2

2. Create the Connect tab in the Interface Builder

The Connect tab contains UINavigationBar, UlView with UlLable
and Activity Indicator, UITableView with UlTableViewCell inside.

Drag the UINavigationBar to the Connect View Controller canvas and
place it in the top. Pin it Leading, Trailing and Top to the container view and
set height.

Add UlView under the bar. Pin it Leading and Trailing edges to the
container view and Top edge to the Bottom of UINavigationBar. Set height
and change background color.

Place the UlLable inside and pin it Leading and Bottom edges to the
container view while keeping the margin. Change title text using Attributes
Inspector, set text color. Add Activity Indicator near UlLable. Pin it Leading

62

Integrating Third-party Devices Through Bluetooth

edge to the label Trailing and Bottom edge to the container view. Set height
and width.

Add the UlTableView and pin it Leading, Trailing and Bottom to the
container view, while Top edge should be pinned to the Bottom of UlView.
Drag from Objects library the prototype UlTableViewCell inside the table.
This cell contains only one UlLable inside and while being of custom style
uses a disclosure indicator as accessory type. The result is presented on
Figure 6.3

Add a new swift file that will present data from UlTableViewCell
with following code inside (Code sample 6.1). Select the prototype cell in
Interface Builder and navigate to Identity Inspector to define a new class to
the cell.

RBvEv v v v Table View deviceCell < [> D @B O |
Table View Cell
Style Custom <]
Identifier deviceCell
0:41AM -
Selection Default ™
Add Device Accessory _Disclosure Indicator o
Editing Acc. None 2]
Rp—— Focus Style Default B
Prototype Cells Rntatit 02 102
. L | ‘Width
Device Name e '
B Indent While Editing
Shows Re-arder Contrals
Separator Inset Automatic B
View
Content Mode Scale To Fill B
; Semantic Unspecified <]
Tag 0l
Interaction @ User Interaction Enabled
Multiple Touch
Alpha e
Background Default B
Tint WSS Default <]
Drawing [Opaque
Hidden
Clears Graphics Context
Clip to Bounds
Autoresize Subviews
Stratching 02 03
X Y

import Foundation
import UIKit

class DeviceCell: UlTableViewCell{
@I1BOutlet weak var nameLabel: UlLabel!
63

Integrating Third-party Devices Through Bluetooth

override func awakeFromNib() {
super.awakeFromNib()
}

}
Code Sample 6.1

3. Add required UlTableView methods

In the ConnectViewController.swift file we need to add the
UlTableViewDataSource and UlTableViewDelegate protocols to process
table data and confirm two required methods from UlTableViewDataSource
protocol (Code sample 6.2).

import UIKit

class ConnectViewController: UlIVViewController,
UlTableViewDelegate, UlTableViewDataSource {

@I1BOutlet weak var tableView: UlTableView!

override func viewDidLoad() {
super.viewDidLoad()
tableView.delegate = self
tableView.dataSource = self

}

override func viewDidAppear(_ animated: Bool) {
tableView.reloadData()

}

func tableView(_ tableView: UlTableView, numberOfRowsInSection
section: Int) -> Int {
return O

}

func tableView(_ tableView: UlTableView, cellForRowAt indexPath:
IndexPath) -> UlTableViewCell {
if let cell = tableView.dequeueReusableCell(withldentifier:
"deviceCell") as? DeviceCell {

64

Integrating Third-party Devices Through Bluetooth

return cell
¥
else {

return DeviceCell()
¥

}

}
Code sample 6.2

4. Preparing for Core Bluetooth

First, we need to add the CoreBluetooth framework with: import
CoreBluetooth. Most of the work in the Core Bluetooth framework is
done through delegate methods. The central is represented by
CBCentralManager and its delegate is CBCentralManagerDelegate.
CBPeripheral presents the peripheral device and its delegate is
CBPeripheralDelegate.

To handle different states of the central device we need to add
following extension to the ConnectViewController class (Code sample
6.3).

extension ConnectViewController: CBCentralManagerDelegate{
func centralManagerDidUpdateState(_ central: CBCentralManager) {
switch central.state {
case .unknown:
print(“'central.state is .unknown")
case .resetting:
print("central.state is .resetting™)
case .unsupported:
print("central.state is .unsupported™)
case .unauthorized:
print("central.state is .unauthorized™)
case .poweredOff:
print("central.state is .poweredOff")
case .poweredOn:
print("central.state is .poweredOn')}}}

Code sample 6.3

65

Integrating Third-party Devices Through Bluetooth

Add to the ConnectViewController class the centralManager
variable and make it initialization on viewDidLoad() method (Code
sample 6.4). As the result the line “central.state is .poweredOn” will
appear in console.

var centralManager: CBCentralManager!
centralManager = CBCentralManager(delegate: self, queue: nil)

Code sample 6.4

As the central device has entered the power on state (in case
.poweredOn) it must scan for nearby peripherals with following code (Code
sample 6.5).

case .poweredOn:
print(“'central.state is .poweredOn")
centralManager.scanForPeripherals(withServices: nil)

Code sample 6.5

Now we need to discover the peripheral devices nearby
implementing the following code (Code sample 6.6) in
ConnectViewController extension. The result in console gives a list of
devices that can be reached via Bluetooth, for instance: “<CBPeripheral:
0x2820a8000, identifier = FODOE4DC-2FCE-372F-2358-
CO5E479DB9C8, name = Dmitriy’s MacBook Pro, state =
disconnected> <CBPeripheral: 0x2820a8000, identifier = DF68E247-
B7C5-C285-6485-0D19ED04277A, name = iHealth Gluco, state =
disconnected>”

func centralManager(_ central: CBCentralManager, didDiscover
peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI:
NSNumber) {print(peripheral)}

Code sample 6.6

5. Scanning for Peripherals with Specific Services
We can scan for peripheral devices that provide only services that are

66

Integrating Third-party Devices Through Bluetooth

necessary for specific application, in this case — those devices which give
information on glucose measurements. To do that, we need the UUID for the
Glucose services (0x1808), which can be found on the Bluetooth services
specification page https://www.bluetooth.com/specifications/gatt/services/
and note the UUID for it (Figure 6.4).

®

0

Home v Specifications v GATT Specifications v GATT Services
Generic org.bluetooth.service.generic_attribute 0x1801
Attribute
Glucose org.bluetooth.service.glucose 0x180¢
Health org.bluetooth.service.health_thermometer 0x180¢
Thermometer

Figure 6.4

Now we need to create the CBUUID object and pass it to the
scanForPeripherals(withServices:) that takes an array. The
glucoseServiceCBUUID have to be placed under the import statements and
referred from scanForPeripherals() method (Code sample 6.7).

let glucoseServiceCBUUID = CBUUID(string: "0x1808")

case .poweredOn:
print("central.state is .poweredOn™)
centralManager.scanForPeripherals(withServices:
[glucoseServiceCBUUID])

Code sample 6.7

Next we need to store a reference to the glucose peripheral and then
can stop scanning for further peripherals. To do that we need to create the
glucosePeripheral variable and use the stopScan() method in
centralManager(_:didDiscover: advertisementData:rssi:) (Code sample 6.8).
After building and running an app we can find in console just one peripheral:

67

Integrating Third-party Devices Through Bluetooth

“<CBPeripheral: 0x2820a8000, identifier = DF68E247-B7C5-C285-
6485-0D19EDO04277A, name = iHealth Gluco, state = disconnected>".

var glucosePeripheral: CBPeripheral!

func centralManager(_ central: CBCentralManager, didDiscover
peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI:
NSNumber) {

print(peripheral)

glucosePeripheral = peripheral

centralManager.stopScan() }

Code sample 6.8

6. Add Activity Indicator animation to the View Controller

An Activity Indicator is a spinning wheel that indicates a task is being
processed. If an action takes an unknown amount of time to process, we
should display an activity indicator to let user know that app is not frozen. As
the Activity Indicator starts working on Connect tab open and stops as all
devices were found we need to implement the startSpinning() in
viewDidLoad() and stopSpinning() after central.stopScan() method. The
Code sample 6.9 presents @IBOutlet for Activity Indicator and
startSpinning(), stopSpinnig() methods.

@IBOutlet weak var activityIndicator: UlActivityIndicatorView!

func activityStart(){
activitylndicator.startAnimating()}

func activityStop(){
activitylndicator.stopAnimating() }

Code sample 6.9
7. Connecting to a peripheral

To obtain data from a peripheral we need to connect it. Call the
connect() method for centralManager after activityStop() and confirm the

68

Integrating Third-party Devices Through Bluetooth

connection by creating the centralManager(_:didConnect) delegate method
(Code sample 6.10).

func centralManager(_ central: CBCentralManager, didDiscover
peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI:
NSNumber) {

print(peripheral)

glucosePeripheral = peripheral

centralManager.stopScan()

self.activityStop()

centralManager.connect(glucosePeripheral)

}

func centralManager(_ central: CBCentralManager, didConnect
peripheral: CBPeripheral) {
print("Connected")

Code sample 6.10

8. Discovering a peripheral’s services

The next step after connection is to discover the services of the
peripheral. Even after specifically requesting a peripheral with the
glucose service we still need to discover the service to use it. After
connecting, call the discoveryServices(nil) on the peripheral from
centralManager(_:didConnect) delegate method. We can pass in UUID’s
for the services here, but for now we discover all available services to
see what else the glucose device can do.

Next we need to implement the
peripheral(_:didDiscoverServices:) delegate method. To do so we will
create one more class extension to conform the CBPeripheralDelegate
protocol (Code sample 6.11). The method
peripheral(_:didDiscoverServices:) doesn’t provide us a list of
discoverable services but only that one or more services has been
discovered by peripheral. This is because the peripheral object has a
property that gives you a list of services.

extension ConnectViewController: CBPeripheralDelegate{
func peripheral(_ peripheral: CBPeripheral, didDiscoverServices

69

Integrating Third-party Devices Through Bluetooth

error: Error?) {
guard let services = peripheral.services else { return }

for service in services{
print(service)
¥

}

¥
Code sample 6.11.

Finally, point glucosePeripheral at its delegate with
glucosePeripheral.delegate = self in centralManager(_:didDiscover:
advertisementData:rssi:) and pass the glucoseServiceCBUUID to the
glucosePeripheral.discoverServices() method. After building and running
the application the following line will be printed to the console:
<CBService: 0x1c046f280, isPrimary = YES, UUID = Glucose>.

9. Discovering a service’s characteristics

The glucose measurement is a characteristic of a glucose service.
To obtain the characteristics of a service we need to explicitly request the
discovery of the service’s characteristics. Add to the

peripheral(_:didDiscoverService) the
peripheral.discoverCharacteristics(nil, for:service).

After this implement
peripheral(_:didDiscoveCharacteristicsFor:error:) after

peripheral(_:didDiscoverDervices:). The CBPeripheralDelegate
extension will look as in Code sample 6.12.

extension ConnectViewController: CBPeripheralDelegate{
func peripheral(_ peripheral: CBPeripheral, didDiscoverServices
error: Error?) {
guard let services = peripheral.services else { return }

for service in services{
print(service)
peripheral.discoverCharacteristics(nil, for: service)
}
}

70

Integrating Third-party Devices Through Bluetooth

func peripheral(_ peripheral: CBPeripheral,
didDiscoverCharacteristicsFor service: CBService,
error: Error?) {
guard let characteristics = service.characteristics else { return }

for characteristic in characteristics {
print(characteristic)

}

1
Code sample 6.12

Build and run the application. The console will show following
information: <CBCharacteristic: 0x1cO0b0920, UUID = 2A1S,
properties = 0x10, value = (null), notifying = NO> <CBCharacteristic:
0x1c00af300, UUID = 2A34, properties = 0x4, value = (null), notifying
= NO>. On the Bluetooth specification page in the characteristics section
we can see that 2A18 presents the glucose measurement and 2A34 shows
the glucose measurement context (Figure 6.5). For these values we can
add two constant values under the glucoseServiceCBUUID declaration
(Code sample 6.13).

(3 Home v specifications v GATT Specifications v GATT Characteristics

Gender org.bluetooth.characteristic.gender OXZABC ~ GSS
Glucose Feature org.bluetooth.characteristic.glucose_feature 0x2A51 Gss
Glucose Measurement org.bluetooth.characteristic.glucose_measurement 0x2A18 css

org.bluetooth.characteristic. glucose_measurement_context 0x2A34 GSS

Figure 6.5
let glucoseMeasurementCharacteristicCBUUID = CBUUID(string:
"0x2A18")
let glucoseMeasurementContextCharacteristicCBUUID =

CBUUID(string: "0x2A34")
Code sample 6.13

10. Checking a characteristic’s properties
71

Integrating Third-party Devices Through Bluetooth

Each characteristic has a property called properties of type
CBCharacteristicsProperties and is an OptionSet. In this application we
will focus on the .read only.

In peripheral(_:didDiscoverCharacteristicsFor:error:) method add
code that helps to see the characteristics properties (Code sample 6.14).
Build and run the application. We can see the result in console: 2A18:
properties contain .read 2A34: properties contain .read. This means that
both characteristics can let us read from them directly.

func peripheral(_ peripheral: CBPeripheral,
didDiscoverCharacteristicsFor service: CBService,
error: Error?) {
guard let characteristics = service.characteristics else { return }

for characteristic in characteristics {
print(characteristic)
if characteristic.properties.contains(.read) {
print(“\(characteristic.uuid): properties contains .read”)

Code sample 6.14

11. Obtaining the Glucose Measurement data

The Core Bluetooth framework requires the implementation of
peripheral(_:didUpdateValueFor:error:) method to read a characteristic’s
value. The read operation is asynchronous, which means that we request
to read, and are then notified when the value has been read. Add
peripheral(_:didUpdateValueFor:error:) to the CBPeripheralDelegate
extension and peripheral.readValue(for:) in
peripheral(_:didDiscoverCharacteristicsFor: error). The
ConnectViewController extension is presented in Code sample 6.15.

extension ConnectViewController: CBPeripheralDelegate{
func peripheral(_ peripheral: CBPeripheral, didDiscoverServices
error: Error?) {
guard let services = peripheral.services else { return }

72

Integrating Third-party Devices Through Bluetooth

for service in services{
print(service)
peripheral.discoverCharacteristics(nil, for: service)
¥
¥

func peripheral(_ peripheral: CBPeripheral,
didDiscoverCharacteristicsFor service: CBService,
error: Error?) {
guard let characteristics = service.characteristics else { return }

for characteristic in characteristics {
print(characteristic)
if characteristic.properties.contains(.read) {
print("\(characteristic.uuid): properties contains .read")
peripheral.readValue(for: characteristic)
}
}
}

func peripheral(_ peripheral: CBPeripheral, didUpdateValueFor
characteristic: CBCharacteristic,
error: Error?) {

switch characteristic.uuid {

case glucoseMeasurementCharacteristicCBUUID:
print(characteristic.value ?? "no value")

case glucoseMeasurementContextCharacteristicCBUUID:
print(characteristic.value ?? "no value™)

default:
print("Unhandled Characteristic UUID: \(characteristic.uuid)")

}

}r

Code sample 6.15

1.6.4 Report requirements and tasks
Additional tasks:

73

Integrating Third-party Devices Through Bluetooth

1. Create the initial Connect page with empty table and UlButton
that will segue to the ViewController described in section 1.6.3.

2. Perform all stages described in section 1.6.3 of searching,
connecting and querying for data from connected peripheral device.

3. Display the names of found via Bluetooth appropriate devices
to the table in Connect tab.

4. Call for default UlAlertController to ask user permission for
connecting with peripheral devices.

5. Read information from selected peripheral and store it in the
CoreData HistoryModel entity.

6. Store the name of connected device in Core Data and load all
names to UlTableView on initial Connect ViewController.

The report should contain following sections:

1. Introduction — background, theory and practical work purpose;

2. Development - the code with comments from
ConnectViewController ~ described in section 16.3 and
InitialConnectViewController created while solving the task 1. Code and
screenshots of all additional tasks solution with comments.

3. Summary — conclusion and result summary.

1.6.5 Test questions

1. What are the central and peripheral devices?

2. Describe two types of peripherals data?

3. How peripheral device can be found using CoreBluetooth
framework?

4. How we can search for specific peripheral devices?

5. How we connect with peripheral devices, search for their
services and characteristics?

1.6.6 Recommended literature

1. Core Bluetooth Framework Documentation.
https://developer.apple.com/ documentation/ corebluetooth

2. Working With CoreBluetooth in iOS 11. Tutorial.
https://www.appcoda.com/core-bluetooth/

3. Matt Neuburg. Programming iOS 12: Dive Deep Into Views,
View Controllers and Frameworks/ o’Reilly Media, 2018 — 1176 p.

74

Getting Started With Android Studio — Intro to the Development Environment”

2. Developing loT-based applications for Android
Practical work 2.1

GETTING STARTED WITH ANDROID STUDIO -
INTRO TO THE DEVELOPMENT ENVIRONMENT

2.1.1 Synopsis

There aren’t any prerequisites for this practical work, other than a
willing mind and a Mac or PC. You can develop for Android on both a
Mac or a PC. The instructions mostly similar but slightly different
between macOS, Windows and Linux.

You’ll learn how to set up all the tools needed to start you on your
way to creating an Android application.

2.1.2 Brief theoretical information

Android Studio - is the official integrated development
environment for Google's Android operating system, built on JetBrains'
IntelliJ IDEA software and designed specifically for Android
development. It is available for download on Windows, macOS and
Linux based operating systems.

You can download Android studio on the following link:

https://developer.android.com/studio/index.html.

2.1.3 Practical steps

1. Welcome screen and creating a project

You’ll start by creating a new Android app that you’ll use to
explore Android Studio and to learn about its capabilities and interface.
Fire up Android Studio and, in the Welcome to Android Studio window,
select Start a new Android Studio project (Figure 1.1).

In the Choose your project window (Figure 1.2), there is bunch
of possible options to choose from. We would be interested in the
Empty Activity and Bottom Navigation Activity projects futher on.
Also there are additional tabs on the top if you need to create an
application for Wearables, Android TV, Android Auto or different other
devices, which can be connected to Android through different channels.

75

https://developer.android.com/studio/index.html

Getting Started With Android Studio — Intro to the Development Environment”

. Welcome to Android Studio

>

-

Android Studio

+ Start a new Androkd Studio project

= Open an existing Android Studio project

1 Check aut project from Version Cantrol »
[Profile or debug APK

1 import project (Gradle, Eciipse AT, etc.)

o Import an Android code sample.

@ Configure = Get Help ~

Figure 1.1. Android Studio — Welcome screen

[JoN) Create New Project

Choose your project

Phoneand Tablet ~WearOS TV Android Auto Android Things

Add No Activity

Basic Activity Empty Activity Bottom Navigation Activity

DL I—

4

Fullscreen Activity Master/Detail Flow Navigation Drawer Activity Google Maps Activity

Empty Activity

Creates a new empty activity

Figure 1.2. Android Studio — Welcome screen

After you choose a project type, you would need to fill the core
fields for the application, which you can see on the Figure 1.3. Fields can

be slightly different for different project types, but the main items are the
same.

76

Getting Started With Android Studio — Intro to the Development Environment”

e e Create New Project
Configure your project
Name
Glu

package name
com-example.glu

Save location

[Users/Your_user/AndroidStudioProjects/Glu2

Language

Kotlin v

Bottom Navigation Activity

Minimum APl level | API 26: Android 8.0 (Oreo) -
© Your app will run on approximately 6.0% of devices.
Help me choose

Th will support instant apps

Creates a new activity with bottom
navigation

Cancel Previous

Figure 1.3. Android Studio — Configure screen

You are able to fulfill the following fields:

— Name: Your project actual name, you can pick Glu, or any
other name

— Package name: Name of the package, Occasionally it’s
necessary to know the package name of an Android app. The package
name is a unique name to identify a specific app. Generally, the
package name of an app is in the format domain.company.application,
but it’s completely up to the app’s developer to choose the name. The
domain portion is the domain extension, like com or org, used by the
developer of the app. The company portion is usually the name of the
developer’s company or product. The final application portion usually
describes the app itself. This could be one word or multiple words
separated by periods.

— Save location: Address of the folder location

— Language: You can choose the language to code, it would be

Java or Kaotlin in most of the cases. For our practical work we use

Kotlin.
77

Getting Started With Android Studio — Intro to the Development Environment”

— Minimum API Level: Actual support of different android
Versions, we would use the latest 28 version, but feel free to use
anything after version 22 to have Kotlin support available.

After you press Finish and Within a short amount of time you’ll
land on an application screen main Ul, which would be your main
screen for most of the time while working on any Android application.

2. Main window user interface
The Android Studio main window is made up of several logical
areas identified in Figure 1.4.

B e

nnnnnn

semavigation. Bot tastlavigatissVime

Figure 1.4. Android Studio — Main Window Ul

— The Navigation bar (1) helps you navigate through your
project and open files for editing. It provides a more compact view of
the structure visible in the Project window.

—The Toolbar (2) lets you carry out a wide range of actions,
including running your app and launching Android tools.

—The Editor Window (3) is where you create and modify code.
Depending on the current file type, the editor can change. For

78

Getting Started With Android Studio — Intro to the Development Environment”

example, when viewing a layout file, the editor displays the Layout
Editor.

—The Tool Window Bar (4) runs around the outside of the IDE
window and contains the buttons that allow you to expand or collapse
individual tool windows.

—The Tool Windows (5) give you access to specific tasks like
project management, search, version control, and more. You can
expand them and collapse them.

—The Status Bar (6) displays the status of your project and the
IDE itself, as well as any warnings or messages.

—The Preview window (7) is one of the tool windows (5), but is
particularly interesting for us, as it contains application Ul. You can
also switch between the code and preview windows in the
development process.

You can organize the main window to give yourself more screen
space by hiding or moving toolbars and tool windows. You can also
use keyboard shortcuts to access most IDE features.

At any time, you can search across your source code, databases,
actions, elements of the user interface, and so on, by double-pressing
the Shift key, or clicking the magnifying glass in the upper right-hand
corner of the Android Studio window. This can be very useful if, for
example, you are trying to locate a particular IDE action that you have
forgotten how to trigger.

3. Project Structure

Each project in Android Studio contains one or more modules
with source code files and resource files.

Types of modules include:

— Android app modules

— Library modules

— Google App Engine modules

By default, Android Studio displays your project files in the
Android project view, as shown in Figure 1. This view is organized by
modules to provide quick access to your project's key source files.

All the build files are visible at the top level under Gradle

Scripts and each app module contains the following folders:
— manifests: Contains the AndroidManifest.xml file.

79

Getting Started With Android Studio — Intro to the Development Environment”

— java: Contains the Java source code files, including JUnit test
code.

— res:; Contains all non-code resources, such as XML layouts, Ul
strings, and bitmap images

The Android project structure on disk differs from this
flattened representation. To see the actual file structure of the project,
select Project from the Project dropdown (in Figure 1.5, it's showing
as Android).

You can also customize the view of the project files to focus on
specific aspects of your app development. For example, selecting
the Problems view of your project displays links to the source files
containing any recognized coding and syntax errors, such as a
missing XML element closing tag in a layout file.

android-RuntimePermissions-master ; Appl android-RuntimePermissions-master) Ap
g Android v D = B 1- g % Problems v D = | & 1-
13l v CiApplication 'S v [ZApplication
o N o . .
i v manifests i v Application
” < AndroidManifest.xml 2 v src/main

v java AndroidManifest.me
[. v
5 > com.example.android 5
§ > common.activities E]
@ v [ares &
~l N
an > drawable fa
A" N
> lavout

Figure 1.5 Android product structure

4. Version control basics

Android Studio supports a variety of version control systems
(VCS’s), including Git, GitHub, CVS, Mercurial, Subversion, and
Google Cloud Source Repositories.

After importing your app into Android Studio, use the Android
Studio VCS menu options to enable VVCS support for the desired version
control system, create a repository, import the new files into version
control, and perform other version control operations:

From the Android Studio VCS menu, click Enable Version
Control Integration.

From the drop-down menu, select a version control system to
associate with the project root, and then click OK.

80

Getting Started With Android Studio — Intro to the Development Environment”

The VCS menu now displays a number of version control options
based on the system you selected.

You can read more about git as an example in iOS part of the
practical work.

2.1.4 Report requirements and tasks.

There aren’t any prerequisites for this practical work, other than a
willing mind and a Mac or PC.

1. Using the links in the practical work successfully install the
Android studio.

2. Get an overview of the tool, using the steps of the practical
work.

3. Write down questions, if there are any left.

2.1.5 Test questions.

1. What types of template projects does Android studio provide?
2. Describe the core parts of the project structure.

3. What is VCS? Name at least 3 of the most popular ones.

4. Which tool window can you use for application UI?

81

Design and Basic Layouts of the Android Diabetic Tracker Application “Glucose”

Practical work 2.2

DESIGN AND BASIC LAYOUTS OF THE ANDROID DIABETIC
TRACKER APPLICATION “GLUCOSE”

2.2.1 Synopsis

This practical work presents a pointed analysis of how the
Material Design patterns and guidelines can be applied to design a
health-related application

2.2.2 Brief theoretical information

The Google Play Market gives a list of recommendations about
content policy that should be fulfilled if application is going to be
published in Android applications market. It should be noted that
recommendations are less strict than presented by App Store Review
team, but still highlight the most important issues such as violent content
restrictions, handling user data, monetization plans, advertisement etc.
While there are no specific requirements for working with user health
data we can steel use information on how app must handle sensitive user
data [1]:

- limit collections and use this data to purpose directly to
providing and improving the feature of the app;

- post a privacy policy that comprehensively disclose how app
collects, uses and shares user data;

- handle all personal data securely, including transmitting it using
modern cryptography.

Additionally, Google Play Market set no specific recommendation
on application design that is planned to be submitted to the store. Still,
starting from 2014 Google develop a specific design language, known as
Material Design. Material is an adaptable system of guidelines,
components and tools that support the best practices of user interface
design. Material Design can be used in all supported versions of Android
and Google has also released APIs for third-party developers to
incorporate the design language into their applications. Thus, the
Android diabetic tracker application “Glucose” design will be built upon
Material design approach.

Now, let’s list the basic functions that glucose tracker application
will provide:

82

Design and Basic Layouts of the Android Diabetic Tracker Application “Glucose”

- manually add new glucose measurement: set data in mil/dg,
dependence on meal, date and time;

- synchronize and app with third-party glucometers to upload the
recent data;

- present a glucose measurement history to the user;

- edit the glucose measurement history data;

- send reminders for the next measurement time.

2.2.3 Practical steps

1. Measure page design

First, let’s discuss how basic application pages can be organized.
There are four logical groups can be derived from apps functions listed
above — management of the history data (History); creation of a new
measurement (Measure); connection to the third-party devices (Connect)
and user notifications (Settings). We can present this data with lateral
navigation that refers to movement between screens at the same
hierarchy level.

According to Material Design essentials this type of navigation
can be created with bottom navigation bar in case if there are 2 — 5 top-
level destinations and application is developed for mobile device. The
bottom navigation must be ergonomic, consistent and present only
equally important items. In case of four destinations both active and
inactive items should be presented with icons and titles and have
sufficient contrast with the container [2].

The Figure 2.1 presents Measure tab that let user add following
information to an app: ongoing glucose measure, dependence of this data
on meal and date with time. There first two inputs are required but the
last one can be optional. As the new data record is created the system
will simply use the present time.

There are three options for meal selection: Before, After and
Bedtime which can be accessed through filled exposed dropdown menu
(Figure 2.2).

83

Design and Basic Layouts of the Android Diabetic Tracker Application “Glucose”

319 0 w40 59% 319 ¥ 0 w40 59%

Measure Measure

Measurement number (mg/dl) Measurement number (mg/dl)

After meal - After meal

Before meal

(3 Today 11 :© 24 AM After meal

Bedtime

S m

o] o] 9 ® & ¢} o) ®

SETTINGS CONNECT HISTORY MEASURE SETTINGS CONNECT HISTORY MEASURE

< - < -

Figure 2.1 Figure 2.2

Menu items should be easy to open, scan, close and interact with.
Menu height should be at least one row less than the height of app’s UL
This item typically appears next to the element that generates them. The
filled exposed dropdown menu displays the currently selected menu item
above the menu and applied only when a single variant can be chosen at
a time.

Date selection can be organized with date picker element that is
activated with date picker field. This control can display past, present or
future dates based on task relevance, clearly indicate important dates and
ensure picking a day or time is intuitive. For our purpose the classic
Material Design mobile calendar date picker is the most suitable one
(Figure 2.3). The time picker can be organized using the filled text fields.
There are three main principles for text fields design: easy to discover,
clearly differentiate from one another and efficient.

2. History page design

The previously glucose measurement history can be organized in
84

Design and Basic Layouts of the Android Diabetic Tracker Application “Glucose”

a table form (Figure 2.4). The grid-like format or rows and columns is
one of the most essential for presenting such data sets. Material Design
guidelines draw three main principles for data tables design: organize
internal content in meaningful way (hierarchy or alphabetization); allow
user interactions for additional user customization; easy to use with clear
logical structure [3].

The History tab presents a simple table that contains glucose
measure information in clear and readable way. Each row presents a
previously made glucose record with a dropdown menu with “Delete”
option.

30 w40 59%

130 mg/dl Jan10,04:25PM §
Fasting

80 mg/dl

Fasting

130 mg/d! Jan10,04:25PM §
Before meal

83 mg/dl Jan10,02:27PM §
Snacks

80 mgy/dl

Fasting

130 mg/dl Jan10,04:25PM §
Before meal

83 mg/dl Jan10,0227PM
Snacks

80 mg/dl
Fasting

CANCEL

e

SETTINGS

<

©

CONNECT

L0)

HISTORY

®

MEASURE

Figure 2.3 Figure 2.4
3. Connect page design

According to the apps functions list, the user has an option to
connect through Bluetooth some third-party devices to read the most
recent data. Figure 2.5 presents an initial page in Connect tab that
provide an editable list of recently connected devices. New connection
can be established with “Add device” button located in page bottom
section. This button will take user to the next screen where search of new
device is performed (Figure 2.6). All buttons under Material Design

85

Design and Basic Layouts of the Android Diabetic Tracker Application “Glucose”

guidelines should be highly identifiable, easy to find and present clear
actions. In this app we use the contained button type as it has more
emphasis while using the color and shadow.

319 3094 059% 319

Devices Devices
FORA G31 Smart H Devices in network Scanning
iHealth Glucke +
iHealth Align
Sybercare Magic Mirror +
Next One
Trividia True Metrix Air +

+ ADD DEVICE

& o] 9 ® & o] D ®

SETTINGS CONNECT HISTORY. MEASURE SETTINGS CONNECT HISTORY MEASURE

< - < -

Figure 2.5 Figure 2.6

We can show a search feedback to user with updated list of
nearby devices that have turned on Bluetooth module and loader
“Scanning...” that will animate during search. User can connect to the
needed device by simply clicking on “+” in the row near its name. As the
result the dialog alert window will appear that asks to confirm paring to
device (Figure 2.7). Dialog components are of high-priority components,
which mean that it will block app usage until the user takes a dialog
action or exits the dialog. Based on this the dialogs should be used
carefully and applied for handling the critical information that requires a
specific user tasks, decisions or acknowledgement.

4. Settings page design

The developed application presents only one additional setup
that can be made by user — set reminders on the next glucose
measurement (Figure 2.8). The notifications may be noticed by user by

86

Design and Basic Layouts of the Android Diabetic Tracker Application “Glucose”

showing a status bar icon, appearing on the lock screen, playing a sound
or vibrating, peeking onto the current screen or blinking the device’s
LED. Android platform guidance set a list of information when
notifications should not be used and when they should [4] .

From the Settings page notifications can be enabled with switch
control. When user toggles a switch, its corresponding action takes effect
immediately. If a switch cannot be turned on, the switch should
automatically turn back off letting the user know that it is unavailable.

Settings

L Enable notifications

Pairing...

Glucko?

CANCEL CONNECT

Figure 2.7 Figure 2.8

2.2.4 Report requirements and tasks

Practical work tasks:

4. Download Sketch or Figma, install the software and design the
basic «Glucose» application screens. You can use the partial or full
design and data organization of «Glucose» application as it was
presented in 2.2.3 Practical steps. Use thenounproject.com and
material.io to find icons for buttons and other control elements.

5. Read the official Material Design guidelines following
elements: buttons, labels, date pickers, switchers, text fields, dialogs and
tables.

87

Design and Basic Layouts of the Android Diabetic Tracker Application “Glucose”

6. Add into the Settings tab following additional setup functions:
select the glucose units from mg/dL to mmol/L; clear measurements
history; delete measurement history for data later than month ago; setup
reminder with custom settings inside an application.

The report should contain following sections:

10.Introduction — background, theory and practical work purpose;

11.Development — screenshots with explanation of each practical
work task completion.

12.Summary — conclusions and result summary.

1.2.5 Test questions

1. What is a Material Design?

2. What are the basic Material Design requirements for layout
organization?

3. What type of information is presented in Measure screen? Why
did you used such controls to get user data?

4. What type of information is presented in History screen? How
we can alternate the data presentation in this screen?

5. Name the representation stages of searching and connecting to
the peripheral device in Connect page.

1.2.6 Recommended literature and resources

1. Developer Content Policy. https://play.google.com/intl/en_us/
about/developer-content-policy/

2. Bottom Navigation.
https://material.io/design/components/bottom-navigation.html

3. Data Tables. https://material.io/design/components/data-
tables.html#

4, Android Notifications. https://material.io/design/platform-
guidance/android-notifications.html#

88

https://play.google.com/intl/en_us/%20about/developer-content-policy/
https://play.google.com/intl/en_us/%20about/developer-content-policy/
https://material.io/design/components/bottom-navigation.html
https://material.io/design/components/data-tables.html
https://material.io/design/components/data-tables.html
https://material.io/design/platform-guidance/android-notifications.html
https://material.io/design/platform-guidance/android-notifications.html

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

Practical work 2.3

TRANSLATING DESIGN INTO CODE - ADD AND SETUP
BASIC “GLUCOSE” FRAGMENTS

2.3.1 Synopsis

In this practical work, we’ll learn how to use the basic
components of Android application, such as lists, bottom navigation,
different input fields and datepicker. We would use the material
component library to make it easier.

i. Brief theoretical information

Material Components for Android (MDC Android) unites
design and engineering with a library of components for creating
consistency across your app. As the Material Design system evolves,
these components are updated to ensure consistent pixel-perfect
implementation and adherence to Google's front-end development
standards.

You can check any additional information about the material
components and guidelines, native android components and on [1].
Additional guides for different components are presented at [2].

There are libraries, which allows to simplify design to
development process by replacing XML files, one of those is Anko.
Anko is a Kaotlin library [3], which makes Android application
development faster and easier. It makes your code clean and easy to
read.

ii. Practical steps
1.Create a project

Create a project (Figure 3.1), similar to what you did in the first
practical work. Use the template for bottom navigation.

89

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

TR) Create New Project

Configure your project

Figure 3.1. Android Studio — Configure your project

2. Setting up a bottom navigation bar
To use Anko and Navigation Architecture Component on module
level we need to implement dependencies in build.gradle.

implementation
"org.jetbrains.anko:anko:Sanko version"
implementation "org.jetbrains.anko:anko-
constraint-layout:$anko version" implementation
"com.android.support.constraint:constraint-
layout:2.0.0-alpha3"

implementation
'android.arch.navigation:navigation-
fragment:1.0.0-betal2'

implementation
'android.arch.navigation:navigation-fragment-
ktx:1.0.0-betal2'

implementation
'android.arch.navigation:navigation-ui-
ktx:1.0.0-betal2'

implementation

'com.google.android.material :material:1.0.0"'

90

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

Next step is to create the structure of our application. To draw
the main activity instead of xml-file we can create MainActivityUl,
based on the AnkoComponent class. Therefore, it would be an override
of the AnkoComponent class.

class MainActivityUI:
AnkoComponent<MainActivity> {

override fun createView (ui:
AnkoContext<MainActivity>): View = with (ui)

{

constraintLayout { }

Replace MainActivity setContentView(R.layout.activity main)
with MainActivityUl().setContentView(this) in the MainActivity class.

Then we create package fragments which would contain our
fragments and package ui for the classes, which are used for drawing the
screens of the corresponding fragments. Here is how the structure would
look like, according to the design:

fragments
ui
SettingsUI
ConnectUI
HistoryUI
MeasureUI
SettingsFragment
ConnectFragment
HistoryFragment
MeasureFragment

Now we would start actually working on Navigation and creation
of Bottom Navigation Bar. Detailed guide on how to add new navigation
components and Navigation Editor work guide you can find at [4].

To create a graph navigation file between the application
screens, we would need to add an additional folder, named navigation
into the res folder and create the navigation_graph.xml inside.

91

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

<navigation
xmlns:android="http://schemas.android.com/apk/re
s/android"
xmlns:app="http://schemas.android.com/apk/res-
auto"

android:id="@+id/navigation graph"
app:startDestination="Q@id/settingsFragment">

<fragment
android:id="@+id/settingsFragment"
android:name="com.arsinde.ankobottomnavbar.fragm
ents.SettingsFragment"
android:label="SettingsFragment">
<action
android:id="@+id/action settingsFragment to meas
ureFragment"

app:destination="@id/measureFragment"/>
</fragment>

<fragment
android:id="@+id/historyFragment"
android:name="com.arsinde.ankobottomnavbar.fragm
ents.HistoryFragment"
android:label="HistoryFragment">
<action
android:id="@+id/action historyFragment to conne
ctFragment"

app:destination="@id/connectFragment"/>
</fragment>

<fragment
android:id="@+id/connectFragment"

android:name="com.arsinde.ankobottomnavbar.fragm
ents.ConnectFragment"
android:label="ConnectFragment">
92

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

<action
android:id="@+id/action connectFragment to measu
reFragment"

app:destination="@id/measureFragment" />
</fragment>

<fragment
android:id="@+id/measureFragment"
android:name="com.arsinde.ankobottomnavbar.fragm
ents.MeasureFragment"
android:label="MeasureFragment"/>
</navigation>

For the current project we would need four items, based on
design. Also we are using the default material icons which were taken
from [5].

We would need to create another resource folder to show the Bar
itself, which would be responsible for visuals view of the bar. Here is
how it would look like:

<menu
xmlns:android="http://schemas.android.com/apk/re
s/android">
<item
android:id="@id/settingFragment"
android:icon="@drawable/ic settings"
android:title="@string/menu title settings"
/> a a
<item
android:id="@id/connectFragment"
android:icon="@drawable/ic_watch"
android:title="@string/menu title history"
/>
<item
android:id="@id/historyFragment"
android:icon="@drawable/ic_history"
android:title="@string/menu title measure"
/>
93

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

<item
android:id="@id/measureFragment"
android:icon="@drawable/ic_add"
android:title="@string/menu title more"
/>

</menu>

Now we can connect everything together and check how it
works. We would add the container for fragments into the
MainActivityUl, and define the container for navigation bar

</menu> constraintLayout {
val fragmentContainer = framelayout ({
id = R.id.fragment container
}.1lparams {
width = matchParent
height = matchConstraint
}

val bottomNavigation = bottomNavigation
id = R.id.bottom nav view

inflateMenu (R.menu.bottom navigation menu)
}
applyConstraintSet ({
fragmentContainer {
connect (
START to START of PARENT ID,
END to END of PARENT ID,
TOP to TOP of PARENT ID,
BOTTOM to TOP of
R.id.bottom nav view
)}
bottomNavigation {
connect (
START to START of PARENT ID,
END to END of PARENT ID,
TOP to BOTTOM of

R.id.fragment container,
94

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

BOTTOM to BOTTOM of
PARENT ID
) b1}

Also keep in mind, that bottomNavigation in this practical work
is an extension function:

inline fun ViewManager.bottomNavigation (init:
BottomNavigationView. () -> Unit = {}) =

ankoView ({ BottomNavigationView (it) },
theme = 0, init = init)

Now we need to define NavHostFragment in
MainActivity:

private val host by lazy {
NavHostFragment.create (R.navigation.navigation g
raph) }

And define it in onCreate():

supportFragmentManager.beginTransaction ()
.replace (R.id.fragment container, host)
.setPrimaryNavigationFragment (host)
.commit ()

The last step in creating navigation is adding the NavControllel
class object into onStart() MainActivity, which would make the switch
between the fragments, choosing the corresponding object in navigation
bar

override fun onStart () {
super.onStart ()
val navController = host.findNavController ()

findviewById<BottomNavigationView> (R.id.bottom n
av_view) ?.setupWithNavController (navController)

navController.addOnDestinationChangedListener{ ,
destination, _ ->
val dest: String = try {

resources.getResourceName (destination.id)
95

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

} catch (e: Resources.NotFoundException)

Integer.toString(destination.id)
}
Log.d("NavigationActivity", "Navigated
to Sdest")
1}

Here’s how the basic version would look as presented on Figuew
3.2.

319

Settings

SETTINGS PAGE

2
Lo]
©
(]

Figure 3.2. Bottom navigation

3. Datepicker setup

We would leave the easier parts for the tasks in the end, and
would check the most complex component, among those we have in our
app, the datepicker:

Create a fresh project. Add the following code into the
activity_main.xml layout file, where button have the method to perform
onClick action

<?xml version="1.0" encoding="utf-8"?>

96

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

<android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/re
s/android"

xmlns:app="http://schemas.android.com/apk/res-
auto"

xmlns:tools="http://schemas.android.com/tools"

app:

app:

app:

app:

app:
app:

ew"

android:layout width="match parent"
android:layout height="match parent"
tools:context=".MainActivity">

<TextView
android:id="@+id/textView"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginTop="1l6dp"
android:text="Hello World!"

layout constraintLeft toLeftOf="parent"
layout constraintRight toRightOf="parent"
layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout margin="16dp"
android:text="Open Date Picker"
android:onClick="clickDataPicker"

layout constraintEnd toEndOf="parent"
layout constraintStart toStartOf="parent"

layout constraintTop toBottomOf="@+id/textVi
/>

</android.support.constraint.ConstraintLayout>

97

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

Setup the MainActivity.kt. On clicking button — Creates a new
date picker dialog for the current date using the parent context’s default
date picker dialog theme (Figure 3.3). Context is requires the application
context.

var year: It shows the the current year that’s visible when the
dialog pops up

var month: It shows the the current month that’s visible when
the dialog pops up

var dat: It shows the the current day that’s visible when the
dialog pops up

package “in’ .eyehunt.androiddatepickerdialog

import android.app.DatePickerDialog

import android.icu.util.Calendar

import android.os.Build

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import android.support.annotation.RequiresApi
import android.view.View

import android.widget.Toast

class MainActivity : AppCompatActivity () {

override fun onCreate (savedInstanceState:
Bundle?) {
super.onCreate (savedInstanceState)
setContentView (R.layout.activity main)

}

@RequiresApi (Build.VERSION CODES.N)
fun clickDataPicker (view: View) {
val ¢ = Calendar.getInstance()
val year = c.get(Calendar.YEAR)
val month = c.get (Calendar.MONTH)
val day = c.get(Calendar.DAY OF MONTH)

98

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

val dpd = DatePickerDialog(this,
DatePickerDialog.OnDateSetListener { view, year,
monthOfYear, dayOfMonth ->
// Display Selected date in Toast
Toast.makeText (this, """SdayOfMonth
- S{monthOfYear + 1} - Syear""",
Toast.LENGTH LONG) .show ()

}, year, month, day)
dpd.show ()

319 FOwLN5I%

Measiire

CANCEL 0K

& 0 o o

Figure 3.3. Date picker after implementing to the system

iii. Report requirements and tasks
1.Using the links and code in the implement the navigation

menu.
2.Using the links and code implement the datepicker.

99

Translating Design Into Code - Add And Setup Basic “Glucose” Fragments

3.Check material library and android guides at
https://developer.android.com/docs and https://material.io/develop/

4. Adapt the design colors using XML or Anko

5.Implement any 2 other features, which were done in design
(inputs and settings for example)

iv. Test questions.
1.How do you create the package fragments?
2.What are the core variables for datepicker?
3.What is the advantage of using Anko over XML?

V. Literature

1. Material Design. Develop. https://material.io/develop/

2. Material Design. Developer Tutorials. https://material.io/
collections/developer-tutorials/#android-kotlin

3. Anko. https://github.com/Kotlin/anko

4. Developers. BottomNavigationView. https://developer.
android.com/reference/android/support/design/widget/BottomNavigation
View

5. Material Design. Icons. https://material.io/resources/icons/

100

Getting Started With Databases On Android

Practical work 2.4
GETTING STARTED WITH DATABASES ON ANDROID

2.4.1 Synopsis

In this practical work we will discuss how user data can be stored
on Android device on the example of SQLite database. Starting with
creation of a new database, insert of a new record into it, updating
information, editing existed data and deleting its content we will learn
the basic operations with SQL.ite database.

2.4.2 Brief theoretical information
There are several options that can be applied to store user data:

- Internal file storage — store application files on the device;

- External file storage — store files on the shared external file
system;

- Shared preferences — store private primitive data in key-value
pairs;

- Databases — store structured data in a private database.

As it was stated before, the application stores glucose
measurements along with meal dependence data and date with time as it
was made, thus the databases will be a good place where to store this
information.

Android provides full support of SQLite databases that will be
only accessible from app that have created it. However, the official
documentation suggests to communicate with database with Room
persistence library instead simple SQLite APIs. The Room library
provides an object-mapping abstraction layer that allows fluent databases
access and thus takes care of many concerns. The Android SDK includes
a sglite3 database tool that allows browsing table contents, run SQL
commands etc [1].

2.4.3 Practical steps
1. Creating a Measure.java class
Create several packages, namely database and database/model.
Inside of database/model packages create a Measure.java (Code sample

101

Getting Started With Databases On Android

4.1) that will define the SQL.te table and column names and create table
SQL query along with get and set methods.

The “measure” table have five columns:

- “id” column is defined as Primary Key and Auto Increment
which means that every measurement record will be uniquely identified
by its id;

- “glucose” stores a string with glucose measurement data from
the text field;

- “meal” stores a string with definition of meal dependence
selected from the dropdown menu;

- “date” stores string created from Date Picker and time entered
from text fields. This data is optional, thus if user did not set this
information here will be stored data and time of when the new record
was created,;

- “timestamp” stored the data and time of the record that is
created. This data can help in refreshing table if the user has edited its
data.

public class Measure {

public static final String TABLE NAME =
"measure";

public static final String COLUMN ID = "id";

public static final String COLUMN GLUCOSE =
"glucose";

public static final String COLUMN MEAL
“meal”;

public static final String COLUMN DATE
“date”;

public static final String COLUMN TIMESTAMP
= "timestamp";

private int id;

private String glucose;
private String meal;
private String date;
private String timestamp;

public static final String CREATE TABLE =

102

Getting Started With Databases On Android

"CREATE TABLE " + TABLE NAME + " ("

+ COLUMN ID + " INTEGER PRIMARY KEY
AUTOINCREMENT, "+ COLUMN GLUCOSE + " TEXT,"

+ COLUMN MEAL + " TEXT,"+ COLUMN DATE + "
TEXT, "+ COLUMN TIMESTAMP + " DATETIME DEFAULT
CURRENT TIMESTAMP"+ ")";

public Measure() {}
public Measure (int id, String glucose,
String meal, String date, String timestamp) {
this.id = id;
this.glucose = glucose;
this.meal = meal;
this.date = date;
this.timestamp = timestamp;
}
public int getId() { return id; }
public void setId(int id) { this.id = id; }
public String getGlucose () { return glucose;}
public void setGlucose (String glucose) {
this.glucose = glucose; }
public String getMeal () { return meal; }
public void setMeal (String meal) { this.meal
= meal; }
public String getDate() { return date; }
public void setDate(String date) {
this.date = date; }
public String getTimestamp () {
return timestamp;}
public void setTimestamp (String timestamp) {
this.timestamp = timestamp; }

Code sample 4.1

2. Creating SQLite Helper class

First we need to create the SQLite helper class
(DatabaseHelper.java) in database package, that will extend from
SQLiteOpenHelper (Code sample 4.2) [2]. The SQLiteOpenHelper is a

helper class for managing database creation and version management.
103

Getting Started With Databases On Android

The DatabaseHelper.java will implement onCreate(SQLiteDatabase),
ouUpgrade(SQL.iteDatabase, int, int) methods.

The onCreate() is called only once when the app is installed as this
method executes and the sqgl statement which creates a table.

The onUpdate() will be called when an update is released.

public class DatabaseHelper extends
SQLiteOpenHelper {
private static final int DATABASE VERSION

1;

private static final String DATABASE NAME
"measure db";

public DatabaseHelper (Context context) {
super (context, DATABASE NAME, null,
DATABASE_VERSION) ;
}
// Create Tables
@Override
public void onCreate (SQLiteDatabase db) {
db.execSQL (Measure.CREATE TABLE) ;
}
// Upgrade database
@Override
public void onUpgrade (SQLiteDatabase db, int
oldVersion, int newVersion) {
db.execSQL ("DROP TABLE IF EXISTS " +
Measure.TABLE NAME) ;
onCreate (db) ;
o}

Code sample 4.2

3. Insert data to Measure database table

New data insertion requires getting the writable instance with
getReadableDatabase() on database. The ContentValue() is applied to
define column name and data that it stores. The “id” and “timestamp”
columns do not require setting up as these two will be inserted

104

Getting Started With Databases On Android

automatically. It should be noted that database connection have to be
closed with db.close() as soon the following work does not require the
database use. As soon as glucose, meal and data values are inserted, the
“id” of new insertion will be returned. The code sample 4.3 presents
method for new data insertion to the database.

public long insertMeasure (String measure) {

SQLiteDatabase db =
this.getWritableDatabase() ;

ContentValues values = new ContentValues /()

values.put (Measure.COLUMN GLUCOSE,
glucose) ;

values.put (Measure.COLUMN MEAL, meal);

values.put (Measure.COLUMN DATA, data);

long id = db.insert (Measure.TABLE NAME,
null, wvalues);

db.close () ;

return id;

Code sample 4.3

4. Reading data from Measure database table

With the same public method of SQLiteOpenHelper class
getReadableDatabase() we can open a database for reading it data. The
code sample 4.4 presents an application of getAllMeasures() method that
fetches all measures in descending order by timestamp. It returns an
ArrayList that can be further used for presenting data in History tab
table.

public List<Measure> getAllMeasures () {
List<Measure> measure = new ArrayList<>();

// Select All Query

String selectQuery = "SELECT * FROM " +
Measure.TABLE NAME + " ORDER BY " +
Measure.COLUMN TIMESTAMP + " DESC";

105

Getting Started With Databases On Android

SQLiteDatabase db =
this.getWritableDatabase() ;

Cursor cursor = db.rawQuery(selectQuery,
null);

if (cursor.moveToFirst()) {
do {
Measure measure = new Measure ()

measure.setlId(cursor.getInt (cursor.getColumn
Index (Measure.COLUMN ID)));

measure.setGlucose (cursor.getString (cursor.getCo
lumnIndex (Measure.COLUMN GLUCOSE))) ;
measure.setMeal (cursor.getString (cursor.get
ColumnIndex (Measure.COLUMN MEAL))) ;
measure.setData (cursor.getString(cursor.get
ColumnIndex (Measure.COLUMN DATA))) ;
measure.setTimestamp (cursor.getString (curs
or.getColumnIndex (Measure.COLUMN TIMESTAMP))) ;
measure.add (measure) ;
} while (cursor.moveToNext ()):;
}
db.close() ;
return measure;

Code sample 4.3

5. Updating data from Measure table database

The data update requires the writable access provided with
getWritableDatabase(). In code sample 4.4 the data is updated using its
C‘id”‘

public int updateMeasure (Measure measure) {
SQLiteDatabase db =
this.getWritableDatabase() ;

ContentValues values = new ContentValues|();

values.put (Measure.COLUMN GLUCOSE,
106

Getting Started With Databases On Android

measure.getGlucose()) ;

values.put (Measure.COLUMN MEAL,
measure.getMeal ()) ;

values.put (Measure.COLUMN DATA,
measure.getData());

return db.update (Measure.TABLE NAME, values,
Measure.COLUMN ID + " = 2",
new

String[] {String.valueOf (measure.getId()) }) ;}
Code sample 4.4

6. Deleting data from Measure table database

The same as above, if we need to delete data from databases there
should be writable access to it. Method presented in Code sample 4.5
deletes a measure by finding its “id”.

public void deleteMeasure (Measure measure) {
SQLiteDatabase db =
this.getWritableDatabase() ;
db.delete (Measure.TABLE NAME,
Measure.COLUMN ID + " = 2",
new
String[]{String.valueOf (Measure.getId()) }):;
db.close () ;
t

Code sample 4.5

2.4.4 Report requirements and tasks

Practical work tasks:

6. Create a new SQL.ite database in existing glucose measurement
application project.

7. Apply the insertMeasure(string measure) method on “Add
measure” button pressed event.

8. Present the ArrayList returned with getAllMeasures() method
inside of table in History tab.

107

Getting Started With Databases On Android

9. Using updateMeasure() and deleteMeasure() methods organize
the according editing options for table in History tab.

The report should contain following sections:

13.Introduction — background, theory and practical work purpose;

14.Development — screenshots with explanation of each practical
work task completion; DatabaseHelper.java class code with comments;
History tab classes code with comments.

15.Summary — conclusions and result summary.

2.4.5 Test questions

1. How user data can be stored on Android devices?

2. Explain the difference between different Android storages?

3. What methods are applied to make a new data record to the
SQL.ite?

4. How we can read, update, delete and edit data from SQL.ite?

2.4.6 Recommended literature and resources

1. Data and File Storage Overview. https://developer.android.com/
guide/topics/data/data-storage#db

2. android.database.sglite Documentation. https://developer.
android.com/reference/android/database/sglite/package-summary

108

https://developer.android.com/%20guide/topics/data/data-storage#db
https://developer.android.com/%20guide/topics/data/data-storage#db

Abstract and contents
Practical work 2.5

INTEGRATING THIRD - PARTY TRACKERS AND
GLUCOMETERS USING API.

2.5.1 Synopsis
In this practical work we’ll learn how to use the third party trackers
and glucometers using API based on the example of iHealth API.

2.5.2 Brief theoretical information

iHealth is a healthcare management company striving to revitalize
old healthcare devices with modern technology everyone is familiar with.
The MyVitals and Gluco-Smart Mobile App can synchronize with all
iHealth products and allow you to view every result in one app. It also
have simple custom API for the third-party applications, so everyone can
track the progress as a developer, using iHealth devices.

There are also multiple other companies, which devices can be use
with the same idea in mind: GlucoWise, DarioHealth, Abbott Diabetes
Care, Integrity Applications, Senseonics etc.

2.5.3 Practical steps

1. Direct methods
iHealth Wireless Smart Gluco-Monitoring System have the basic
API Calls, which are pretty simple, they are:

- BG_GET for getting the data, using the following query:
SC
SV
client id
client secret
- BGALL_GET for getting the full set of data, using the
following query:
SC
SV
client id
client secret
- BG_POST for sending the data to device, using the
following body items:

109

Abstract and contents

MDATE

TIMEZONE

BG
DINNERSITUATION
DRUGSITUATION
BGUNIT

- BG_PUT for putting the data, using the following body
items:
MDATE
TIMEZONE
BG
DINNERSITUATION
DRUGSITUATION
BGUNIT
- query:
SC
SV
We can use this information to work with basic API.

2.Complex integrations using SDK

For more complex integrations or seamless work with different
devices it is more reliable to use an SDK. There are some examples of code
for iOS on official iHealth github, which you can check and adapt to
Android, as iHealth does not have official guides for Android yet [1, 2].

We can use an Android SDK from [3] to work further.

iHealth Device SDK can accomplish the major operations such as:
Connection Device, Online Measurement, Offline Measurement and iHealth
Device Management. To start using SDK you would need to initialize it
first, you can do it with the following code.

iHealthDevicesManager.getInstance () .init (MainActivi
ty.this);

To register a callback and get a callback ID use:

int callbackId =
iHealthDevicesManager.getInstance () .registerClientC
allback (iHealthDevicesCallback) ;

110

Abstract and contents

We can also use a callback filter in the similar way:

iHealthDevicesManager.getInstance () .addCallbackFilt
erForAddress (clientCallbackId, ...);
iHealthDevicesManager.getInstance () .addCallbackFilt
erForDeviceType (clientCallbackId, ...);

Now let’s get to devices itself: To verify the iHealth device user
permission you would need to use the following code:

iHealthDevicesManager.getInstance () .sdkUserInAuthor
(MainActivity.this, userName, clientId,
clientSecret, callbackId);

If verify success, all the api avaliable, else you will get 10 trial day,
and would need to contact the iHealth to get the developer license for it. But
we can use the trial for the learning purposes.

Now we would need to discover the device:

int type = iHealthDevicesManager.DISCOVERY BP5
iHealthDevicesManager.getInstance () .startDiscov
ery (type);

private iHealthDevicesCallback
iHealthDevicesCallback = new
iHealthDevicesCallback () {
@Override
public void onScanDevice (String mac, String
deviceType) {
}
}i

After the device is discovered successfully, use connectDevice to
make a connection with the phone app.

iHealthDevicesManager.getInstance () .connectDevi
ce (userName, mac, type):;

111

Abstract and contents

private iHealthDevicesCallback
iHealthDevicesCallback = new
iHealthDevicesCallback () {
@Override
public wvoid
onDeviceConnectionStateChange (String mac, String
deviceType, int status) {
}
}i

To get the iHealth device controller in our case it’s BG5 based on
specs [4] we use the following:

BgbControl bgbControl =
iHealthDevicesManager.getInstance () .getBgbControl (m
ac);

3. iHealth device integration example

Before working with iHealth devices SDK you need to learn
android multithreading communication pattern with Handlers and Messages.
You must have complete understanding of those two classes and how they
are used to communicate and pass data between two threads.

Therefore, how the SDK works — you need to register a callback
(iHealthDevicesCallback) to receive connection state and perform
operations on it. This callback will be triggered with startDiscovery()
method within iHealthDevices singleton instance. This callback interface
has several methods that needs to be overridden:

onScanDevice (String mac, String deviceType, int
rssi)

onScanFinish ()
onDeviceConnectionStateChange (String mac, String
deviceType, int status, int errorID)

If any iHealth device is found onScanDevice() method will be
called. To connect to that device send a command to the handler
CONNECT_DEVICE

myHandler.sendEmptyMessage (CONNECT DEVICE) ;
112

Abstract and contents

Those command codes needs to be declared first as constants.

private static final int ADD SUCCESS = 101;
private static final int ADD FAIL = 102;

private static final int SCAN DEVICE = 103;
private static final int CONNECT DEVICE = 104;
private static final int DISCONNECT DEVICE = 105;

If a device is connected or disconnected or failed
onDeviceConnectionStateChange() method will be called. Constants to
determine the states are:

iHealthDevicesManager .DEVICE STATE CONNECTED
iHealthDevicesManager .DEVICE STATE CONNECTIONFAIL
iHealthDevicesManager .DEVICE STATE DISCONNECTED

In addition, others like these. Take control over your device if
connection is successful. In our case it’s BG5:
BgbControl bgbControl =
iHealthDevicesManager.getInstance () .getBp7Control (m
Address) ;

For different devices this control classes will be different. But
naming conventions are the same.

Okay it was a brief overview. Lets follow some steps so that we can
successfully connect our iHealth Device within out app.

After you put your binaries(.jar, .s0) into /app/libs folder of your
project, compile all of the files on build.gradle, Initialize iHealth SDK on
your application class

iHealthDevicesManager.getInstance () .init (this);

Create a Class named MeasureHelperlHealth that is responsible for
connecting to the device.
Register a callback and add device filter (bg5 in our case)

public MeasureHelperIHealth (Context context) {
this.context = context;

113

Abstract and contents

callbackId =
iHealthDevicesManager.getInstance () .registerClientC
allback (miHealthDevicesCallback) ;
iHealthDevicesManager.getInstance () .addCallbackFilt
erForDeviceType (callbackId,
iHealthDevicesManager.TYPE BG)S);
iHealthDevicesManager.getInstance () .sdkUserInAuthor
(context, userName, clientId,

clientSecret, callbackId);

myHandler = new MyHandler () ;

}

Remember to call sdkUserInAuthor() method to verify your
identity. Client ID and Client Secret can be found registering iHealth
website and adding new app there.

Use the iHealth Device Callback like it was described before.

Use myHandler to send message to the background thread in which
we can call connectDevice(), startDiscovery(), disconnect() methods on
background.

On onDeviceConnectionStateChange() method check if device is
connected. If yes then open an activity or fragment of whatever.

Perform operation on that fragment/activity like measuring etc.

And at last - Trigger Device discovery for the first time so that
callback is operational.

iHealthDevicesManager.getInstance () .startDiscovery (
iHealthDevicesManager.DISCOVERY BG5) ;

Now you can step further and work on the measurements itself, you
can do it by yourself, depending on the device you have. Do not forget to
unregister after you finish measurements Unregister on destroy:

iHealthDevicesManager.getInstance () .unRegisterClien
tCallback (clientCallbackId) ;

2.5.4 Report requirements and tasks.

1. Learn the information about the iHealth SDK

2. Learn Android multithreading communication pattern with
Handlers and Messages, links are in the literature, [1,2]

3. Successfully connect any device via Bluetooth or usb.

114

Abstract and contents
4. Try to write the measurements for any device.

2.5.5 Test questions.

1. Which methods can you use directly via API?

2. What is Handlers, in Android, how is it working?
3. What is Messages in Android, how is it working?

2.5.6 Literature

1. iHealthLabs. OpenAPI-V2-10S. https://github.com/iHealth
Labs/OpenAPI-V2-10S_

2. iHealthLabs. OpenAPI-V2. https://github.com/iHealthLabs
/OpenAPI-V2/

3. rimonxyz. ihdevicexamples. https://github.com/rimonxyz/
ihdevicesexamples/tree/master/examples/Android_SDK

4. Wireless Smart Gluco-Monitoring System. https://cloud.c2m.
net/ihealth/wireless-smart-gluco-monitoring-system

115

Appenxix A. Teaching program of the Master course “Mobile and hybrid IoT computing”

APPENDIX A. TEACHING PROGRAM OF THE MASTER COURSE
“MOBILE AND HYBRID loT COMPUTING”

DESCRIPTION OF THE MODULE

TITLE OF THE MODULE Code
Mobile and hybrid loT-based computing MC3
Teacher(s) Department

Coordinating: Dr. Butenko V.O.
Others: Dr. Odarushchenko O.M., Dr. Strjuk O.Y .,

Computer Systems,
Networks and

Dr. Odarushchenko O.B., Butenko D.A. Cybersecurity
Study cycle Level of the module Type of the module
MC A Full-time tuition
Form of delivery Duration Langage(s)
full-time tuition, distance | Five weeks English
tuition

Prerequisites

Prerequisites:

Need for training of developers creating
software for connected devices or the

Internet of Things

Co-requisites (if necessary):

Credits of the
module

Total student

Contact hours
workload

Individual work
hours

7,5

230 148

82

Aim of the module (course unit): competences foreseeen by the study

programme

The aim of the module is to introduce the students to design and of mobile and loT

applications and services.

Learning outcomes of module

(course unit)

Teaching/learning
methods

Assessment methods

At the end of course, the

successful student will be able to:
1.Evaluate critical design tradeoffs
for different mobile and loT
technologies, architectures,

Interactive lectures,
Practicals

Module Evaluation
Questionnaire

116

Appenxix A. Teaching program of the Master course “Mobile and hybrid IoT computing”

interfaces impact on usability,
security, privacy of mobile and
loT computing services and
applications; design, develop and
publish their apps on different OS

2. Perform the basic of cloud

. . Lectures, .
computing on various . Module Evaluation
' Practicals and . .
architectures, such as SaaS, Paas, . Questionnaire
seminars
laaS
3. Capture, analyze, search, share Lectures .
pLure, yze, o - Module Evaluation
store, process and intergrade big Practicals and . -
. . . Questionnaire
data for mobile applications seminars

Contact work hours

Time and tasks for
individual work

X
S
5| 2|3
-
Themes @ 5| 2 o =
=) = A8 =2 = Tasks
o 2 8 2| & o o
S| 3 & S| 8 g =2 =
2128 5|88 T3
S s S o
3188 &£ S & © =
1.Mobile and Networking 44 36 80 38 |11

Introduction
to the course:
history of
mobile, cloud
and loT
development,
basic
standards,
development
guidelines.
Developing
applications
for Android.
Basic
interaction
types of loT
and Android
applications.

117

Appenxix A. Teaching program of the Master course “Mobile and hybrid IoT computing”

Developing
applications
for iOS. Basic
interaction
types of loT
and iOS
applications.
Usability,
security and
privacy
concepts for
Android and
iOS apps.
Basics of
wearable
programming
Applications
development
for Android
wearable.
Applications
development
for iOS
wearable.

2. Cloud Computing and
loT

20

38

22

2.1
Introduction
to the Cloud
Computing.
Dynamic
interactions
and
computing
architectures —
SaaS, PaaS,
laaS benefits,
issues and
concerns
Economics of
Cloud
Computing.
Service
models, value

118

Appenxix A. Teaching program of the Master course “Mobile and hybrid IoT computing”

and risks.
Perform
computing in
Android
applications
on the cloud.
Perform
computing of
i0S
applications
on the cloud.

3. Intregration of big data
and loT/IoE technologies

18

6|6 30 22 | 3.1 Integration
of Big Data
and IOT
Technologies.
Foundations
for Big Data
Systems for
10T. Big Data
characteristics
and tyeps.

Big Data
platform stack
and tools.
Architectures
of Big Data
systems.
Requirements
for Big Data
systems

Total

82

1|54 148 | 82 | 230
2

Assessment Weig
strategy ht in
%

Dead
lines

Assessment criteria

Lecture activity, | 40
learning in
laboratories

85% — 100% Outstanding work, showing a
full grasp of all the questions answered.

70% — 84% Perfect or near perfect answers
to a high proportion of the questions
answered. There should be a thorough
understanding and appreciation of the

119

Appenxix A. Teaching program of the Master course “Mobile and hybrid IoT computing”

material.

60% — 69% A very good knowledge of
much of the important material, possibly
excellent in places, but with a limited
account of some significant topics.

50% — 59% There should be a good grasp of
several important topics, but with only a
limited understanding or ability in places.
There may be significant omissions.

45% — 49% Students will show some
relevant knowledge of some of the issues
involved, but with a good grasp of only a
minority of the material. Some topics may
be answered well, but others will be either
omitted or incorrect.

40% — 44% There should be some work of
some merit. There may be a few topics
answered partly or there may be scattered or
perfunctory knowledge across a larger
range.

20% — 39% There should be substantial
deficiencies, or no answers, across large
parts of the topics set, but with a little
relevant and correct material in places.

0% — 19% Very little or nothing that is
correct and relevant.

Module Evaluation | 60 4 The score corresponds to the percentage of
Quest correct answers to the test questions
Author Year | Title No of Place of printing.
of periodic | Printing house or
issue alor intrenet link
volume
Compulsory literature
2017 | The Swift Apple Inc., p. 500
Programming
Language (Swift
4.0.3)
2017 | Using Swift with Apple Inc., p. 100
Cocoa and

Objective-C (Swift

4.0.3)

120

Appenxix A. Teaching program of the Master course “Mobile and hybrid IoT computing”

Matt Neuburg 2017 | i0S 11 O’Reilly Media,
Programming October 2017, 646
Fundamentals with P.
Swift
Marko Gargenta, 2014 | Learning Android, O’Reilly Media,
Masumi Develop Mobile 2014, 286 p.
Nakamura Apps Using Java
and Eclipse, 2nd
Edition
John Horton 2015 | Learning Java by John Horton, 2015,
Building Android 392 P.
Games
Justin Garrison, 2017 | Cloud Native O’Reilly Media,
Kris Nova Infrastructure: 160P.
pattern for
Scalable
Infrastructure and
Applications in
Dynamic
Environment
Additional literature
Fei Hu 2016 | Security and 2016 by Taylor &
Privacy in Internet Francis Group, LLC
of Things (lIoTs) CRC Press is an
Models, imprint of Taylor &
Algorithms, and Francis Group, an
Implementations Informa business
Adrian McEwen, | 2014 | Designing the 2014 John Wiley and
Hakim Cassimally Internet of Things Sons, Ltd.
2016 | Digitising the River Publishers
Industry Internet
of Things
Connecting the
Physical, Digital
and Virtual
Worlds

121

Abstract and contents
AHOTAILLA

VJIK 004.382.74i0S _And:004.411](076.5)=111

Byrenko B.O., Opapymenko O.M., Ctpiok O.1O., Onapymenko E.B.
Mo6iibHi i riopuaHi 06uKc/IieHHs1 HA OCHOBI iHTepHeTy peueid. / 3a pen.
Xapuenka B.C. — MOH Vxkpainn, HarmioHanmbHHNH aepOKOCMITHHH
yHiBepcuteT iM. M. €. XXykoBcbkoro «XAl». — 124 c.

Bukimageno mMatepianu nmpaktudHoi yactuau Kypey “MC3. Mobile and
hybrid loT-based computing”, mniaroToBIEHOr0o B paMKax MPOCKTY
ERASMUS+ ALIOT “Internet of Things: Emerging Curriculum for
Industry and Human Applications” (573818-EPP-1-2016-1-UK-EPPKA2-
CBHE-JP).

HaBuanbHuit marepian, mpeacTaBIeHWN y Wi NMPaKTUYHIA YacTUHI
MaricTepchbKOro Kypcy, BUCBITIIOE OCHOBHI TEMH PO3POOKH JOAATKIB LIS
10S Ta Android Ta Bukopucranus ix mis cuctem [oT.

OCHOBHI TEMU MPAKTUIHUX POOIT HACTYIIHI:

- nouatok poboru 3 XCode Ta Android Studio - HanamrtyBaHHs
cepeloBHINa PO3poOKy;

- JU3aifH Ta OCHOBHI CXEMH J[1a0ETHYHOI MPOrpaMu BiJCTEKEHHS
niarao3y «Imoko3a» ms i0S Ta Android,;

- nepekiajy Au3aiiHy B KOJ - JOJaBaHHS Ta HallAIITyBaHHS
OCHOBHHX KOMITOHEHTIB «[JIIOKO31»;

- MoYaToK pobOTH 3i cxoBuimamu Aanux A i0S ta Android;

- OIIIHIOBaHHs 1H(OpPMAIl PO CTaH 30pPOB’S KOPUCTYBayiB 3a
nmoromororo HealthKit ra Google Fit;

- [HTerpanis CTOpOHHIX TPEKepiB Ta TIIOKOMETPIB 3a OMOMOTO0
API.

[lpuzHaueno pansi iHXeHEPiB, PO3POOHUKIB Ta HAyKOBLIB, SKi
3aliMaloTbcd PO3poOKOI0 Ta BOpoBaKeHHsM [0T g mpoMucioBux
CHCTEM, JUIsS acIipaHTIB YHIBEPCHTETIB, SKi HABUAIOThCS 32 HAMPIMOM
KOMIT'IOTEpHUX HayK, KOMIT'IOTEpHOI Ta MpOrpaMHOI iHXKeHepii, a TaKoX
JUTSL BUKJIaJa4diB BiJ{IIOBITHUX KYPCiB.

bi6x. — 38, pucyHnkis — 66.

122

Abstract and contents

3MICT

CKOPOYEHHS

BCTYII

1. PO3POBJIEHHS 10T 3ACTOCYHKIB JUULSI 10S

1.1. IOYATOK POBOTU 3 XCODE — BCTVII 10 IDE

1.2. TIPOEKTYBAHHS TA BA30BI CXEMH 3ACTOCYHKA
JIABETUYHOI'O TPEKEPA HA 10S “GLUCOSE”

1.3. TIEPETBOPIOBAHHS IIPOEKTY B KOJI — JIOJIABAHHS TA
HACTPOIOBAHHS BA30BOI'O KOMITOHEHTY 3ACTOCYHKY

1.4. TIOYATOK POBOTH 3 CORE DATA

1.5. JIOCTVII IO THOOPMALII ITPO 3J0POB’SI KOPUCTYBAYA
3A JIOIIOMOI'OO HEALTHKIT

1.6. IHTETPYBAHHS CTOPOHHIX ITPUCTPOIB 3A JJOIIOMOI' OO
BLUETOOTH

2.PO3POBJIEHHS 10T 3ACTOCYHKIB JJ151 ANDROID

2.1. [IOYATOK POBOTH 3 ANDROID STUDIO — BBEJEHHS JO
[HTETPOBAHOI'O CEPEJJOBUILIA PO3POBKU

2.2 TIPOEKTYBAHHS TA BA30BI CXEMU 3ACTOCYHKA
JIABETUYHOI'O TPEKEPA HA ANDROID “GLUCOSE”

2.3. TIEPETBOPIOBAHHS IIPOEKTY B KOJI — JIOJABAHHS TA
HACTPOIOBAHHS BA30BUX EJEMEHTIB 3ACTOCYHKY
“GLUCOSE”

2.4. TIOUATOK POBOTHU 3 BA3AMMU JJAHUX HA ANDROID

2.5. IHTETPYBAHHS CTOPOHHIX TPEKEPIB TA TJIOKOMETPIB
3A JIOTIOMOI'O1O [IPUKJIAJJHOT'O I[TIPOTPAMHOI'O
IHTEP®EUCY

JOJIATOK A. HABYAJIbBHA IIPOTPAMA MATICTEPCHKOI'O
KVYPCY “MOBILE AND HYBRID IOT COMPUTING”

AHOTALIS TA 3MICT

123

oo~ w

23
41

49

61
75

75

82

89

101

109

116
123

Abstract and contents

CONTENTS

ABBREVIATIONS

INTRODUCTION

1. DEVELOPING IOT-BASED APPLICATIONS FOR 10S

1.1. GETTING STARTED WITH XCODE — INTRODUCTION TO THE
IDE

1.2. DESIGN AND BASIC LAYOUTS OF THE I10S DIABETIC
TRACER APPLICATION “GLUCOSE”

1.3. TRANSLATING DESIGN INTO CODE - ADD AND SETUP
BASIC APPLICATION COMPONENT

1.4. GETTING STARTED WITH CORE DATA

1.5. ACCESSING USER HEALTH INFORMATION USING
HEALTHKIT

1.6. INTEGRATING THIRD-PARTY DEVICES THROUGH
BLUETOOTH

2. DEVELOPING IOT-BASED APPLICATIONS FOR ANDROID

2.1. GETTING STARTED WITH ANDROID STUDIO — INTRO TO
THE DEVELOPMENT ENVIRONMENT

2.2 DESIGN AND BASIC LAYOUTS OF THE ANDROID DIABETIC
TRACKER APPLICATION “GLUCOSE”

2.3. TRANSLATING DESIGN INTO CODE - ADD AND SETUP
BASIC “GLUCOSE” ELEMENTS

2.4. GETTING STARTED WITH DATABASES ON ANDROID

2.5. ACCESSING USER HEALTH INFORMATION USING GOOGLE
FIT

2.6. INTEGRATING THIRD-PARTY TRACKERS AND
GLUCOMETERS USING API

APPENDIX A. TEACHING PROGRAM OF THE MASTER COURSE
“MOBILE AND HYBRID IoT COMPUTING”

ABSTRACT AND CONTENTS

124

oo~ w

23

41
49

61

75
75

82

89

101
109

116

136

Byrenko Banentuna OneriBaa
Onapymenko Oner MukonaitoBuy
Crprok Omnekciii FOpitioBug
Onapymenko Onena bopucisaa
Byrenko [Imutpo AHaTomiioBuy

MOBIJIBHI I I'IBPU/ITHI OBYNCJIEHHA
HA OCHOBI IHTEPHETY PEUEH

IIpakTukym
(aHrNifcHKOI0 MOBOIO)

Penakrop Xapuenko B.C.

Komn'torepna Bepctka
B.C. XapueHnko,
0.0. Insuenko

3B. mian, 2019
[Migmucannit no apyky 20.02.2017
dopmar 60x84 1/16. ITamip ode. No2. Odce. apyk.
YmMoB. apyk. apk. 7,27. Yu.-eun. 1. 7,81. Haknan 150 npum.
3amosienns 220819-4.

HauioHasnbHnit acpokocmiuHui yHiBepeutet iM. M. €. }KyKOBCLKOFO
"XapkiBChbKHH aBiamIWHUK 1HCTUTYT'
61070, Xapkis-70, Byn. Ukanosa, 17
http://www.khai.edu

Bumnyckatounii pegakrop: @OII ['onemboBcrka O.0.
03049, Kuis, [ToBiTpodnorcekuii mp-KT, 0. 3, k. 32.
CBIJIONTBO NPO BHECEHHS Cy0'€KTa BUIABHIYOI CIIPABH JI0 I€PKABHOTO PEECTPY BUJIABIIIB,
BHUTOTOBIIIOBAYIB 1 PO3MOBCIO/KYBAYiB BUIABHUYOT POIYKILIT
cepist IK No 5120 Bix 08.06.2016 p.

Bunasenn: TOB «Bunasaunrso FOcTtony
01034, m. Kuis, Byi.. O. 'oruapa, 36-a, Ten.: +38 044 360 22 66
Www.yuston.com.ua
CBiJJOLTBO MPO BHECEHHs CY0 ‘€KTa BUIABHHUYOI CIIPABH JI0 JEP)KABHOTO PEECTPY BHIABLIB,
BUTOTOBIIIOBAYIB i PO3MOBCIOPKYBAYIB BHAABHUYIOI IPOAYKIi]
cepis JIK No 497 Bix 09.09.2015 p.

	ALIOT_MC3_Mobile and hybrid IoT_cover
	ALIOT_MC3_Mobile and hybrid IoT
	MC3_Mobile and hybrid IoT_4Publisher

